
Automated Automated
Program RepairProgram Repair

 2

Lecture Outline

● Automated Program Repair

● Historical Context, Recent Advances

● Mistakes

● Real-World Deployments

 3

Speculative Fiction

What if large, trusted
companies paid strangers

to find and fix their
normal and critical bugs?

 4

 5

 6

 7

 8

 9

 10

 11

A vision of the future present

Finding, fixing and ignoring
bugs are all so expensive
that it is now economical
to pay untrusted strangers
to submit candidate defect

reports and patches.

 12

A Modest Proposal

Automatically find and fix
defects (rather than, or in

addition to, paying strangers).

 13

Outline

● Automated Program Repair
● The State of the Art

● Scalability and Recent Growth
● Recent GenProg Advances

● GenProg Lessons Learned (the fun part)
● Challenges & Opportunities

 14

Historical Context

 15

“We are moving to a new era where software
systems are open, evolving and not owned
by a single organization. Self-* systems are

not just a nice new way to deal with
software, but a necessity for the coming
systems. The big new challenge of self-

healing systems is to guarantee stability and
convergence: we need to be able to master

our systems even without knowing in
advance what will happen to them.”

– Mauro Pezzè, Milano Bicocca / Lugano

 16

Historical Context

● <= 1975 “Software fault tolerance”
● Respond with minimal disruption to an unexpected

software failure. Often uses isolation, mirrored
fail-over, transaction logging, etc.

● ~1998: “Repairing one type of security bug”
● [Cowan, Pu, Maier, Walpole, Bakke, Beattie, Grier, Wagle, Zhang, Hinton.

StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. USENIX Security 1998.]

● ~2002: “Self-healing (adaptive) systems”
● Diversity, redundancy, system monitoring, models
● [Garlan, Kramer, Wolf (eds). First Workshop on Self-Healing Systems, 2002.]

 17

Why not just restart?

● Imagine two types of problems:
● Non-deterministic (e.g., environmental): A

network link goes down, send() raises an exception
● Deterministic (e.g., algorithmic): The first line of

main() dereferences a null pointer

● Failure-transparent or transactional
approaches usually restart the same code
● What if there is a deterministic bug in that code?

 18

Checkpoint and Restart

[Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of
Generic Recovery. OSDI 2000.]

 19

Groundhog Day

[Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of
Generic Recovery. OSDI 2000.]

 20

Early “Proto” Program Repair Work
● 1999: Delta debugging [Zeller: Yesterday, My Program Worked. Today,

It Does Not. Why? ESEC / FSE 1999.]

● 2001: Search-based software engineering
[Harman, Jones. Search based software engineering. Information and Software
Technology, 43(14) 2001]

● 2003: Data structure repair
● Run-time approach based on constraints [Demsky, Rinard:

Automatic detection and repair of errors in data structures. OOPSLA 2003.]

● 2006: Repairing safety policy violations
● Static approach using formal FSM specifications

[Weimer: Patches as better bug reports. GPCE 2006.]

● 2008: Genetic programming proposal [Arcuri: On the
automation of fixing software bugs. ICSE Companion 2008.]

 21

General Automated Program Repair

● Given a program …
● Source code, assembly code, binary code

● … and evidence of a bug …
● Passing and failing test cases, implicit

specifications and crashes, preconditions and
invariants, normal and anomalous runs

● … fix that bug.
● A textual patch, a dynamic jump to new code, run-

time modifications to variables

 22

How could that work?
● Many faults can be localized to a small area

● [Jones, Harrold. Empirical evaluation of the Tarantula automatic fault-
localization technique. ASE 2005.]

● [Qi, Mao, Lei, Wang. Using Automated Program Repair for Evaluating the
Effectiveness of Fault Localization Techniques. ISSTA 2013.]

● Many defects can be fixed with small changes
● [Park, Kim, Ray, Bae: An empirical study of supplementary bug fixes. MSR

2012.]

● Programs can be robust to such changes
● “Only attackers and bugs care about unspecified,

untested behavior.”
● [Schulte, Fry, Fast, Weimer, Forrest: Software Mutational Robustness. J. GPEM

2013.]

 23

Scalability
and

Growth

 24

2009: A Banner Year
GenProg

Genetic programming evolves source code until it
passes the rest of a test suite. [Weimer, Nguyen, Le Goues,

Forrest: Automatically finding patches using genetic programming. ICSE May 2009.]

