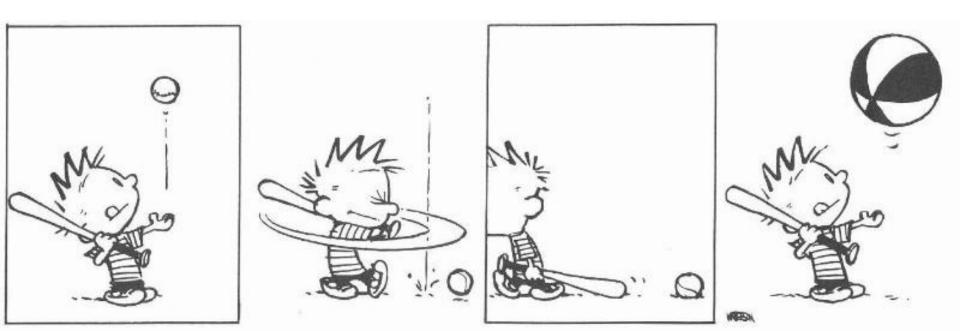
Recursive Types and Subtyping



One-Slide Summary

- Recursive types (e.g., τ list) make the typed lambda calculus as powerful as the untyped lambda calculus.
- If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ ; this is called subsumption.
- A conversion is a function that converts between types.
- A subtyping system should be **coherent**.

Recursive Types: Lists

- We want to define recursive data structures
- Example: <u>lists</u>
 - A list of elements of type τ (a τ list) is *either* empty *or* it is a pair of a τ and a τ list

 τ list = unit + ($\tau \times \tau$ list)

- This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation

$$\mathsf{L} = \{ * \} \cup (\mathsf{T} \times \mathsf{L})$$

where T is the set of values of type $\boldsymbol{\tau}$

- Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism

Recursive Types

• We introduce a <u>recursive type constructor</u> μ (mu):

μt. τ

- The type variable t is bound in $\boldsymbol{\tau}$
- This stands for the solution to the equation

 $t\simeq au$ (t is isomorphic with au)

- Example: τ list = μt . (unit + $\tau \times t$)
- This also allows "unnamed" recursive types
- We introduce syntactic (sugary) operations for the conversion between $\mu t.\tau$ and $[\mu t.\tau/t]\tau$
- e.g. between " τ list" and "unit + ($\tau \times \tau$ list)"

 $e ::= ... | fold_{\mu t.\tau} e | unfold_{\mu t.\tau} e$

 $\tau ::= \dots \qquad | t | \mu t.\tau$

Example with Recursive Types

• Lists

au list	= $\mu t.$ (unit + $\tau \times t$)
nil _τ	= fold _{τ list} (injl *)
$cons_{\tau}$	= $\lambda x: \tau . \lambda L: \tau$ list. fold _{τ list} injr (x, L)
A list le	ngth function
$length_{\tau}$	$= \lambda L: \tau$ list.
case	$(unfold_{\tau list} L) of injl x \Rightarrow 0$

| injr y \Rightarrow 1 + length_{τ} (snd y)

- (At home ...) Verify that
 - nil_{τ} : τ list
 - $cons_{\tau}$: $\tau \rightarrow \tau$ list $\rightarrow \tau$ list
 - length $_{\tau}$: τ list \rightarrow int

Type Rules for Recursive Types $\Gamma \vdash e : \mu t.\tau$

 $\mathsf{\Gamma} \vdash \texttt{unfold}_{\mu t.\tau} \ e \ \vdots \ [\mu t.\tau/t]\tau$

$$\Gamma \vdash e : [\mu t. \tau / t] \tau$$

$$\sqcap \vdash \texttt{fold}_{\mu t.\tau} \ e \ \vdots \ \mu t.\tau$$

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder

Dynamics of Recursive Types

• We add a new form of values

 $\mathbf{v} ::= ... | fold_{\mu t.\tau} \mathbf{v}$

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding
- The evaluation rules:

 $e \Downarrow v$

$$e \Downarrow \texttt{fold}_{\mu t. \tau} v$$

 $\operatorname{fold}_{\mu t.\tau} e \Downarrow \operatorname{fold}_{\mu t.\tau} v \quad \operatorname{unfold}_{\mu t.\tau} e \Downarrow v$

- The folding annotations are for type checking only
- They can be dropped after type checking

Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold
- In ML recursive types are bundled with union types type t = C₁ of τ₁ | C₂ of τ₂ | ... | C_n of τ_n (* t can appear in τ_i*)
 - e.g., "type intlist = Nil of unit | Cons of int * intlist"
- When the programmer writes Cons (5, l)
 the compiler treats it as fold_{intlist} (injr (5, l))
- When the programmer writes
 - case e of Nil \Rightarrow ... | Cons (h, t) \Rightarrow ...
 - the compiler treats it as
 - case unfold_{intlist} e of Nil \Rightarrow ... | Cons (h,t) \Rightarrow ...

