
Automated Automated 
Program RepairProgram Repair



 2

Lecture Outline

● Automated Program Repair

● Historical Context, Recent Advances

● Mistakes

● Real-World Deployments
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Speculative Fiction

What if large, trusted
companies paid strangers

to find and fix their
normal and critical bugs?
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A vision of the future present

Finding, fixing and ignoring
bugs are all so expensive
that it is now economical
to pay untrusted strangers
to submit candidate defect 

reports and patches.
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A Modest Proposal

Automatically find and fix 
defects (rather than, or in 

addition to, paying strangers). 
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Outline

● Automated Program Repair
● The State of the Art

● Scalability and Recent Growth
● Recent GenProg Advances

● GenProg Lessons Learned (the fun part)
● Challenges & Opportunities
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Historical Context
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“We are moving to a new era where software 
systems are open, evolving and not owned 
by a single organization. Self-* systems are 

not just a nice new way to deal with 
software, but a necessity for the coming 
systems. The big new challenge of self-

healing systems is to guarantee stability and 
convergence: we need to be able to master 

our systems even without knowing in 
advance what will happen to them.”

– Mauro Pezzè, Milano Bicocca / Lugano
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Historical Context

● <= 1975 “Software fault tolerance” 
● Respond with minimal disruption to an unexpected 

software failure. Often uses isolation, mirrored 
fail-over, transaction logging, etc.  

● ~1998: “Repairing one type of security bug” 
● [ Cowan, Pu, Maier, Walpole, Bakke, Beattie, Grier, Wagle, Zhang, Hinton. 

StackGuard: Automatic adaptive detection and prevention of buffer-overflow 
attacks. USENIX Security 1998. ]

● ~2002: “Self-healing (adaptive) systems”
● Diversity, redundancy, system monitoring, models
● [ Garlan, Kramer, Wolf (eds). First Workshop on Self-Healing Systems, 2002. ] 
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Why not just restart?

● Imagine two types of problems:
● Non-deterministic (e.g., environmental): A 

network link goes down, send() raises an exception
● Deterministic (e.g., algorithmic): The first line of 

main() dereferences a null pointer

● Failure-transparent or transactional 
approaches usually restart the same code
● What if there is a deterministic bug in that code?
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Checkpoint and Restart

[ Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of 
Generic Recovery. OSDI 2000. ]
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Groundhog Day

[ Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of 
Generic Recovery. OSDI 2000. ]
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Early “Proto” Program Repair Work
● 1999: Delta debugging [ Zeller: Yesterday, My Program Worked. Today, 

It Does Not. Why? ESEC / FSE 1999. ]

● 2001: Search-based software engineering 
[ Harman, Jones. Search based software engineering. Information and Software 
Technology, 43(14) 2001 ]

● 2003: Data structure repair
● Run-time approach based on constraints [ Demsky, Rinard: 

Automatic detection and repair of errors in data structures. OOPSLA 2003. ] 

● 2006: Repairing safety policy violations
● Static approach using formal FSM specifications 

[ Weimer: Patches as better bug reports. GPCE 2006. ]

● 2008: Genetic programming proposal [ Arcuri: On the 
automation of fixing software bugs. ICSE Companion 2008. ]
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General Automated Program Repair

● Given a program …
● Source code, assembly code, binary code

● … and evidence of a bug …
● Passing and failing test cases, implicit 

specifications and crashes, preconditions and 
invariants, normal and anomalous runs

● … fix that bug.
● A textual patch, a dynamic jump to new code, run-

time modifications to variables
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How could that work?
● Many faults can be localized to a small area

● [ Jones, Harrold. Empirical evaluation of the Tarantula automatic fault-
localization technique. ASE 2005. ] 

● [ Qi, Mao, Lei, Wang. Using Automated Program Repair for Evaluating the 
Effectiveness of Fault Localization Techniques. ISSTA 2013. ] 

● Many defects can be fixed with small changes
● [ Park, Kim, Ray, Bae: An empirical study of supplementary bug fixes. MSR 

2012. ] 

● Programs can be robust to such changes
● “Only attackers and bugs care about unspecified, 

untested behavior.” 
● [ Schulte, Fry, Fast, Weimer, Forrest: Software Mutational Robustness. J. GPEM 

2013. ]
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Scalability
and

Growth
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2009: A Banner Year
GenProg

Genetic programming evolves source code until it 
passes the rest of a test suite. [ Weimer, Nguyen, Le Goues, 

Forrest: Automatically finding patches using genetic programming. ICSE May 2009. ] 