ClearView

Detects normal workload invariants and anomalies,
deploying binary repairs to restore invariants.
[Perkins, Kim, Larsen, Amarasinghe, Bachrach, Carbin, Pacheco, Sherwood, Sidiroglou,
Sullivan, Wong, Zibin, Ernst, Rinard: Automatically patching errors in deployed software.
SOSP Oct 2009.]

PACHIKA

Summarizes test executions to behavior models,
generating fixes based on the differences. [Dallmeier,

Zeller, Meyer: Generating Fixes from Object Behavior Anomalies. ASE Nov 2009.]

 25

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE

 X

GenProg

 26

2009 In A Nutshell

● Given a program and tests (or a workload)
● Normal observations: A B C or A B C D

● A problem is detected
● Failing observations: A B X C

● The difference yields candidate repairs
● { “Don't do X”, “Always do D” }

● One repair passes all tests
● Report “Don't do X” as the patch

 27

Two Broad Repair Approaches

● Single Repair or “Correct by Construction”
● Careful consideration (constraint solving, invariant

reasoning, lockset analysis, type systems, etc.) of
the problem produces a single good repair.

● Generate-and-Validate
● Various techniques (mutation, genetic

programming, invariant reasoning, etc.) produce
multiple candidate repairs.

● Each candidate is evaluated and a valid repair is
returned.

 28

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

 29

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

 30

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

 31

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

 32

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

 33

State of the Art Woes

● GenProg uses test case results for guidance
● But ~99% of candidates have identical test results

● Sampling tests improves GenProg performance
● But GenProg cost models do not account for it

● Not all tests are equally important
● But we could not learn a better weighting

 34

Desired Solution

● Informative Cost Model
● Captures observed behavior

● Efficient Algorithm
● Exploits redundancy

● Theoretical Relationships
● Explain potential successes

 35

New Since The Papers You've Read

● Informative Cost Model
● Highlights “two searches”, “redundancy”

● Efficient Algorithm
● Exploits cost model, “adaptive equality”

● Theoretical Relationships
● Duality with mutation testing

 36

Cost Model
● GenProg at a high level:

● “Pick a fault-y spot in the program, insert a fix-y
statement there.”

● Dominating factor: cost of running tests.

● Search space of repairs = |Fault| x |Fix|
● |Fix| can depend on |Fault|

– Can only insert “x=1” if “x” is in scope, etc.

● Each repair must be validated, however
● Run against |Suite| test cases

– |Suite| can depend on repair (impact analysis, etc.)

 37

Cost Model Insights

● Suppose there are five candidate repairs.
● Can stop when a valid repair is found.
● Suppose three are invalid and two are valid:

CR
1
 CR

2
 CR

3
 CR

4
 CR

5

● The order of repair consideration matters.
● Worst case: |Fault| x |Fix| x |Suite| x (4/5)
● Best case: |Fault| x |Fix| x |Suite| x (1/5)

● Let |R-Order| represent this cost factor

 38

Cost Model Insights (2)
● Suppose we have a candidate repair.

● If it is valid, we must run all |Suite| tests.
● If it is invalid, it fails at least one test.
● Suppose there are four tests and it fails one:

T
1
 T

2
 T

3
 T

4

● The order of test consideration matters:
● Best case: |Fault| x |Fix| x |Suite| x (1/4)
● Worst case: |Fault| x |Fix| x |Suite| x (4/4)

● Let |T-Order| represent this cost factor.

 39

Cost Model

|Fault| x |Fix| x |Suite| x |R-Order| x |T-Order|

● Fault localization
● Fix localization
● Size of validating test Suite
● Order (Strategy) for considering Repairs
● Order (Strategy) for considering Tests

● Each factor depends on all previous factors.

 40

Induced Algorithm

● The cost model induces a direct nested search
algorithm:

For every repair, in order

 For every test, in order

 Run the repair on the test

 Stop inner loop early if a test fails

 Stop outer loop early if a repair validates

 41

Induced Algorithm

● The cost model induces a direct nested search
algorithm:

For every repair, in order

 For every test, in order

 Run the repair on the test

 Stop inner loop early if a test fails

 Stop outer loop early if a repair validates

Order can varyOrder can vary
adaptivelyadaptively based based
on observations.on observations.

 42

Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same test case behavior.

 43

Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same test case behavior.

● Consider this insertion:

C=99;

 44

Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same test case behavior.

● Consider this insertion:

 A=1;

 B=2;

 C=3;

 D=4;

 print A,B,C,D

C=99;

 45

Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same test case behavior.