Encoding Call-by-Value λ -calculus in F_1^{μ}

- So far, F₁ was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the $\lambda x.x x$ (self-application)
- The addition of recursive types makes typed λ-calculus as expressive as untyped λcalculus!
- We could show a conversion algorithm from call-by-value untyped $\lambda\text{-calculus to call-by-value F_1}^\mu$

Smooth Transition

• And now, on to subtyping ...

Today's Rates						
	WE BUY			WE SELL		
Foreign Notes	Travellers Cheques		Foreign Notes	Travellers Cheques		
1.7800	1.7622	United States	1.5530	1.5584		
2.6538	2. Microsoft Visu Run-time error	The second states and the second second	41	2.2919		
2.2295	2. Type mismatch		34	1.9301		
10.19	1		3	N/A		
1.3876	1.		92	1 212		

Introduction to Subtyping

- We can view <u>types</u> as denoting <u>sets of values</u>
- <u>Subtyping</u> is a relation between types induced by the subset relation between value sets
- Informal intuition:
 - If τ is a subtype of σ then any expression with type τ also has type σ (e.g., $\mathbb{Z} \subseteq \mathbb{R}$, $1 \in \mathbb{Z} \Rightarrow 1 \in \mathbb{R}$)
 - If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ
 - We write $\tau < \sigma$ to say that τ is a subtype of σ
 - Subtyping is reflexive and transitive

Cunning Plan For Subtyping

- Formalize Subtyping Requirements
 - Subsumption
- Create Safe Subtyping Rules
 - Pairs, functions, references, etc.
 - Most easy thing we try will be wrong
- Subtyping Coercions
 - When is a subtyping system correct?

Subtyping Examples

- FORTRAN introduced int < real
 - 5 + 1.5 is well-typed in many languages
- PASCAL had [1..10] < [0..15] < int
- Subtyping is a fundamental property of object-oriented languages
 - If S is a subclass of C then an instance of S can be used where an instance of C is expected

- "subclassing ⇒ subtyping" philosophy

Subsumption

- Formalize the requirements on subtyping
- Rule of <u>subsumption</u>
 - If $\tau < \sigma$ then an expression of type τ has type σ

$$\Gamma \vdash e : \tau \quad \tau < \sigma$$

$$\Gamma \vdash e : \sigma$$

- But now type safety may be in danger:
 - If we say that int < (int \rightarrow int)
 - Then we can prove that "11 8" is well typed!
- There is a way to construct the subtyping relation to preserve type safety

Subtyping in POPL 20

- Decidable Subtyping for Path Dependent Types
- Graduality and Parametricity: Together Again for the First Time
 - By UM's Max New!
- Partial Type Constructors: Or, Making Ad Hoc Datatypes Less Ad Hoc
- What Is Decidable about Gradual Types?
- ... (out of space)

Subtyping in POPL/PLDI 14

- Backpack: Retrofitting Haskell with Interfaces
- Getting F-Bounded Polymorphism into Shape
- Optimal Inference of Fields in Row-Polymorphic Records
- Polymorphic Functions with Set-Theoretic Types (Part 1: Syntax, Semantics, and Evaluation)
- ... (out of space)

Defining Subtyping

- The formal definition of subtyping is by derivation rules for the judgment $\tau < \sigma$
- We start with subtyping on the base types
 - e.g. int < real or nat < int
 - These rules are language dependent and are typically based directly on types-as-sets arguments
- We then make subtyping a preorder (reflexive and transitive) $au_1 < au_2 \quad au_2 < au_3$

$$\overline{\tau < \tau} \qquad \qquad \tau_1 < \tau_3$$

• Then we build-up subtyping for "larger" types

• Try $\begin{aligned} &\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \times \tau' < \sigma \times \sigma'} \end{aligned}$

- Show (informally) that whenever a $s \times s'$ can be used, a $t \times t'$ can also be used:
- Consider the context H = H'[fst •] expecting a s × s'
 - Then H' expects a s
 - Because t < s then H' accepts a t
 - Take $e : t \times t'$. Then fst e : t so it works in H'
 - Thus e works in H
- The case of "snd •" is similar