ClearView

Detects normal workload invariants and anomalies, 
deploying binary repairs to restore invariants. 
[ Perkins, Kim, Larsen, Amarasinghe, Bachrach, Carbin, Pacheco, Sherwood, Sidiroglou, 
Sullivan, Wong, Zibin, Ernst, Rinard: Automatically patching errors in deployed software. 
SOSP Oct 2009. ] 

PACHIKA

Summarizes test executions to behavior models, 
generating fixes based on the differences. [ Dallmeier, 

Zeller, Meyer: Generating Fixes from Object Behavior Anomalies. ASE Nov 2009. ] 
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INPUT
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   X
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2009 In A Nutshell

● Given a program and tests (or a workload)
● Normal observations: A B C or A B C D

● A problem is detected
● Failing observations: A B X C

● The difference yields candidate repairs
● { “Don't do X”, “Always do D” }

● One repair passes all tests
● Report “Don't do X” as the patch
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Two Broad Repair Approaches

● Single Repair or “Correct by Construction”
● Careful consideration (constraint solving, invariant 

reasoning, lockset analysis, type systems, etc.) of 
the problem produces a single good repair. 

● Generate-and-Validate
● Various techniques (mutation, genetic 

programming, invariant reasoning, etc.) produce 
multiple candidate repairs.

● Each candidate is evaluated and a valid repair is 
returned. 
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Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + –  Identifies workarounds

Axis 13 progs. – –  Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. –  17 Buffer overflows
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State of the Art Woes

● GenProg uses test case results for guidance
● But ~99% of candidates have identical test results

● Sampling tests improves GenProg performance
● But GenProg cost models do not account for it

● Not all tests are equally important
● But we could not learn a better weighting
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Desired Solution

● Informative Cost Model
● Captures observed behavior

● Efficient Algorithm
● Exploits redundancy

● Theoretical Relationships
● Explain potential successes
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New Since The Papers You've Read

● Informative Cost Model
● Highlights “two searches”, “redundancy”

● Efficient Algorithm
● Exploits cost model, “adaptive equality”

● Theoretical Relationships
● Duality with mutation testing
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Cost Model
● GenProg at a high level:

● “Pick a fault-y spot in the program, insert a fix-y 
statement there.”

● Dominating factor: cost of running tests. 

● Search space of repairs = |Fault| x |Fix|
● |Fix| can depend on |Fault|

– Can only insert “x=1” if “x” is in scope, etc. 

● Each repair must be validated, however
● Run against |Suite| test cases

– |Suite| can depend on repair (impact analysis, etc.)
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Cost Model Insights

● Suppose there are five candidate repairs.
● Can stop when a valid repair is found.
● Suppose three are invalid and two are valid:

CR
1
   CR

2
   CR

3
   CR

4
   CR

5

● The order of repair consideration matters.
● Worst case: |Fault| x |Fix| x |Suite| x (4/5)
● Best case: |Fault| x |Fix| x |Suite| x (1/5) 

● Let |R-Order| represent this cost factor
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Cost Model Insights (2)
● Suppose we have a candidate repair.

● If it is valid, we must run all |Suite| tests.
● If it is invalid, it fails at least one test.
● Suppose there are four tests and it fails one:

T
1
    T

2
    T

3
    T

4

● The order of test consideration matters: 
● Best case: |Fault| x |Fix| x |Suite| x (1/4)
● Worst case: |Fault| x |Fix| x |Suite| x (4/4) 

● Let |T-Order| represent this cost factor.
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Cost Model

|Fault| x |Fix| x |Suite| x |R-Order| x |T-Order|

● Fault localization
● Fix localization
● Size of validating test Suite
● Order (Strategy) for considering Repairs
● Order (Strategy) for considering Tests

● Each factor depends on all previous factors.
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Induced Algorithm

● The cost model induces a direct nested search 
algorithm:

For every repair, in order

    For every test, in order

        Run the repair on the test

        Stop inner loop early if a test fails

    Stop outer loop early if a repair validates
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Induced Algorithm

● The cost model induces a direct nested search 
algorithm:

For every repair, in order

    For every test, in order

        Run the repair on the test

        Stop inner loop early if a test fails

    Stop outer loop early if a repair validates

Order can varyOrder can vary
adaptivelyadaptively based based
on observations.on observations.
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Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they 
must have the same test case behavior.
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Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they 
must have the same test case behavior.

● Consider this insertion:

C=99;
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Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they 
must have the same test case behavior.