● Consider this insertion:

 A=1;

 B=2;

 C=3;

 D=4;

 print A,B,C,D

C=99;

 46

Algorithm: Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same test case behavior.

● Consider this insertion:

 A=1;

 B=2;

 C=3;

 D=4;

 print A,B,C,D

C=99;

 47

Formal Equality Idea

● Quotient the space of possible patches with
respect to a conservative approximation of
program equivalence
● Conservative: P ≈ Q implies P is equivalent to Q
● “Quotient” means “make equivalence classes”

● Only test one representative of each class
● Wins if computing P ≈ Q is cheaper than tests

● Oh audience, how might we decide this?
● Formal semantics (dead code, instruction sched.)

 48

Adaptive Equality Algorithm

For every repair, ordered by observations

 49

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 50

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 For every test, ordered by observations

 51

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 For every test, ordered by observations

 Run the repair on the test, update obs.

 52

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 For every test, ordered by observations

 Run the repair on the test, update obs.

 Stop inner loop early if a test fails

 53

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 For every test, ordered by observations

 Run the repair on the test, update obs.

 Stop inner loop early if a test fails

 Stop outer loop early if a repair validates

 54

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 For every test, ordered by observations

 Run the repair on the test, update obs.

 Stop inner loop early if a test fails

 Stop outer loop early if a repair validates

Test Cases or Invariants +Test Cases or Invariants +
Bug Example +Bug Example +

Fault Localization +Fault Localization +
Formal Semantics +Formal Semantics +
AST Substitutions +AST Substitutions +
Machine LearningMachine Learning

==
Automated Program RepairAutomated Program Repair

 55

Theoretical Relationship

● The generate-and-validate program repair
problem is a dual of mutation testing
● This suggests avenues for cross-fertilization and

helps explain some of the successes and failures of
program repair.

● Very informally:
● PR Exists M in Mut. Forall T in Tests. M(T)
● MT Forall M in Mut. Exists T in Tests. Not M(T)

 56

Idealized Formulation

Ideally, mutation
testing takes a
program that passes
its test suite and
requires that all
mutants based on
human mistakes from
the entire program
that are not
equivalent fail at
least one test.

By contrast, program
repair takes a
program that fails its
test suite and
requires that one
mutant based on
human repairs from
the fault localization
only be found that
passes all tests.

 57

Idealized Formulation

Ideally, mutation
testing takes a
program that passes
its test suite and
requires that all
mutants based on
human mistakes from
the entire program
that are not
equivalent fail at
least one test.

By contrast, program
repair takes a
program that fails its
test suite and
requires that one
mutant based on
human repairs from
the fault localization
only be found that
passes all tests.

For mutation testing, the
Equivalent Mutant Problem
is an issue of correctness
(or the adequacy score is

not meaningful).

For program repair,
it is purely an issue of

performance.

 58

GenProg Improvement Results

● Evaluated on 105 defects in 5 MLOC guarded
by over 10,000 tests

● Adaptive Equality reduces GenProg's test case
evaluations by 10x and monetary cost by 3x
● Adaptive T-Order is within 6% of optimal

● “GenProg – GP ≥ GenProg” ?

● Cost Model (expressive)
● Efficient Algorithm (adaptive equality)
● Theoretical Relationships (mutation testing)

 59

State of the Art

● 2009: 15 papers on auto program repair
● (Manual search/review of ACM Digital Library)

● 2011: Dagstuhl on Self-Repairing Programs
● 2012: 30 papers on auto program repair

● At least 20+ different approaches, 3+ best paper
awards, etc.

● 2013: ICSE has a “Program Repair” session
● So now let's talk about the seamy underbelly.

 60

Computer Scientists
● Often dubbed “the first programmer”, this

English mathematician is known for work
involving the early general-purpose computer
known as the Analytical Engine. The first such
published algorithm (lecture notes for an 1842
seminar at Turin) was designed to compute
Bernoulli Numbers:

B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5
= 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30, etc.

“[The Analytical Engine] might act upon other things besides number, were objects found
whose mutual fundamental relations could be expressed by those of the abstract science of
operations, and which should be also susceptible of adaptations to the action of the
operating notation and mechanism of the engine...”

 61

Social Psychology

● Each participant was placed with seven "confederates". Participants
were shown a card with a line on it, followed by a card with three
lines on it. Participants were then asked to say aloud which line
matched first line in length. Confederates unanimously gave the
correct response or unanimously gave the incorrect response. For
the first two trials the confederates gave the obvious, correct
answer. On the third trial, the confederates would all give the same
wrong answer, placing the participant in a dilemma.