Subtyping for Records

- Several subtyping relations for records
- <u>Depth</u> subtyping

$$\{l_1: \tau_1, \ldots, l_n: \tau_n\} < \{l_1: \tau'_1, \ldots, l_n: \tau'_n\}$$

 $\tau_i < \tau'_i$

- e.g., {f1 = int, f2 = int} < {f1 = real, f2 = int}
- <u>Width</u> subtyping

$$n \ge m$$

 $\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} < \{ l_1 : \tau_1, \ldots, l_m : \tau_m \}$

- E.g., {f1 = int, f2 = int} < {f2 = int}
- Models subclassing in OO languages
- Or, a combination of the two

Subtyping for Functions $\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \rightarrow \tau' < \sigma \rightarrow \sigma'}$

Example Use:rounded_sqrt: $\mathbb{R} \to \mathbb{Z}$ actual_sqrt: $\mathbb{R} \to \mathbb{R}$

Since $\mathbb{Z} < \mathbb{R}$, rounded_sqrt < actual_sqrt

So if I have code like this:

float result = rounded_sqrt(5); // 2
... I can replace it like this:

float result = actual_sqrt(5); // 2.23
... and everything will be fine.

Chinese Literature(紅樓夢)

• This semi-autobiographical novel is one of China's Four Great Classic Novels. It mirrors the rise and fall of the author's family and is presented as a memorial to the women he knew in his youth. It describes 18th-century Chinese society using many characters, including the compassionate Jia Baoyu (賈寶 玉) and the sickly and spiritual Lin Daiyu (林 黛玉). It also features a sentient stone and romantic rivalry.

Q: General (455 / 842)

 This numerical technique for finding solutions to boundary-value problems was initially developed for use in structural analysis in the 1940's. The subject is represented by a model consisting of a number of linked simplified representations of discrete regions. It is often used to determine stress and displacement in mechanical systems.

Computer Science

• This American Turing-award winner is known for his visionary and pioneering contributions to Computer Graphics, and for Sketchpad, an early predecessor to the GUI. He created the first virtual reality display, and a graphics line clipping algorithm. His students include Alan Kay (Smalltalk), Henri Gouraud (shading), Frank Crow (anti-aliasing), and Edwin Catmull (Pixar). When asked, "How could you possibly have done the first interactive graphics program, the first non-procedural programming language, the first object oriented software system, all in one year?" He replied: "Well, I didn't know it was hard."

Subtyping for Functions $\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \rightarrow \tau' < \sigma \rightarrow \sigma'} \quad \begin{array}{l} \text{What do you} \\ \text{think of this} \\ \text{rule?} \end{array}$

Subtyping for Functions

$$\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \rightarrow \tau' < \sigma \rightarrow \sigma'}$$

- This rule is <u>unsound</u>
 - Let Γ = f : int \rightarrow bool (and assume int < real)
 - We show using the above rule that $\Gamma \vdash f$ 5.0 : bool
 - But this is wrong since 5.0 is *not a valid argument* of f

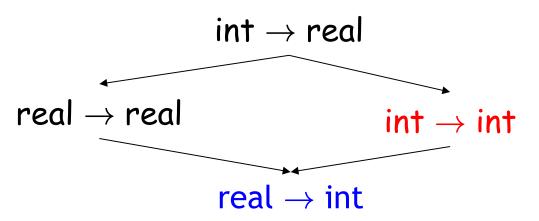
$$\begin{array}{ll} \hline \Gamma \vdash f: \texttt{int} \to \texttt{bool} & \hline \texttt{int} < \texttt{real} & \texttt{bool} < \texttt{bool} \\ \hline \hline \Gamma \vdash f: \texttt{int} \to \texttt{bool} & \hline \Gamma \vdash \texttt{5.0: real} \\ \hline \hline \Gamma \vdash f: \texttt{real} \to \texttt{bool} & \hline \Gamma \vdash \texttt{5.0: real} \\ \hline \hline \hline \hline \Gamma \vdash f: \texttt{5.0: bool} \end{array}$$

Correct Function Subtyping $\sigma < \tau$ $\tau' < \sigma'$ $\tau \rightarrow \tau' < \sigma \rightarrow \sigma'$

- We say that \rightarrow is <u>covariant</u> in the result type and <u>contravariant</u> in the argument type
- Informal correctness argument:
 - Pick $f: \tau \to \tau'$
 - f expects an argument of type $\boldsymbol{\tau}$
 - It also accepts an argument of type $\sigma < \tau$
 - f returns a value of type τ '
 - Which can also be viewed as a σ' (since $\tau' < \sigma'$)
 - Hence f can be used as $\sigma \rightarrow \sigma'$

More on Contravariance

• Consider the subtype relationships:



- In what sense ($f \in real \rightarrow int$) \Rightarrow ($f \in int \rightarrow int$)?
 - "real \rightarrow int" has a *larger domain*!
 - (recall the set theory (arg, result) pair encoding for functions)
- This suggests that "subtype-as-subset" interpretation is not straightforward
 - We'll return to this issue (after these commercial messages ...)

