GenProg

Evolutionary Program Repair

A Systematic Study of Automated Program Repair:
Fixing 55 out of 103 bugs for $8 Each

Cost per Non-Repair Cost Per Repair

Program tepaired Hours US$ Hous US$

fbeo 3 8.52 36 6.32 408
gmp =2 093 1.6(0 0.44
gzip s 5. 1.41 0.30
libtiff T2 1.8 1.05 0.0
lighttpd 57 9 0 3

rhp

python

wirashark

total 557 105 L0 51390) 10,193

Automate
Program Repair

Lecture Outline

* Automated Program Repair

* Historical Context, Recent Advances

 Mistakes

* Real-World Deployments

Speculative Fiction

What if large, trusted
companies paid strangers
to find and fix their
normal and critical bugs?

Microsoft Security Response Center

WHATWE DO REPORT A VULNERABILITY COMMUNITY COLLABC

Microsoft Security Bounty Programs e o= O Featured Vide

Print Email Share

nore, lesearchers! Want to help us protect customers, making some of our
popular products better? And earn money doing s0? Step right up...

Microsoft is now offering direct cash payments in exchange for reporting certain types
of vulnerabilities and exploitation techniques.

In 2002, We - T .,
doing what we believe best helps improve our customers’ computing experience. In the years
since, we introduced the Security Development Lifecycle (SDL) process to build more secure
technologies. We also championed Coordinated Vulnerability Disclosure (CVD), formed industry
collaboration programs such as MAPP and MSVR, and created the BlueHat Prize to encourage
research into defensive technologies. Our new bounty programs add fresh depth and flexibility
to our existing community outreach programs. Having these bounty programs provides a way
to harness the collective inteligence and capabilities of security researchers to help further
protect customers.

Trustworthy Compu
Jonathan Ness, and
introduce new boun
researchers.

The following programs will launch on June 26, 2013:

1. Mitigation Bypass Bounty. Microsoft will pay up to $100,000 USD for truly novel About the pro
exploitation techniques against protections built into the latest version of our operating
system (Windows 8.1 Preview). Learning about new exploitation techniques earlier helps
Microsoft improve security by leaps, instead of capturing one vulnerability at a time as a S
traditional bug bounty alone would. TIMEFRAME: ONGOING far Dafvs Dotk

Mitigation Bypass B

Internet Explorer 11
. BlueHat Bonus for Defense. Additionally, Microsoft will pay up to $50,000 USD for Guidelines
defensive ideas that accompany a qualifying Mitigation Bypass submission. Doing so
highlights our continued support of defensive technologies and provides a way for the Bounty Programs FA
research community to help protect more than a billion computer systems worldwide.

TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty). New Bounty Progra
information on bou

3. Internet Explorer 11 Preview Bug Bounty. Microsoft will pay up to $11,000 USD for Heart of Blue Gold

L

]
\/! Response (enter

Personal Business Email Log In Sign Up

Paypa ’ Buy Sell Transfer

For Security Researchers Bug Bounty Wall of Fame

For Customers: Reporting Suspicious Emails

Customers who think they have received a Phishing email, please learn more about phishing at https://cms.paypal.com/us/cgi-bin/marketingweb?cmd=_render-
content&content_ID=security/hot_security_topics, or forward it to: spoof@paypal.com

For Customers: Reporting All Other Concerns
Customers who have issues with their PayPal Account, please visit: https:/lwww.paypal.com/cgi-bin/helpscr?cmd=_help&t=escalate Tab
For Professional Researchers: Bug Bounty Program

Qur team of dedicated security professionals works vigilantly to help keep customer information secure. We recognize the important role that security researchers and our
user community play in also helping to keep PayPal and our customers secure. If you discover a site or product vulnerability please notify us using the guidelines below.

Program Terms

Please note that your participation in the Bug Bounty Program is voluntary and subject to the terms and conditions set forth on this page (“Program Terms”). By submitting
a site or product vulnerability to PayPal, Inc. (“PayPal”) you acknowledge that you have read and agreed to these Program Terms.

These Program Terms supplement the terms of PayPal User Agreement, the PayPal Acceptable Use Policy, and any other agreement in which you have entered with
PayPal (collectively “PayPal Agreements”). The terms of those PayPal Agreements will apply to your use of, and participation in, the Bug Bounty Program as if fully set
forth herein. If there is any inconsistency exists between the terms of the PayPal Agreements and these Program Terms, these Program Terms will control, but only with
regard to the Bug Bounty Program.

You can jump to particular sections of these Program Terms by using the following links:
Responsible Disclosure Policy

Eligibility Requirements

= missign Begniremanta and Guidalinas ; £ ;
research community to help protect more than a billion computer systems worldwide.

TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty). New Bounty Progra
information on bou

3. Internet Explorer 11 Preview Bug Bounty. Microsoft will pay up to $11,000 USD for Heart of Blue Gold

PayPal

\Mi h

Business Email

]
Response (enter

Log In Sign Up

Buy Sell Transfer

Ipport > AT&T Bug Bounty Program = Intro

AT&T Bug Bounty Program

Intro Rewards Report Bug Hall of Fame PRINT EMAIL

Intro Already a Member?