● In the control group, with no pressure to conform to confederates,
the error rate was less than 1%. An examination of all critical trials
in the experimental group revealed that one-third of all responses
were incorrect. These incorrect responses often matched the
incorrect response of the majority group (i.e., confederates).
Overall, in the experimental group, 75% of the participants gave an
incorrect answer to at least one question.

 62

Lessons Learned

 63

Lessons Learned: Test Quality

● Automated program repair is a whiny child:
● “You only said I had get into the bathtub, you

didn't say I had to wash.”

 64

Lessons Learned: Test Quality

● Automated program repair is a whiny child:
● “You only said I had get into the bathtub, you

didn't say I had to wash.”

● GenProg Day 1: gcd, nullhttpd
● 5 tests for nullhttpd (GET index.html, etc.)
● 1 bug (POST remote exploit)→
● GenProg's fix: remove POST functionality
● (Adding a 6th test yields a high-quality repair.)

 65

Lessons Learned: Test Quality (2)

● MIT Lincoln Labs test of GenProg: sort
● Tests: “the output of sort is in sorted order”
● GenProg's fix: “always output the empty set”
● (More tests yield a higher quality repair.)

 66

Lessons Learned: Test Framework

● GenProg: binary / assembly
repairs
● Tests: “compare your-

output.txt to trusted-
output.txt”

● GenProg's fix: “delete
trusted-output.txt, output
nothing”

● “Garbage In, Garbage Out”

 67

Lessons Learned: Integration

● Integrating GenProg with a real program's test
suite is non-trivial

● Example: spawning a child process
● system(“run test cmd 1 ...”); wait();

● wait() returns the error status
● Can fail because the OS ran out of memory or

because the child process ran out of memory
● Unix answer: bit shifting and masking!

 68

Lessons Learned: Integration (2)

● We had instances where PHP's test harness and
GenProg's test harness wrapper disagreed on
this bit shifting
● GenProg's fix: “always segfault, which will

mistakenly register as 'test passed' due to mis-
communicated bit shifting”

● Think of deployment at a company:
● Whose “fault” or “responsibility” is this?

 69

Lessons Learned: Integration (3)

● GenProg has to be able to compile candidate
patches
● Just run “make”, right?

● Some programs, such as language interpreters,
bootstrap or self-host.
● We expected and handled infinite loops in tests
● We did not expect infinite loops in compilation

 70

Lessons Learned: Sandboxing

● GenProg has created …
● Programs that kill the parent shell
● Programs that “sleep forever” to avoid CPU-usage

tests for infinite loops
● Programs that allocate memory in an infinite loop,

causing the Linux OOM killer to randomly kill
GenProg

● Programs that email developers so often that
Amazon EC2 gave us the “we think you're a
spammer” warning

 71

Lessons Learned: Poor Tests

● Large open source programs have tests like:
● Pass if today is less than December 31, 2012

 72

Lessons Learned: Poor Tests

● Large open source programs have tests like:
● Pass if today is less than December 31, 2012
● Check that the modification times of files in this

directory are equal to my hard-coded values
● Generate a random ID with prefix “999”, check to

see if result starts with “9996” (dev typo)

 73

Lessons Learned: Sanity

● Our earliest concession to reality was the
addition of a “sanity check” to GenProg:
● Does the program actually compile? Pass all non-

bug tests? Fail all bug tests?

● A large fraction of our early reproduction
difficulties were caught at this stage.

 74

Challenges and Opportunities

● Test Suite Quality & Oracles

● Repair Quality

 75

Challenge:

Test Suite
Quality

and Oracles

 76

“A generated repair is the ultimate
diagnosis in automated debugging – it tells
the programmer where to fix the bug, what
to fix, and how to fix it as to minimize the
risk of new errors. A good repair depends

on a good specification, though; and maybe
the advent of good repair tools will entice

programmers in improving their
specifications in the first place.”

– Andreas Zeller, Saarland University

 77

Test Suite Quality & Oracles

● Repair_Quality = min(Technique, Test Suite)
● Currently, we trust the test suppliers
● What if we spent time on writing good

specifications instead of on debugging?
● Charge: measure the suites we are using or

generate high-quality suites to use
● Analogy: Formal Verification

● Difficulty depends on more than program size

 78

Test Data Generation

● We have all agreed to believe that we can
create high-coverage test inputs

 79

Test Data Generation

● We have all agreed to believe that we can
create high-coverage test inputs
● DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX …
● Randomized, search-based, constraint-based,

concrete and symbolic execution, ...
● [Cadar, Sen: Symbolic execution for software testing: three decades later.