Subtyping References

Try covariance

 $\overline{\tau\, \mathrm{ref} < \sigma\, \mathrm{ref}}$

 $\tau < \sigma$

- Example: assume $\tau < \sigma$
- The following holds (if we assume the above rule):

x : σ , y : τ ref, f : $\tau \rightarrow$ int \vdash y := x; f (! y)

- Unsound: f is called on a σ but is defined only on τ
- Java has covariant arrays!
- If we want covariance of references we can recover type safety with a runtime check for each y := x
 - The actual type of x matches the actual type of y
 - But this is generally considered a *bad design*

Wrong!

Subtyping References (Part 2)

• Contravariance?

Also Wrong!

- Example: assume $\tau < \sigma$
- The following holds (if we assume the above rule):

 $\tau < \sigma$

 $\sigma \operatorname{ref} < \tau \operatorname{ref}$

x : σ , y : σ ref, f : $\tau \rightarrow$ int \vdash y := x; f (! y)

- Unsound: f is called on a σ but is defined only on τ
- References are <u>invariant</u>
 - *No subtyping for references* (unless we are prepared to add run-time checks)
 - hence, *arrays* should be invariant
 - hence, *mutable records* should be invariant

Subtyping Recursive Types

- Recall τ list = μ t.(unit + $\tau \times t$)
 - We would like τ list < σ list whenever τ < σ
- Covariance?

 $\overline{\mu t.\tau < \mu t.\sigma}$

 $\tau < \sigma$

- This is wrong if t occurs contravariantly in τ
- Take $\tau = \mu t.t \rightarrow int$ and $\sigma = \mu t.t \rightarrow real$
- Above rule says that $\tau < \sigma$
- We have $\tau \simeq \tau \rightarrow int$ and $\sigma \simeq \sigma \rightarrow real$
- $\tau < \sigma$ would mean covariant function type!
- How can we get safe subtyping for lists?

Subtyping Recursive Types

• The correct rule

 $\begin{array}{c|c} t < s \\ \vdots \\ \tau < \sigma \end{array} \end{array} \xrightarrow[\begin{subarray}{c} \text{Means assume t < s} \\ \text{and use that to} \\ \text{prove } \tau < \sigma \end{array}$

$$\mu t. \tau < \mu s. \sigma$$

- We add as an assumption that the type variables stand for types with the desired subtype relationship
 - Before we assumed they stood for the same type!
- Verify that now subtyping works properly for lists
- There is no subtyping between $\mu t.t \rightarrow int and \mu t.t \rightarrow real (recall: <math>\underline{\tau < \sigma}$ Wrong!

$$\mu t.\tau < \mu t.\sigma$$

Conversion Interpretation

- The <u>subset interpretation</u> of types leads to an abstract modeling of the operational behavior
 - e.g., we say int < real even though an int could not be directly used as a real in the concrete x86 implementation (cf. IEEE 754 bit patterns)
 - The int needs to be <u>converted</u> to a real
- We can get closer to the "machine" with a <u>conversion interpretation</u> of subtyping
 - We say that $\tau < \sigma$ when there is a <u>conversion function</u> that converts values of type τ to values of type σ
 - Conversions also help explain issues such as contravariance
 - But: must be careful with conversions

Conversions

- Examples:
 - nat < int with conversion $\lambda x.x$
 - int < real with conversion 2's comp \rightarrow IEEE
- The subset interpretation is a *special case* when all conversions are *identity functions*
- Write " $\tau < \sigma \Rightarrow C(\tau, \sigma)$ " to say that $C(\tau, \sigma)$ is the <u>conversion function</u> from subtype τ to σ
 - If C(τ , σ) is expressed in F₁ then C(τ , σ) : $\tau \to \sigma$

Issues with Conversions

• Consider the expression "printreal 1" typed as follows:

 $\frac{\texttt{printreal:real} \rightarrow \texttt{unit}}{\texttt{printreal1:unit}} \frac{\texttt{1:int} \quad \texttt{int} < \texttt{real}}{\texttt{1:real}}$

we convert 1 to real: printreal (C(int,real) 1)

• But we can also have another type derivation: printreal : real \rightarrow unit real \rightarrow unit < int \rightarrow unit

printreal: int \rightarrow unit 1: int

printreal 1 : unit

with conversion "(C(real -> unit, int -> unit) printreal) 1"

• Which one is right? What do they mean?