Guidelines . or Join Now
Exclusions Sign In

Terms & Conditions

Welcome to the AT&T Bug Bounty Program! This program encourages and rewards contributions by developers and security researchers
who help make ATE&T's online environment more secure. Through this program AT&T provides monetary rewards and/or public
recognition for security vulnerabilities responsibly disclosed to us.

The following explains the details of the program. To immediately start submitting your AT&T security bugs, please visit the Bug Bounty
submittal page.

Guidelines

The ATE&T Bug Bounty Program applies to secunity vulnerabilities found within AT&T's public-facing online environment. This includes,
but not limited to, websites, exposed APIs, and mobile applications.

A security bug is an error, flaw, mistake, failure, or fault in a computer program or system that impacts the security of a device,
system, network, or data. Any security bug may be considered for this program; however, it must be a new, previously unreported,
vulnerability in order to be eligible for reward or recognition. Typically the in-scope submissions will include high impact bugs; however,
any vulnerability at any severity might be rewarded.

Bugs which directly or indirectly affect the confidentiality or integrity of user data or privacy are prime candidates for reward. Any
security bug, however, may be considered for a reward. Some characteristics that are considered in "qualifying” bugs include those

Personal Business

forgot? Sign Up
Paypal Buy Transfer

> Intro

om

(Raise hand if true)

| have used software produced by
Microsoft, PayPal, AT&T, Facebook,
Mozilla, Google or YouTube.

In principle, any) 3 { ab 2r data is intended This incluc virtually all the conten

domains

* orku

The program has four key

+ Nor applicatior e generally not in scope. We ma 2cial exceptions for G Wallet and C

cto foo tho e o R

Client Reward Guidelines

All bounty 1ents will be made in United S dollars (USD). You will be responsible for any tax implications related to bounty payments you receive, a

the laws of \ jurisdiction of residence or enship

Nevertheless, vulnerability reporters who work with us to resolve security bugs in our products will be credited on the Hall of Fame. If we file an intd
will acknowledge your contribution on that page

Even though only 38% of the
submissions were true positives
(harmless, minor or major):

“Worth the money? Every penny.”

BuUlla preakage on a piauorm wnere a previous jarsnap reiease workea.

"Harmless" bugs, e.g., cosmetic errors in Tarsnap output or mistakes in source
code comments.

Cosmetic errors in the Tarsnap source code or website, e.g., typos in website
text or source code comments. Style errors in Tarsnap code qualify here, but
usually not style errors in upstream code (e.g., libarchive).

"We get hundreds of reports every day. Many

of our best reports come from people whose
English isn't great - though this can be challenging,
it's something we work with just fine and we have
paid out over $1 million to hundreds of reporters.”

- Matt Jones, Facebook Software Engineer

harness the coIIectlve intelligence and capabllltles of securlty researchers to help further protect
customers.

The following programs will launch on June 26, 2013:

1. Mitigation Bypass Bounty. Microsoft will pay up to $100,000 USD for truly novel
exploitation techniques against protections built into the latest version of our operating
system (Windows 8.1 Preview). Learning about new exploitation techniques earlier helps
Microsoft improve security by leaps, instead of capturing one vulnerability at a time as a
traditional bug bounty alone would. TIMEFRAME: ONGOING

. BlueHat Bonus for Defense. Additionally, Microsoft will pay up to $50,000 USD for
defensive ideas that accompany a qualifying Mitigation Bypass submission. Doing so

research community to help protect more than a billion computer systems worIdW|de
TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty).

. Internet Explorer 11 Preview Bug Bounty. Microsoft will pay up to $11,000 USD for
critical vulnerabilities that affect Internet Explorer 11 Preview on the latest version of
Windows (Windows 8.1 Preview). The entry period for this program will be the first 30 days
of the Internet Explorer 11 beta period (June 26 to July 26, 2013). Learning about critical
vulnerabilities in Internet Explorer as early as possible during the public preview will help
Microsoft make the newest version of the browser more secure. TIMEFRAME: 30 DAYS

Want to know more?

A vision of the future present

Finding, fixing and ignoring
bugs are all so expensive
that it is economical
to pay untrusted strangers

to submit candidate defect

reports and patches.

A Modest Proposal

Automatically find and fix
defects (rather than, or in
addition to, paying strangers).

Outline

* Automated Program Repair

 The State of the Art

 Scalability and Recent Growth
« Recent GenProg Advances

* GenProg Lessons Learned (the fun part)
* Challenges & Opportunities

13

| Context

Historica

14

“We are moving to a new era where software
systems are open, evolving and not owned
by a single organization. Self-* systems are

not just a nice new way to deal with
software, but a necessity for the coming
systems. The big new challenge of self-
healing systems is to guarantee stability and
convergence: we need to be able to master
our systems even without knowing in
advance what will happen to them.”

- Mauro Pezze, Milano Bicocca / Lugano

15

Historical Context

e <= 1975 “Software fault tolerance”

e Respond with minimal disruption to an unexpected
software failure. Often uses isolation, mirrored
fail-over, transaction logging, etc.

