Recursive Types and Subtyping
One-Slide Summary

- **Recursive types** (e.g., \(\tau \) list) make the typed lambda calculus as powerful as the untyped lambda calculus.
- If \(\tau \) is a **subtype** of \(\sigma \) then any expression of type \(\tau \) can be used in a context that expects a \(\sigma \); this is called **subsumption**.
- A **conversion** is a function that converts between types.
- A subtyping system should be **coherent**.
Recursive Types: Lists

• We want to define recursive data structures

• Example: lists
 - A list of elements of type τ (a τ list) is either empty or it is a pair of a τ and a τ list

\[\tau \text{ list} = \text{unit} + (\tau \times \tau \text{ list}) \]

- This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation

\[L = \{ \ast \} \cup (T \times L) \]

where T is the set of values of type τ

- Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism
Recursive Types

- We introduce a **recursive type constructor** μ (mu):
 \[\mu t. \tau \]
 - The type variable t is bound in τ
 - This stands for the solution to the equation
 \[t \simeq \tau \text{ (t is isomorphic with } \tau) \]
 - Example: \(\tau \text{ list} = \mu t. (\text{unit} + \tau \times t) \)
 - This also allows “unnamed” recursive types

- We introduce syntactic (sugary) operations for the conversion between \(\mu t. \tau \) and \([\mu t. \tau / t] \tau\)
- e.g. between “\(\tau \text{ list} \)” and “unit + (\(\tau \times \tau \text{ list} \))”
 - \(e ::= ... \ | \ fold_{\mu t. \tau} e \ | \ unfold_{\mu t. \tau} e \)
 - \(\tau ::= ... \ | \ t \ | \ \mu t. \tau \)
Example with Recursive Types

• Lists
 \(\tau \) list \(= \mu t. (\text{unit} + \tau \times t) \)
 \(\text{nil}_\tau \) \(= \text{fold}_{\tau \text{ list}} (\text{injl} \ *) \)
 \(\text{cons}_\tau \) \(= \lambda x:\tau.\lambda L:\tau \text{ list}. \text{fold}_{\tau \text{ list}} \text{injr} (x, L) \)

• A list length function
 \(\text{length}_\tau = \lambda L:\tau \text{ list}. \)
 \(\text{case} (\text{unfold}_{\tau \text{ list}} L) \text{ of} \)
 \(\text{injl} \ x \Rightarrow 0 \)
 \(\text{injr} \ y \Rightarrow 1 + \text{length}_\tau (\text{snd} \ y) \)

• (At home ...) Verify that
 - \(\text{nil}_\tau \) : \(\tau \) list
 - \(\text{cons}_\tau \) : \(\tau \rightarrow \tau \text{ list} \rightarrow \tau \text{ list} \)
 - \(\text{length}_\tau \) : \(\tau \text{ list} \rightarrow \text{int} \)
Type Rules for Recursive Types

\[\Gamma \vdash e : \mu t.\tau \]

\[\Gamma \vdash \text{unfold}_{\mu t.\tau} e : [\mu t.\tau / t]T \]

\[\Gamma \vdash e : [\mu t.\tau / t]T \]

\[\Gamma \vdash \text{fold}_{\mu t.\tau} e : \mu t.\tau \]

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder
Dynamics of Recursive Types

• We add a new form of values

\[v ::= \ldots | \text{fold}_{\mu t.\tau} v \]

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding

• The evaluation rules:

\[
\begin{align*}
 e \Downarrow v & \quad \Rightarrow \\
\text{fold}_{\mu t.\tau} e \Downarrow \text{fold}_{\mu t.\tau} v & \quad \Rightarrow \\
 e \Downarrow \text{fold}_{\mu t.\tau} v & \quad \Rightarrow \\
\text{unfold}_{\mu t.\tau} e \Downarrow v & \quad \Rightarrow
\end{align*}
\]

• The folding annotations are for type checking only
• They can be dropped after type checking
Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold.
- In ML recursive types are bundled with union types:

 \[
 \text{type } t = C_1 \text{ of } \tau_1 \mid C_2 \text{ of } \tau_2 \mid \ldots \mid C_n \text{ of } \tau_n
 \]

 (* t can appear in \(\tau_i\) *)

 - e.g., “type intlist = Nil of unit | Cons of int * intlist”
- When the programmer writes \(\text{Cons (5, l)}\)
 - the compiler treats it as \(\text{fold}_{\text{intlist}} (\text{injr (5, l)})\)
- When the programmer writes
 - case e of Nil ⇒ … | Cons (h, t) ⇒ …
 the compiler treats it as
 - case unfold_{\text{intlist}} e of Nil ⇒ … | Cons (h, t) ⇒ …
Encoding Call-by-Value