Introducing Conversions

- We can compile a language with subtyping into one without subtyping by introducing conversions
- The process is similar to type checking

 $\Gamma \vdash \mathbf{e} : \tau \Rightarrow \underline{\mathbf{e}}$

- Expression e has type τ and its conversion is <u>e</u>
- Rules for the conversion process:

$$\begin{array}{c} \Gamma \vdash e_1 : \tau_2 \to \tau \Rightarrow \underline{e_1} \quad \Gamma \vdash e_2 : \tau_2 \Rightarrow \underline{e_2} \\ \\ \Gamma \vdash e_1 \ e_2 : \tau \Rightarrow \underline{e_1} \ \underline{e_2} \\ \\ \\ \hline \begin{array}{c} \Gamma \vdash e : \tau \Rightarrow \underline{e} \quad \tau < \sigma \Rightarrow C(\tau, \sigma) \\ \\ \\ \hline \Gamma \vdash e : \sigma \Rightarrow C(\tau, \sigma) \underline{e} \end{array} \end{array}$$

Coherence of Conversions

- Questions and Concerns:
 - Can we build *arbitrary subtype relations* just because we can write conversion functions?
 - Is real < int just because the "floor" function is a conversion?</p>
 - What is the conversion from "real \rightarrow int" to "int \rightarrow int"?
- What are the restrictions on conversion functions?
- A system of conversion functions is coherent if whenever we have $\tau < \tau' < \sigma$ then
 - $C(\tau, \tau) = \lambda x.x$
 - $C(\tau, \sigma) = C(\tau', \sigma) \circ C(\tau, \tau')$ (= composed with)
 - Example: if b is a bool then (float)b == (float)((int)b)
 - otherwise we end up with confusing uses of subsumption

Example of Coherence

- We want the following subtyping relations:
 - int < real $\Rightarrow \lambda x$:int. to EEE x
 - real < int $\Rightarrow \lambda x$:real. floor x
- For this system to be coherent we need
 - C(int, real) \circ C(real, int) = $\lambda x.x$, and
 - C(real, int) \circ C(int, real) = $\lambda x.x$
- This requires that
 - $\forall x : real . (tolEEE (floor x) = x)$
 - which is not true

Building Conversions

• We start from conversions on basic types

 $\tau < \tau \Rightarrow \lambda x : \tau.x$ $\frac{\tau_1 < \tau_2 \Rightarrow C(\tau_1, \tau_2) \quad \tau_2 < \tau_3 \Rightarrow C(\tau_2, \tau_3)}{\tau_1 < \tau_3 \Rightarrow C(\tau_2, \tau_3) \circ C(\tau_1, \tau_2)}$ $\tau_1 < \sigma_1 \Rightarrow C(\tau_1, \sigma_1) \quad \tau_2 < \sigma_2 \Rightarrow C(\tau_2, \sigma_2)$ $\overline{\tau_1 \times \tau_2} < \sigma_1 \times \sigma_2 \Rightarrow \lambda x : \tau_1 \times \tau_2.(C(\tau_1, \sigma_1)(\operatorname{fst}(x)), C(\tau_2, \sigma_2)(\operatorname{snd}(x)))$ $\overline{\tau_1 \times \tau_2} < \tau_1 \Rightarrow \lambda x : \tau_1 \times \tau_2.\operatorname{fst}(x)$ $\sigma_1 < \tau_1 \Rightarrow C(\sigma_1, \tau_1) \quad \tau_2 < \sigma_2 \Rightarrow C(\tau_2, \sigma_2)$

 $\tau_1 \to \tau_2 < \sigma_1 \to \sigma_2 \Rightarrow \lambda f : \tau_1 \to \tau_2. \ \lambda x : \sigma_1. \ C(\tau_2, \sigma_2)(f(C(\sigma_1, \tau_1)(x)))$

Comments

- With the conversion view we see why we do not necessarily want to impose antisymmetry for subtyping
 - Can have multiple representations of a type
 - We want to reserve type equality for representation equality
 - $\tau < \tau'$ and also $\tau' < \tau$ (are interconvertible) but not necessarily $\tau = \tau'$
 - e.g., Modula-3 has packed and unpacked records
- We'll encounter subtyping again for object-oriented languages
 - Serious difficulties there due to recursive types

Homework

• Homework 5, Homework 6, etc.