* ~1998. “Repairing one type of security bug”

« [Cowan, Pu, Maier, Walpole, Bakke, Beattie, Grier, Wagle, Zhang, Hinton.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. USENIX Security 1998.]

o ~2002: “Self-healing (adaptive) systems”

* Diversity, redundancy, system monitoring, models
* [Garlan, Kramer, Wolf (eds). First Workshop on Self-Healing Systems, 2002.]

16

Why not just restart?

* Imagine two types of problems:

* Non-deterministic (e.g., environmental): A
network link goes down, send() raises an exception

* Deterministic (e.g., algorithmic): The first line of
main() dereferences a null pointer

* Failure-transparent or transactional
approaches usually restart the same code

 What if there is a deterministic bug in that code?

17

Checkpoint and Restart

[Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of
Generic Recovery. OSDI 2000.]

18

%3 .

' pu= il LT SR
¥y - =

= .|'|I sLifLE {

CDANGER >

1]

i e e
g

INTO OCEAN B 2

QECCD Soe. Z.5.49 i e
MO LANDING IN

WATER AFTER
HAVING JUMPED

OQLCCO o, 2.9 AD.4

B W Rl :
[Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of
Generic Recovery. OSDI 2000.]

19

Early “Proto” Program Repair Work

. 1 999: Delta debugg]ng [Zeller: Yesterday, My Program Worked. Today,

It Does Not. Why? ESEC / FSE 1999.]

« 2001: Search-based software engineering

[Harman, Jones. Search based software engineering. Information and Software
Technology, 43(14) 2001]

e 2003: Data structure repair

* Run-time approach based on constraints [pemsky, Rinard:

Automatic detection and repair of errors in data structures. OOPSLA 2003.]
» 2006: Repairing safety policy violations

» Static approach using formal FSM specifications
[Weimer: Patches as better bug reports. GPCE 2006.]

» 2008: Genetic programming proposal arcuri: on the

automation of fixing software bugs. ICSE Companion 2008.]

20

General Automated Program Repair

e Given a program ...
* Source code, assembly code, binary code
* ... and evidence of a bug ...

e Passing and failing test cases, implicit
specifications and crashes, preconditions and
invariants, normal and anomalous runs

e ... fix that bug.

* A textual patch, a dynamic jump to new code, run-
time modifications to variables

21

How could that work?

* Many faults can be localized to a small area

[Jones, Harrold. Empirical evaluation of the Tarantula automatic fault-
localization technique. ASE 2005.]

[Qi, Mao, Lei, Wang. Using Automated Program Repair for Evaluating the
Effectiveness of Fault Localization Techniques. ISSTA 2013.]

* Many defects can be fixed with small changes

[Park, Kim, Ray, Bae: An empirical study of supplementary bug fixes. MSR
2012.]

* Programs can be robust to such changes

* “Only attackers and bugs care about unspecified,
untested behavior.”

[Schulte, Fry, Fast, Weimer, Forrest: Software Mutational Robustness. J. GPEM
2013.]

22

Scalability
and
Growth

23

2009: A Banner Year
GenProg

Genetic programming evolves source code until it
passes the rest of a test suite. [weimer, Nguyen, Le Goues,
Forrest: Automatically finding patches using genetic programming. ICSE May 2009.]

ClearView

Detects normal workload invariants and anomalies,
deploying binary repairs to restore invariants.

[Perkins, Kim, Larsen, Amarasinghe, Bachrach, Carbin, Pacheco, Sherwood, Sidiroglou,
Sullivan, Wong, Zibin, Ernst, Rinard: Automatically patching errors in deployed software.
SOSP Oct 2009.]

PACHIKA

Summarizes test executions to behavior models,
generating fixes based on the differences. [patmeier,

Zeller, Meyer: Generating Fixes from Object Behavior Anomalies. ASE Nov 2009.]

24

25

EVALUATE FITNESS

INPUT

2009 In A Nutshell

* Given a program and tests (or a workload)
* Normal observations: ABC or ABCD
* Aproblem is detected
« Failing observations: ABXC
* The difference yields
o { “Don't do X”, “Always do D }
* One repair
» Report “Don't do X” as the patch

26

Two Broad Repair Approaches

* Single Repair or “Correct by Construction”

» Careful consideration (constraint solving, invariant
reasoning, lockset analysis, type systems, etc.) of
the problem produces a

 Generate-and-Validate

 Various techniques (mutation, genetic
programming, invariant reasoning, etc.) produce

» Each candidate is evaluated and a valid repair is
returned.