Commun. ACM 56(2), 2013.]

 80

Test Data Generation

● We have all agreed to believe that we can
create high-coverage test inputs
● DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX …
● Randomized, search-based, constraint-based,

concrete and symbolic execution, ...
● [Cadar, Sen: Symbolic execution for software testing: three decades later.

Commun. ACM 56(2), 2013.]

● “And if it crashes on that input, that's bad.”

 81

Test Oracle Generation
● What should the program be doing?
● μTEST [Fraser, Zeller: Mutation-Driven Generation of Unit Tests and

Oracles. IEEE Trans. Software Eng. 38(2), 2012]

● Great combination: Daikon + mutation analysis
● Generate a set of candidate invariants

– Running the program removes non-invariants

– Retain only the useful ones: those killed by mutants
● [Staats, Gay, Heimdahl: Automated oracle creation support, or: How I

learned to stop worrying about fault propagation and love mutation
testing. ICSE 2012.]

● [Nguyen, Kapur, Weimer, Forrest: Using dynamic analysis to discover
polynomial and array invariants. ICSE 2012.]

 82

Specification Mining

● Given a program (and possibly an indicative
workload), generate partial-correctness
specifications that describe proper behavior.
[Ammons, Bodík, Larus: Mining specifications. POPL 2002.]

● “Learn the rules of English grammar by reading
student essays.”

● Problem: common behavior need not be
correct behavior.

● Mining is most useful when the program
deviates from the specification.

 83

Challenge:

Repair
Quality

 84

Repair Quality

● Low-quality repairs may well be useless
● There are typically infinite ways to pass a test

or implement a specification
● State of the art:

● Report all repairs that meet the minimum
requirements

● Charge:
● Program repair papers should report on repair

quality just as they report on quantity

 85

A Pointed Fable

● [Das: Unification-based pointer analysis with
directional assignments. PLDI 2000.]
● “analyze a 1.4 MLOC program in two minutes”

● [Heintze, Tardieu: Ultra-fast Aliasing Analysis
using CLA: A Million Lines of C Code in a
Second. PLDI 2001.]

 86

A Pointed Fable

● [Das: Unification-based pointer analysis with
directional assignments. PLDI 2000.]
● “analyze a 1.4 MLOC program in two minutes”

● [Heintze, Tardieu: Ultra-fast Aliasing Analysis
using CLA: A Million Lines of C Code in a
Second. PLDI 2001.]

● [Hind: Pointer analysis: haven't we solved this
problem yet? PASTE 2001.]

 87

A Pointed Fable

● [Das: Unification-based pointer analysis with
directional assignments. PLDI 2000.]
● “analyze a 1.4 MLOC program in two minutes”

● [Heintze, Tardieu: Ultra-fast Aliasing Analysis
using CLA: A Million Lines of C Code in a
Second. PLDI 2001.]

● [Hind: Pointer analysis: haven't we solved this
problem yet? PASTE 2001.]

● ??? [L. Regression: Analyzing 0.6 Million Lines
of C Code in -119 Seconds. PLDI 2002.] ???

 88

Pointer Analysis Lessons

● Common metrics:
● Analyze X million lines of code
● Analyze it in Y seconds
● Answer's average “points-to set” size is Z

● Pushback:
● “Points-to set size” is

not a good metric.

 89

You Can't Improve
What You Can't Measure

● Cost to produce (time, money)
● Input required
● Functional Correctness

● Addresses the “root of the problem”
● Introduces no new defects

● Non-Functional Properties
● Readable
● Maintainable
● Other?

 90

Real-World Deployment (2017)

 91

Real-World Deployment (2018)

 92

Real-World Deployment (2019)

 93

Conclusion

 94

Conclusion

● Industry is already paying untrusted strangers
● Automated Program Repair is a hot research

area with rapid growth over a dozen years
● (Lesson: “saying what you mean” is hard.)

● Challenges & Opportunities:
● Test Suites and Oracles (spec mining)
● Repair Quality (???)

● Real-world deployments have already started

 95

Adaptive Equality Algorithm

For every repair, ordered by observations

 Skip repair if equivalent to older repair

 For every test, ordered by observations

 Run the repair on the test, update obs.

 Stop inner loop early if a test fails

 Stop outer loop early if a repair validates

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