\(\lambda \)-calculus in \(F_1^{\mu} \)

- So far, \(F_1 \) was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the \(\lambda x.x x \) (self-application)
- The addition of recursive types makes typed \(\lambda \)-calculus as expressive as untyped \(\lambda \)-calculus!
- We could show a conversion algorithm from call-by-value untyped \(\lambda \)-calculus to call-by-value \(F_1^{\mu} \)
Smooth Transition

• And now, on to subtyping ...
Introduction to Subtyping

- We can view types as denoting sets of values.
- **Subtyping** is a relation between types induced by the subset relation between value sets.
- Informal intuition:
 - If τ is a subtype of σ then any expression with type τ also has type σ (e.g., $\mathbb{Z} \subseteq \mathbb{R}$, $1 \in \mathbb{Z} \Rightarrow 1 \in \mathbb{R}$)
 - If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ
 - We write $\tau < \sigma$ to say that τ is a subtype of σ
 - Subtyping is reflexive and transitive
Cunning Plan For Subtyping

• Formalize **Subtyping Requirements**
 - Subsumption

• Create **Safe Subtyping Rules**
 - Pairs, functions, references, etc.
 - Most easy thing we try will be wrong

• Subtyping **Coercions**
 - When is a subtyping system correct?
Subtyping Examples

• FORTRAN introduced int < real
 - 5 + 1.5 is well-typed in many languages

• PASCAL had [1..10] < [0..15] < int

• Subtyping is a fundamental property of object-oriented languages
 - If S is a subclass of C then an instance of S can be used where an instance of C is expected
 - “subclassing ⇒ subtyping” philosophy
Subsumption

- Formalize the requirements on subtyping
- Rule of subsumption
 - If $\tau < \sigma$ then an expression of type τ has type σ

\[
\Gamma \vdash e : \tau \quad \tau < \sigma \\
\hline
\Gamma \vdash e : \sigma
\]

- But now type safety may be in danger:
 - If we say that $\text{int} < (\text{int} \rightarrow \text{int})$
 - Then we can prove that “11 8” is well typed!
- There is a way to construct the subtyping relation to preserve type safety
Subtyping in POPL/PLDI 14

- Backpack: Retrofitting Haskell with Interfaces
- Getting F-Bounded Polymorphism into Shape
- Optimal Inference of Fields in Row-Polymorphic Records
- Polymorphic Functions with Set-Theoretic Types (Part 1: Syntax, Semantics, and Evaluation)
- ... (out of space on slide)
Defining Subtyping

- The formal definition of subtyping is by derivation rules for the judgment $\tau < \sigma$
- We start with subtyping on the base types
 - e.g. int < real or nat < int
 - These rules are language dependent and are typically based directly on types-as-sets arguments
- We then make subtyping a preorder (reflexive and transitive)
 \[
 \begin{align*}
 \tau_1 < \tau_2 & \quad \tau_2 < \tau_3 \\
 \tau < \tau & \quad \tau_1 < \tau_3
 \end{align*}
 \]
- Then we build-up subtyping for “larger” types
Subtyping for Pairs

- Try

\[
\frac{T < \sigma \quad T' < \sigma'}{T \times T' < \sigma \times \sigma'}
\]

- Show (informally) that whenever a \(s \times s'\) can be used, a \(t \times t'\) can also be used:

- Consider the context \(H = H'[\text{fst } \bullet]\) expecting a \(s \times s'\)
 - Then \(H'\) expects a \(s\)
 - Because \(t < s\) then \(H'\) accepts a \(t\)
 - Take \(e : t \times t'\). Then \(\text{fst } e : t\) so it works in \(H'\)
 - Thus \(e\) works in \(H\)
- The case of “\(\text{snd } \bullet\)” is similar
Subtyping for Records

• Several subtyping relations for records

 • **Depth** subtyping
 \[\tau_i \prec \tau'_i \]
 \[
 \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \prec \{ l_1 : \tau'_1, \ldots, l_n : \tau'_n \}
 \]
 - e.g., \{f1 = int, f2 = int\} < \{f1 = real, f2 = int\}

 • **Width** subtyping
 \[n \geq m \]
 \[
 \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \prec \{ l_1 : \tau_1, \ldots, l_m : \tau_m \}
 \]
 - E.g., \{f1 = int, f2 = int\} < \{f2 = int\}
 - Models subtyping in OO languages