27

Name Subjects Tests Bugs Notes

ARC — — — Concurrency, SBSE

AV(E 13 progs. — — Concurrency, guarantees, Petri nets

CASC 1 Kloc — 5 Co-evolves tests and programs

Coker Hafiz 15 Mloc — 7 /- Integer bugs only, guarantees

DemsKky et al. 3 progs. — — Data struct consistency, Red Team

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Jolt S progs. — 8 Escape infinite loops at run-time

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

28

Name Subjects Tests Bugs Notes

-1.-_

Concurrency, SBSE

AV(E 13 progs. — — Concurrency, guarantees, Petri nets

CASC 1 Klan Co-evolves tests and programs

_A-__

Coker Hafiz 15 Mloc — Integer bugs only, guarantees

DemsKky et al. 3 progs. — — Data struct consistency, Red Team

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Jolt S progs. — 8 Escape infinite loops at run-time

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

29

Name Subjects Tests Bugs Notes

ARC — — — Concurrency, SBSE

AV(E 13 progs. — — Concurrency, guarantees, Petri nets

CASC 1 Kloc — 5 Co-evolves tests and programs

Coker Hafiz 15 Mloc — Integer bugs only, guarantees

__1._

DemsKky et al. 3 progs. — Data struct consistency, Red Team

GenProg 5 Mloc 10,00C 105 Human-competitive, SBSE

Jolt S progs. — 8 Escape infinite loops at run-time

PACHIKA 110 Kloc 2,700 2R Differences in behavior models

SemFix 12 Kloc Symex, constraints, synthesis

30

Name Subjects Tests Bugs Notes

ARC — — — Concurrency, S

13 progs.

CASC 1 Kloc - and programs

Coker Hafiz 15 Mloc

DemsKky et al. 3 progs. — — Data struct consistency, Red Team
FINCH f3tasks - - Evolvesunrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinath etal. 2methods. — 20 Heapspecs, SAT
Jolt S progs. — 8 Escape infinite loops at run-time
—
PACHIKA 110 Kloc 2.700 Differences in behavior models
_-. _
SemFix 12 Kloc Symex, constraints, synthesis

31

Name Subjects Tests Bugs Notes

ARC — — — Concurrency, SBSE
AV(E 13 progs. — — Concurrency, guarantees, Petri nets

CASC 1 Kloc — 5 Co-iiilves tests and programs
Coker Hafiz 15 Mioc — 71— Integer bugs only, guarantees

DemsKky et al. 3 progs. —

GenProg 5 Mloc 10,000 105

Jolt S progs. — Escape infinite loops at run-time

PACHIKA 110 Kloc 2,700 %ies in behavior models

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

32

State of the Art Woes

* GenProg uses test case results for guidance

 But ~99% of candidates have test results

* Sampling tests improves GenProg performance

* But GenProg cost do not account for it

* Not all tests are equally important

 But we could not learn a better

33

Desired Solution

* Informative Cost Model

e Captures observed behavior

» Efficient Algorithm

» Exploits redundancy

* Theoretical Relationships

 Explain potential successes

34

New Since The Papers You've Read

* Informative Cost Model

» Highlights “two searches”, “redundancy”

» Efficient Algorithm

* Exploits cost model, “adaptive equality”

* Theoretical Relationships

» Duality with mutation testing

35

Cost Model
* GenProg at a high level:

* “Pick a fault-y spot in the program, insert a fix-y
statement there.”

 Dominating factor: :
* Search space of repairs = |Fault| x |Fix|

* |Fix| can depend on |Fault]|
- Can only insert “x=1" if “x” is in scope, etc.
e Each repair must be validated, however

* Run against |Suite| test cases

- |Suite| can depend on repair (impact analysis, etc.)

36

Cost Model Insights

* Suppose there are five candidate repairs.

» Can stop when a valid repair is found.

e Suppose three are invalid and two are valid:
CR4 CR5
* The order of repair consideration matters.
 Worst case: |Fault| x |Fix| x |Suite| x (4/5)
» Best case: |Fault| x |Fix| x |Suite| x (1/5)

* Let |R-Order| represent this cost factor

37

Cost Model Insights (2)

* Suppose we have a candidate repair.

o If it is valid, we must run all |Suite| tests.

 If it is invalid, it fails at least one test.

» Suppose there are four tests and it fails one:

T1 TZ T3
* The order of test consideration matters:
* Best case: |Fault| x |Fix] x |Suite]| x (1/4)
 Worst case: |Fault| x |Fix| x [Suite| x (4/4)

 Let | T-Order| represent this cost factor.

38

Cost Model

| Fault| x |Fix| x |Suite| x |R-Order| x |T-Order|

* Fault localization

* Fix localization

* Size of validating test Suite

* Order (Strategy) for considering Repairs

* Order (Strategy) for considering Tests

 Each factor depends on all previous factors.

39

Induced Algorithm

e The cost model induces a direct nested search
algorithm:

For every , in order
For every test, in order
Run the on the test

Stop inner loop early if a test fails
Stop outer loop early if a validates

40

Induced Algorithm

e The cost model induces a direct nested search

algorithm:
Order can vary
: adaptively based
For every , In order on observations.

For every test, in order

Run the on t
Stop inner loop ear

ne test

y if a test fails

Stop outer loop early if a validates

41

Algorithm: Can We Avoid Testing?

* |If P1 and P2 are semantically equivalent they
must have the same test case behavior.

42

Algorithm: Can We Avoid Testing?

* |If P1 and P2 are semantically equivalent they
must have the same test case behavior.