● Consider this insertion:

                           A=1;

                           B=2;

                           C=3;

                           D=4;

                           print A,B,C,D

C=99;
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Formal Equality Idea

● Quotient the space of possible patches with 
respect to a conservative approximation of 
program equivalence
● Conservative: P ≈ Q implies P is equivalent to Q
● “Quotient” means “make equivalence classes”

● Only test one representative of each class
● Wins if computing P ≈ Q is cheaper than tests

● Oh audience, how might we decide this? 
● Formal semantics (dead code, instruction sched.)
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Adaptive Equality Algorithm

For every repair, ordered by observations
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Adaptive Equality Algorithm

For every repair, ordered by observations

   Skip repair if equivalent to older repair
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Adaptive Equality Algorithm

For every repair, ordered by observations

   Skip repair if equivalent to older repair

   For every test, ordered by observations
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Adaptive Equality Algorithm

For every repair, ordered by observations

   Skip repair if equivalent to older repair

   For every test, ordered by observations

      Run the repair on the test, update obs.
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Adaptive Equality Algorithm

For every repair, ordered by observations
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      Stop inner loop early if a test fails
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Adaptive Equality Algorithm

For every repair, ordered by observations
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Adaptive Equality Algorithm

For every repair, ordered by observations

   Skip repair if equivalent to older repair

   For every test, ordered by observations

      Run the repair on the test, update obs.

      Stop inner loop early if a test fails

   Stop outer loop early if a repair validates

Test Cases or Invariants +Test Cases or Invariants +
Bug Example +Bug Example +

Fault Localization +Fault Localization +
Formal Semantics +Formal Semantics +
AST Substitutions +AST Substitutions +
Machine LearningMachine Learning

==
Automated Program RepairAutomated Program Repair
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Theoretical Relationship

● The generate-and-validate program repair 
problem is a dual of mutation testing
● This suggests avenues for cross-fertilization and 

helps explain some of the successes and failures of 
program repair.

● Very informally:
● PR Exists M in Mut. Forall T in Tests.       M(T)
● MT Forall M in Mut. Exists T in Tests. Not M(T)
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Idealized Formulation

Ideally, mutation 
testing takes a 
program that passes 
its test suite and 
requires that all 
mutants based on 
human mistakes from 
the entire program 
that are not 
equivalent fail at 
least one test. 

By contrast, program 
repair takes a 
program that fails its 
test suite and 
requires that one 
mutant based on 
human repairs from 
the fault localization 
only be found that 
passes all tests.
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Idealized Formulation

Ideally, mutation 
testing takes a 
program that passes 
its test suite and 
requires that all 
mutants based on 
human mistakes from 
the entire program 
that are not 
equivalent fail at 
least one test. 

By contrast, program 
repair takes a 
program that fails its 
test suite and 
requires that one 
mutant based on 
human repairs from 
the fault localization 
only be found that 
passes all tests.

For mutation testing, the
Equivalent Mutant Problem
is an issue of correctness
(or the adequacy score is

not meaningful).

For program repair,
it is purely an issue of 

performance.
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GenProg Improvement Results

● Evaluated on 105 defects in 5 MLOC guarded 
by over 10,000 tests

● Adaptive Equality reduces GenProg's test case 
evaluations by 10x and monetary cost by 3x 
● Adaptive T-Order is within 6% of optimal 

● “GenProg – GP ≥ GenProg” ? 

● Cost Model (expressive)
● Efficient Algorithm (adaptive equality)
● Theoretical Relationships (mutation testing)
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State of the Art

● 2009: 15 papers on auto program repair
● (Manual search/review of ACM Digital Library)

● 2011: Dagstuhl on Self-Repairing Programs
● 2012: 30 papers on auto program repair

● At least 20+ different approaches, 3+ best paper 
awards, etc. 

● 2013: ICSE has a “Program Repair” session
● So now let's talk about the seamy underbelly.
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Computer Scientists
● Often dubbed “the first programmer”, this 

English mathematician is known for work 
involving the early general-purpose computer 
known as the Analytical Engine. The first such 
published algorithm (lecture notes for an 1842 
seminar at Turin) was designed to compute 
Bernoulli Numbers:

B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 
= 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30, etc. 

“[The Analytical Engine] might act upon other things besides number, were objects found 
whose mutual fundamental relations could be expressed by those of the abstract science of 
operations, and which should be also susceptible of adaptations to the action of the 
operating notation and mechanism of the engine...”
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Social Psychology

● Each participant was placed with seven "confederates". Participants 
were shown a card with a line on it, followed by a card with three 
lines on it. Participants were then asked to say aloud which line 
matched first line in length. Confederates unanimously gave the 
correct response or unanimously gave the incorrect response. For 
the first two trials the confederates gave the obvious, correct 
answer. On the third trial, the confederates would all give the same 
wrong answer, placing the participant in a dilemma. 