 Consider this insertion:

C=99;

43

Algorithm: Can We Avoid Testing?

* |If P1 and P2 are semantically equivalent they
must have the same test case behavior.

» Consider this insertion:
A=1;
C=99; B=2;
C=3;
D=4;
print A,B,C,D

44

Algorithm: Can We Avoid Testing?

* |If P1 and P2 are semantically equivalent they
must have the same test case behavior.

» Consider this insertion:
A=1;
C=99; B=2;
C=3;
D=4;
print A,B,C,D

45

Algorithm: Can We Avoid Testing?

* |If P1 and P2 are semantically equivalent they
must have the same test case behavior.

 Consider this insertion:

print A,B,C,D

46

Formal Equali

ty ldea

* Quotient the space of possible patches with
respect to a conservative approximation of

program equivalence

* Conservative: P = Q implies

P is equivalent to Q

e “Quotient” means “make ec

uivalence classes’

* Only test one representative of each class

e Wins if computing P = Q is cheaper than tests

e Oh audience, how might we

this?

 Formal semantics (dead code, instruction sched.)

47

Adaptive Equality Algorithm

For every , ordered by observations

48

Adaptive Equality Algorithm

For every , ordered by observations
Skip if to older repair

49

Adaptive Equality Algorithm

For every , ordered by observations
Skip if to older repair

For every test, ordered by observations

50

Adaptive Equality Algorithm

For every , ordered by observations
Skip if to older repair

For every test, ordered by observations
Run the on the test, update obs.

51

Adaptive Equality Algorithm

For every , ordered by observations
Skip if to older repair

For every test, ordered by observations
Run the on the test, update obs.
Stop inner loop early if a test fails

52

Adaptive Equality Algorithm

For every , ordered by observations
Skip if to older repair

For every test, ordered by observations
Run the on the test, update obs.
Stop inner loop early if a test fails

Stop outer loop early if a validates

53

Adaptive Equality Algorithm

ases or Invariants +

bug Example +
Fault Localization, +
Formal Semantics +
AST Substitutions +

Machine Learning

AU Um,w:d P

op outer looprly if a repair validates

54

Theoretical Relationship

* The generate-and-validate program repair
problem is a dual of mutation testing

* This suggests avenues for cross-fertilization and
helps explain some of the successes and failures of
program repair.

* Very informally:

e PR M in Mut. Forall T in Tests. M(T)
« MT Forall M in Mut. T in Tests. Not M(T)

55

ldealized Formulation

|deally, mutation
testing takes a
program that passes
its test suite and
requires that all
mutants based on
human mistakes from
the entire program
that are not
equivalent fail at
least one test.

By contrast, program
repair takes a
program that fails its
test suite and
requires that one
mutant based on
human repairs from
the fault localization
only be found that
passes all tests.

56

ldealized Formulation

|deally, mutation

testing takes a For mutation testing, the

program that passes Equivalent Mutant Problem
its test suite and is an issue of correctness

requires that all (or the adequacy score is
not meaningful).

mutants based on
human mistakes from For program repair,
the entire nrograg it is purely an issue of

that are performance.

fail at
east one test.

57

GenProg Improvement Results

* Evaluated on 105 defects in 5 MLOC guarded
by over 10,000 tests

* Adaptive Equality reduces GenProg's test case
evaluations by 10x and monetary cost by 3x

» Adaptive T-Order is within 6% of optimal
* “GenProg - GP 2 GenProg” ?
. (expressive)
. (adaptive equality)
. (mutation testing)

58

State of the Art

« 2009: 15 papers on auto program repair

* (Manual search/review of ACM Digital Library)
e 2011: Dagstuhl on Self-Repairing Programs
e 2012: 30 papers on auto program repair

» At least 20+ different approaches, 3+ best paper
awards, etc.

e 2013: ICSE has a “Program Repair” session
* S0 now let’s talk about the seamy underbelly.

59

Computer Scientists

» Often dubbed “the first programmer”, this
English mathematician is known for work
involving the early general-purpose computer
known as the Analytical Engine. The first such
published algorithm (lecture notes for an 1842

seminar at Turin) was designed to compute
Bernoulli Numbers:

BO=1,B1=+1/2,B2=1/6,B3 =0, B4=-1/30, B5
=0, B6 =1/42, B/ =0, B8 = -1/30, etc.

“[The Analytical Engine] might act upon other things besides number, were objects found
whose mutual fundamental relations could be expressed by those of the abstract science of
operations, and which should be also susceptible of adaptations to the action of the
operating notation and mechanism of the engine...”

Social Psychology

« Each participant was placed with seven “"confederates”. Participants
were shown a card with a line on it, followed by a card with three
lines on it. Participants were then asked to say aloud which line
matched first line in length. Confederates unanimously gave the
correct response or unanimously gave the incorrect response. For
the first two trials the confederates gave the obvious, correct
answer. On the third trial, the confederates would all give the same
wrong answer, placing the participant in a dilemma.

In the control group, with no pressure to conform to confederates,
the error rate was less than 1%. An examination of all critical trials
in the experimental group revealed that one-third of all responses
were incorrect. These incorrect responses often matched the
incorrect response of the majority group (i.e., confederates).
Overall, in the experimental group, 75% of the participants gave an
incorrect answer to at least one question.

Lessons Learned

HOW CAN SOMETHING SEEM

0 PLAUSIBLE AT THE TWME

AND SO IDIOTIC IN -
RETROSPECT ? i

62

Lessons Learned: Test Quality

* Automated program repair is a whiny child:

* “You only said | had get into the bathtub, you
didn't say | had to wash.”

63

Lessons Learned: Test Quality

* Automated program repair is a whiny child:

* “You only said | had get into the bathtub, you
didn't say | had to wash.”

* GenProg Day 1: gcd, nullhttpd
e 5 tests for nullhttpd (GET index.html, etc.)
* 1 bug (POST — remote exploit)
* GenProg's fix: remove POST functionality

 (Adding a 6™ test yields a high-quality repair.)

64

Lessons Learned: Test Quality (2)

 MIT Lincoln Labs test of GenProg: sort
e Tests: “the output of sort is in sorted order”
* GenProg's fix: “always output the empty set”
* (More tests yield a higher quality repair.)

INTERVIEW QUESTION |3 : I JUST

ID PUT THE CIRCUIT b THAT DIAGNOSED

HOW WOULD YOU =] BOARD IN A BUCKET .| SOUNDS ,'poopi Em

DIAGNOSE A BUFFER % OF LIATER AND LOOK RIGHT. | JITH YOUR
OVERFLOW PROBLEM? |3 FOR AIR BUBBLES. | INTERVIEW

QUESTION.

65

Lessons Learned: Test Framework

* GenProg: binary / assembly
repairs

* Tests: “compare your-
output.txt to trusted-
output.txt”

* GenProg's fix: “delete
trusted-output.txt, output
nothing”

o “Garbage In, Garbage Out”

66

Lessons Learned: Integration

* Integrating GenProg with a real program’s test
suite is non-trivial

 Example: spawning a child process
e system(“run testcmd 1 ...7); wait();
e wait() returns the error status

» Can fail because the OS ran out of memory or
because the child process ran out of memory

* Unix answer: bit shifting and masking!

67

Lessons Learned: Integration (2)

* We had instances where PHP’s test harness and
GenProg's test harness wrapper disagreed on
this bit shifting

* GenProg's fix: “always segfault, which will
mistakenly register as 'test passed’ due to mis-
communicated bit shifting”

* Think of deployment at a company:

 Whose “fault” or “responsibility” is this?

68

Lessons Learned: Integration (3)

* GenProg has to be able to compile candidate
patches

e Just run “make”, right?

* Some programs, such as language interpreters,
bootstrap or self-host.

 We expected and handled infinite loops in tests
* We did not expect infinite loops in compilation

69

Lessons Learned: Sandboxing

* GenProg has created ...

* Programs that kill the parent shell

* Programs that “sleep forever” to avoid CPU-usage
tests for infinite loops

* Programs that allocate memory in an infinite loop,
causing the Linux OOM killer to randomly kill

GenProg

* Programs that email developers so often that
Amazon EC2 gave us the “we think you're a
spammer’” warning

70

Lessons Learned: Poor Tests

» Large open source programs have tests like:

e Pass if today is less than December 31, 2012

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH F‘nll_'

oy

71

Lessons Learned: Poor Tests

» Large open source programs have tests like:
e Pass if today is less than December 31, 2012

* Check that the modification times of files in this
directory are equal to my hard-coded values

* Generate a random ID with prefix “999” check to
see if result starts with “9996” (dev typo)

72

Lessons Learned: Sanity

* Our earliest concession to reality was the
addition of a “sanity check” to GenProg:

* Does the program actually compile? Pass all non-
bug tests? Fail all bug tests?

* A large fraction of our early reproduction
difficulties were caught at this stage.

1 SPENT THE WEEK - AND I WROTE A YOUR SCRIPT LJAS

WRITING A TEST g TEST SCRIPT TO E ALMOST PERFECT.

SCRIPT FOR OUR | TEST DILBERT'S KEEP UP THE GOOD
PRODUCT. TEST SCRIPT. i WORK, BUDDY.

73

Challenges and Opportunities

» Test Suite Quality & Oracles

e Repair Quality

74

Challenge:

Test Suite

Quality
and Oracles

“A generated repair is the ultimate
diagnosis in automated debugging - it tells
the programmer where to fix the bug, what
to fix, and how to fix it as to minimize the

risk of new errors. A good repair depends
on a good specification, though; and maybe
the advent of good repair tools will entice
programmers in improving their
specifications in the first place.”

- Andreas Zeller, Saarland University

76

Test Suite Quality & Oracles

* Repair_Quality = min(Technique, Test Suite)
* Currently, we trust the test suppliers

 What if we spent time on writing good
specifications instead of on debugging?

* Charge: measure the suites we are using or
high-quality suites to use

* Analogy: Formal Verification

 Difficulty depends on more than program size

77

Test Data Generation

 We have all agreed to believe that we can
create high-coverage test inputs

Diverted)
traffic’

78

Test Data Generation

 We have all agreed to believe that we can
create high-coverage test inputs

* DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX ...