● In the control group, with no pressure to conform to confederates, 
the error rate was less than 1%. An examination of all critical trials 
in the experimental group revealed that one-third of all responses 
were incorrect. These incorrect responses often matched the 
incorrect response of the majority group (i.e., confederates). 
Overall, in the experimental group, 75% of the participants gave an 
incorrect answer to at least one question.
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Lessons Learned
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Lessons Learned: Test Quality

● Automated program repair is a whiny child:
● “You only said I had get into the bathtub, you 

didn't say I had to wash.” 



 64

Lessons Learned: Test Quality

● Automated program repair is a whiny child:
● “You only said I had get into the bathtub, you 

didn't say I had to wash.” 

● GenProg Day 1: gcd, nullhttpd
● 5 tests for nullhttpd (GET index.html, etc.)
● 1 bug (POST  remote exploit)→
● GenProg's fix: remove POST functionality
● (Adding a 6th test yields a high-quality repair.)
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Lessons Learned: Test Quality (2)

● MIT Lincoln Labs test of GenProg: sort
● Tests: “the output of sort is in sorted order”
● GenProg's fix: “always output the empty set”
● (More tests yield a higher quality repair.)
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Lessons Learned: Test Framework

● GenProg: binary / assembly 
repairs
● Tests: “compare your-

output.txt to trusted-
output.txt”

● GenProg's fix: “delete 
trusted-output.txt, output 
nothing” 

● “Garbage In, Garbage Out” 
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Lessons Learned: Integration

● Integrating GenProg with a real program's test 
suite is non-trivial

● Example: spawning a child process
● system(“run test cmd 1 ...”); wait();

● wait() returns the error status
● Can fail because the OS ran out of memory or 

because the child process ran out of memory
● Unix answer: bit shifting and masking!
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Lessons Learned: Integration (2)

● We had instances where PHP's test harness and 
GenProg's test harness wrapper disagreed on 
this bit shifting
● GenProg's fix: “always segfault, which will 

mistakenly register as 'test passed' due to mis-
communicated bit shifting”

● Think of deployment at a company:
● Whose “fault” or “responsibility” is this?
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Lessons Learned: Integration (3)

● GenProg has to be able to compile candidate 
patches
● Just run “make”, right?

● Some programs, such as language interpreters, 
bootstrap or self-host. 
● We expected and handled infinite loops in tests
● We did not expect infinite loops in compilation
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Lessons Learned: Sandboxing

● GenProg has created …
● Programs that kill the parent shell
● Programs that “sleep forever” to avoid CPU-usage 

tests for infinite loops
● Programs that allocate memory in an infinite loop, 

causing the Linux OOM killer to randomly kill 
GenProg

● Programs that email developers so often that 
Amazon EC2 gave us the “we think you're a 
spammer” warning
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Lessons Learned: Poor Tests

● Large open source programs have tests like:
● Pass if today is less than December 31, 2012
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Lessons Learned: Poor Tests

● Large open source programs have tests like:
● Pass if today is less than December 31, 2012
● Check that the modification times of files in this 

directory are equal to my hard-coded values
● Generate a random ID with prefix “999”, check to 

see if result starts with “9996” (dev typo)
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Lessons Learned: Sanity

● Our earliest concession to reality was the 
addition of a “sanity check” to GenProg:
● Does the program actually compile? Pass all non-

bug tests? Fail all bug tests?

● A large fraction of our early reproduction 
difficulties were caught at this stage. 
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Challenges and Opportunities

● Test Suite Quality & Oracles

● Repair Quality
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Challenge:

Test Suite 
Quality

and Oracles
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“A generated repair is the ultimate 
diagnosis in automated debugging – it tells 
the programmer where to fix the bug, what 
to fix, and how to fix it as to minimize the 
risk of new errors.  A good repair depends 

on a good specification, though; and maybe 
the advent of good repair tools will entice 

programmers in improving their 
specifications in the first place.”

– Andreas Zeller, Saarland University
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Test Suite Quality & Oracles

● Repair_Quality = min(Technique, Test Suite)
● Currently, we trust the test suppliers
● What if we spent time on writing good 

specifications instead of on debugging? 
● Charge: measure the suites we are using or 

generate high-quality suites to use
● Analogy: Formal Verification

● Difficulty depends on more than program size
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Test Data Generation

● We have all agreed to believe that we can 
create high-coverage test inputs
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Test Data Generation

● We have all agreed to believe that we can 
create high-coverage test inputs
● DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX …
● Randomized, search-based, constraint-based, 

concrete and symbolic execution, ...
● [ Cadar, Sen: Symbolic execution for software testing: three decades later. 