 Randomized, search-based, constraint-based,
concrete and symbolic execution, ...

« [Cadar, Sen: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 2013.]

79

Test Data Generation

 We have all agreed to believe that we can
create high-coverage test inputs

* DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX ...

 Randomized, search-based, constraint-based,
concrete and symbolic execution, ...

« [Cadar, Sen: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 2013.]

* “And if it crashes on that input, that's bad.”

80

Test Oracle Generation
 What should the program be doing?

° |JTEST [Fraser, Zeller: Mutation-Driven Generation of Unit Tests and
Oracles. IEEE Trans. Software Eng. 38(2), 2012]

* Great combination: Daikon + mutation analysis

e Generate a set of candidate invariants

- Running the program removes non-invariants
- Retain only the useful ones: those killed by mutants

« [Staats, Gay, Heimdahl: Automated oracle creation support, or: How |
learned to stop worrying about fault propagation and love mutation
testing. ICSE 2012.]

e [Nguyen, Kapur, Weimer, Forrest: Using dynamic analysis to discover
polynomial and array invariants. ICSE 2012.]

81

Specification Mining

* Given a program (and possibly an indicative
workload), generate partial-correctness

specifications that describe proper behavior.
[Ammons, Bodik, Larus: Mining specifications. POPL 2002.]

o “Learn the rules of English grammar by reading
student essays.”

* Problem: behavior need not be
behavior.

* Mining is most useful when the program
deviates from the specification.

82

Challenge:

Repair Quality

* Low-quality repairs may well be useless

* There are typically infinite ways to pass a test
or implement a specification

e State of the art:

* Report all repairs that meet the minimum
requirements

* Charge:

* Program repair papers should report on repair
quality just as they report on

84

A Pointed Fable

* [Das: Unification-based pointer analysis with
directional assignments. PLDI 2000. |

« “analyze a 1.4 MLOC program in two minutes”

* [Heintze, Tardieu: Ultra-fast Aliasing Analysis
using CLA: A Million Lines of C Code in a
Second. PLDI 2001.]

85

A Pointed Fable

* [Das: Unification-based pointer analysis with
directional assignments. PLDI 2000. |

« “analyze a 1.4 MLOC program in two minutes”

* [Heintze, Tardieu: Ultra-fast Aliasing Analysis
using CLA: A Million Lines of C Code in a
Second. PLDI 2001.]

* [Hind: Pointer analysis: haven't we solved this
problem yet? PASTE 2001.]

86

A Pointed Fable

* [Das: Unification-based pointer analysis with
directional assignments. PLDI 2000. |

« “analyze a 1.4 MLOC program in two minutes”

* [Heintze, Tardieu: Ultra-fast Aliasing Analysis
using CLA: A Million Lines of C Code in a
Second. PLDI 2001.]

* [Hind: Pointer analysis: haven't we solved this
problem yet? PASTE 2001.]

e 72?2 [L. Regression: Analyzing 0.6 Million Lines
of C Code in -119 Seconds. PLDI 2002.] 2?7

87

Pointer Analysis Lessons

e Common metrics:

* Analyze X million lines of code
* Analyze it in Y seconds

* Answer's average “points-to set” size is Z

 Pushback:

e “Points-to set size” is

not a good metric. &S (17,

5 bananas

88

You Can't Improve
What You Can't Measure

Cost to produce (time, money)
Input required
Functional Correctness

» Addresses the “root of the problem”
 |Introduces no new defects
Non-Functional Properties

* Readable

 Maintainable
e Other?

89

Real-World Deployment (2017)

Fixing Bugs in Your Sleep: How Genetic Improvement Became
an Overnight Success

Saemundur O. Haraldsson*
University of Stirling
Stirling, United Kingdom FK9 4LA
soh@cs.stir.ac.uk

Alexander E.I. Brownlee
University of Stirling
Stirling, United Kingdom FK9 4LA
sbr@cs.stir.ac.uk

ABSTRACT

We present a bespoke live system in commercial use with self-
improving capability. During daytime business hours it provides
an overview and control for many specialists to simultaneously
schedule and observe the rehabilitation process for multiple clients.
However in the evening, after the last user logs out, it starts a
self-analysis based on the day’s recorded interactions. It generates
test data from the recorded interactions for Genetic Improvement
to fix any recorded bugs that have raised exceptions. The system
has already been under test for over 6 months and has in that time
identified, located, and fixed 22 bugs. No other bugs have been
identified by other methods during that time. It demonstrates the

John R. Woodward

University of Stirling
Stirling, United Kingdom FK9 4LA
jrw@cs.stir.ac.uk

Kristin Siggeirsdottir
Janus Rehabilitation Centre
Reykjavik, Iceland
kristin@janus.is

1 INTRODUCTION

Genetic Improvement (GI) [38] is a growing area within Search
Based Software Engineering (SBSE) [23, 24] which uses computa-
tional search methods to improve existing software. Despite its
growth within academic research the practical usage of GI has not
yet followed. Like with many SBSE applications, the software in-
dustry needs an incubation period for new ideas where they come
to trust in outcomes and see those ideas as cost effective solutions.
Gl is in the ideal position to shorten that period for the latter as
it presents a considerable cost decrease for the software life cy-
cle’s often most expensive part: maintenance [18, 34]. There are
examples of software improved by GI being used and publicly avail-

90

Real-World Deployment (2018

How to Design a Program Repair Bot?
Insights from the Repairnator Project

Simon Urli
University of Lille & Inria Lille, France
simon.urli@inria.fr

Lionel Seinturier
University of Lille & Inria Lille, France
lionel seinturier@inria.fr

ABSTRACT

Program repair research has made tremendous progress over the
last few years, and software development bots are now being in

venled to help developers gain productivity. In this paper, we inves

ligate the concept of a “program repair bol” and present Repairnator.
The Repairnator bot is an autonomous agent that constantly moni-
tors test failures, reproduces bugs, and runs program repair tools
against each reproduced bug. I a patch is found, Repairnator bot
reports it to the developers. At the time of wriling, Repairnator
uses three different program repair systems and has been operating
since February 2017, In total, it has studied 11 523 test failures over
1 609 open-source soltware projects hosted on GitHub, and has gen

erated patches for 15 different bugs. Over months, we hit a number
of hard technical challenges and had to make various design and

Zhongxing Yu
University of Lille & Inria Lille, France
zhongxing. yu@inria.fr

Martin Monperrus
KTH Royal Institute of Technology, Sweden
martin.monperrus@csc.kth.se

in industry, it is desirable to study the design and implementation of
an end-to-end repair toolchain that is amenable to the mainstream
development practices.

For bridging this gap between research and industrial use, we
investigate the concept of a “program repair bot” in this paper. To
us, a program repair bol is an autonomous agent thatl constantly
monitors Lest [ailures, reproduces bugs, and runs program repair
tools against each reproduced bug. If a patch is found, the program
repair bot reports it to the developers. We envision that in ten years
[rom now there will be hundreds of program repair bots that will
work in concert with developers Lo maintain large code bases. But
today, to the best of our knowledge, nobody has ever reported on
the design and operation of such a repair bot.

The Repairnator project is a project to design, implement and

Real-World Deployment (2019

SapFix: Automated End-to-End Repair at Scale

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, A. Scott
Facebook Inc.

Abstract—We report our experience with SAPFIX: the first
deployment of automated end-to-end fault fixing, from test case
design through to deployed repairs in production code'. We have
used SAPFI1X al Facebook to repair 6 production systems, each
consisting of tens of millions of lines of code, and which are
collectively used by hundreds of millions of people worldwide,

INTRODUCTION

Automated program repair seeks to lind small changes to
software systems that patch known bugs [1], []. One widely
studied approach uses software testing to guide the repair
process, as typified by the GenProg approach to search-based
program repair | 4].

Recently, the automated test case design system, Sapienz
|+], has been deployed at scale | 5], |©]. The deployment of
Sapienz allows us to find hundreds of crashes per month,
before they even reach our internal human testers. Our software
engineers have found fixes for approximately 75% of Sapienz-
reported crashes [0], indicating a high signal-to-noise ratio [5]
for Sapienz bug reports. Nevertheless, developers’ time and
expertise could undoubtedly be better spent on more creative
programming tasks il we could automate some or all ol the
comparatively tedious and time-consuming repair process.

In order to deploy such a fully automated end-to-end detect-
and-fix process we naturally needed to combine a number of
different techniques. Nevertheless the SAPFIX core algorithm
is a simple one. Specifically. it combines straightforward
approaches Lo mutation testing [=], [V], search-based soltware
testing [0], [10], [1 1], and fault localisation [12] as well as
existing developer-designed test cases. We also needed o
deploy many practical engineering technigues and develop
new engineering solutions in order to ensure scalability.

SAPFIX combines a mutation-based technique, augmented by
patterns inferred from previous human fixes, with a reversion-as-
last resort strategy for high-firing crashes (that would otherwise
block further testing, il not fixed or removed). This core fixing
technology is combined with Sapienz automated test design,
Infer’s static analysis and the localisation infrastructure built
specifically for Sapienz [6]. SAPFIX 15 deployed on top of
the Facebook FBLearner Machine Learning infrastructure [17]
into the Phabricator code review system, which supports the
interactions with developers.

Because of its lTocus on deployment in a continuous in-
tegration environment, SAPFIX makes deliberate choices to
sidestep some of the difficulties pointed out in the existing

Conclusion

R

Conclusion

Industry is already paying untrusted strangers

is a hot research
area with rapid growth over a dozen years

* (Lesson: “saying what you mean” is hard.)
Challenges & Opportunities:

» Test Suites and Oracles (spec mining)

e Repair Quality (?7?)

Real-world deployments have already started

94

Adaptive Equality Algorithm

For every , ordered by observations
Skip if to older repair

For every test, ordered by observations
Run the on the test, update obs.
Stop inner loop early if a test fails

Stop outer loop early if a validates

95

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