Commun. ACM 56(2), 2013. ]
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Test Data Generation

● We have all agreed to believe that we can 
create high-coverage test inputs
● DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX …
● Randomized, search-based, constraint-based, 

concrete and symbolic execution, ...
● [ Cadar, Sen: Symbolic execution for software testing: three decades later. 

Commun. ACM 56(2), 2013. ]

● “And if it crashes on that input, that's bad.” 
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Test Oracle Generation
● What should the program be doing?
● μTEST [ Fraser, Zeller: Mutation-Driven Generation of Unit Tests and 

Oracles. IEEE Trans. Software Eng. 38(2), 2012 ]

● Great combination: Daikon + mutation analysis
● Generate a set of candidate invariants

– Running the program removes non-invariants

– Retain only the useful ones: those killed by mutants
● [ Staats, Gay, Heimdahl: Automated oracle creation support, or: How I 

learned to stop worrying about fault propagation and love mutation 
testing. ICSE 2012. ]

● [ Nguyen, Kapur, Weimer, Forrest: Using dynamic analysis to discover 
polynomial and array invariants. ICSE 2012. ]
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Specification Mining

● Given a program (and possibly an indicative 
workload), generate partial-correctness 
specifications that describe proper behavior. 
[ Ammons, Bodík, Larus: Mining specifications. POPL 2002. ] 

● “Learn the rules of English grammar by reading 
student essays.”

● Problem: common behavior need not be 
correct behavior.

● Mining is most useful when the program 
deviates from the specification.
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Challenge:

Repair 
Quality
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Repair Quality

● Low-quality repairs may well be useless
● There are typically infinite ways to pass a test 

or implement a specification
● State of the art:

● Report all repairs that meet the minimum 
requirements

● Charge:
● Program repair papers should report on repair 

quality just as they report on quantity
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A Pointed Fable

● [ Das: Unification-based pointer analysis with 
directional assignments. PLDI 2000. ] 
● “analyze a 1.4 MLOC program in two minutes”

● [ Heintze, Tardieu: Ultra-fast Aliasing Analysis 
using CLA: A Million Lines of C Code in a 
Second. PLDI 2001. ]
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A Pointed Fable

● [ Das: Unification-based pointer analysis with 
directional assignments. PLDI 2000. ] 
● “analyze a 1.4 MLOC program in two minutes”

● [ Heintze, Tardieu: Ultra-fast Aliasing Analysis 
using CLA: A Million Lines of C Code in a 
Second. PLDI 2001. ]

● [ Hind: Pointer analysis: haven't we solved this 
problem yet? PASTE 2001. ] 



 87

A Pointed Fable

● [ Das: Unification-based pointer analysis with 
directional assignments. PLDI 2000. ] 
● “analyze a 1.4 MLOC program in two minutes”

● [ Heintze, Tardieu: Ultra-fast Aliasing Analysis 
using CLA: A Million Lines of C Code in a 
Second. PLDI 2001. ]

● [ Hind: Pointer analysis: haven't we solved this 
problem yet? PASTE 2001. ] 

● ??? [ L. Regression: Analyzing 0.6 Million Lines 
of C Code in -119 Seconds. PLDI 2002. ] ??? 
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Pointer Analysis Lessons

● Common metrics:
● Analyze X million lines of code
● Analyze it in Y seconds
● Answer's average “points-to set” size is Z

● Pushback:
● “Points-to set size” is 

not a good metric.
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You Can't Improve
What You Can't Measure

● Cost to produce (time, money)
● Input required
● Functional Correctness

● Addresses the “root of the problem”
● Introduces no new defects

● Non-Functional Properties
● Readable
● Maintainable
● Other?
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Real-World Deployment (2017)
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Real-World Deployment (2018)
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Real-World Deployment (2019)
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Conclusion
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Conclusion

● Industry is already paying untrusted strangers
● Automated Program Repair is a hot research 

area with rapid growth over a dozen years
● (Lesson: “saying what you mean” is hard.) 

● Challenges & Opportunities:
● Test Suites and Oracles (spec mining)
● Repair Quality (???)

● Real-world deployments have already started
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Adaptive Equality Algorithm

For every repair, ordered by observations

   Skip repair if equivalent to older repair

   For every test, ordered by observations

      Run the repair on the test, update obs.

      Stop inner loop early if a test fails

   Stop outer loop early if a repair validates
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