• Or, a **combination** of the two
Subtyping for Functions

\[\tau < \sigma \quad \tau' < \sigma' \]

\[\tau \rightarrow \tau' < \sigma \rightarrow \sigma' \]

Example Use:

- \textit{rounded_sqrt}: \(\mathbb{R} \rightarrow \mathbb{Z} \)
- \textit{actual_sqrt}: \(\mathbb{R} \rightarrow \mathbb{R} \)

Since \(\mathbb{Z} < \mathbb{R} \), \textit{rounded_sqrt} < \textit{actual_sqrt}

So if I have code like this:

```c
float result = rounded_sqrt(5); // 2
```

... I can replace it like this:

```c
float result = actual_sqrt(5); // 2.23
```

... and everything will be fine.
This numerical technique for finding solutions to boundary-value problems was initially developed for use in structural analysis in the 1940's. The subject is represented by a model consisting of a number of linked simplified representations of discrete regions. It is often used to determine stress and displacement in mechanical systems.
Computer Science

• This American Turing-award winner is known for his visionary and pioneering contributions to Computer Graphics, and for Sketchpad, an early predecessor to the GUI. He created the first virtual reality display, and a graphics line clipping algorithm. His students include Alan Kay (Smalltalk), Henri Gouraud (shading), Frank Crow (anti-aliasing), and Edwin Catmull (Pixar). When asked, "How could you possibly have done the first interactive graphics program, the first non-procedural programming language, the first object oriented software system, all in one year?" He replied: "Well, I didn't know it was hard."
Subtyping for Functions

\[\tau < \sigma \quad \tau' < \sigma' \]

\[\tau \rightarrow \tau' < \sigma \rightarrow \sigma' \]

• What do you think of this rule?
Subtyping for Functions

\[\tau < \sigma \quad \tau' < \sigma' \]

\[\tau \rightarrow \tau' < \sigma \rightarrow \sigma' \]

- This rule is **unsound**
 - Let \(\Gamma = f : \text{int} \rightarrow \text{bool} \) (and assume \text{int} < \text{real})
 - We show using the above rule that \(\Gamma \vdash f \ 5.0 : \text{bool} \)
 - But this is wrong since 5.0 is *not a valid argument* of \(f \)

\[
\begin{align*}
\Gamma \vdash f : \text{int} \rightarrow \text{bool} & \quad \text{int} < \text{real} \quad \text{bool} < \text{bool} \\
\text{int} \rightarrow \text{bool} < \text{real} \rightarrow \text{bool} & \\
\hline
\Gamma \vdash f : \text{real} \rightarrow \text{bool} & \quad \Gamma \vdash 5.0 : \text{real} \\
\hline
\Gamma \vdash f \ 5.0 : \text{bool}
\end{align*}
\]
Correct Function Subtyping

\[
\sigma \prec \tau \quad \tau' \prec \sigma'
\]

\[
\tau \rightarrow \tau' \prec \sigma \rightarrow \sigma'
\]

- We say that → is **covariant** in the result type and **contravariant** in the argument type.
- Informal correctness argument:
 - Pick \(f : \tau \rightarrow \tau' \)
 - \(f \) expects an argument of type \(\tau \)
 - It also accepts an argument of type \(\sigma < \tau \)
 - \(f \) returns a value of type \(\tau' \)
 - Which can also be viewed as a \(\sigma' \) (since \(\tau' < \sigma' \))
 - Hence \(f \) can be used as \(\sigma \rightarrow \sigma' \)
More on Contravariance

• Consider the subtype relationships:

\[
\begin{array}{c}
\text{int} \rightarrow \text{real} \\
\text{real} \rightarrow \text{real} \\
\text{real} \rightarrow \text{int} \\
\text{int} \rightarrow \text{int}
\end{array}
\]

• In what sense \((f \in \text{real} \rightarrow \text{int}) \Rightarrow (f \in \text{int} \rightarrow \text{int})\)?
 • “real → int” has a larger domain!
 • (recall the set theory (arg,result) pair encoding for functions)

• This suggests that “subtype-as-subset” interpretation is not straightforward
 • We’ll return to this issue (after these commercial messages ...)

Subtyping References

- Try **covariance**
 \[
 \tau < \sigma \quad \Rightarrow \quad \tau \text{ ref} < \sigma \text{ ref}
 \]
 Wrong!

 - Example: assume \(\tau < \sigma \)
 - The following holds (if we assume the above rule):
 \[
 x : \sigma, \ y : \tau \text{ ref}, \ f : \tau \rightarrow \text{int} \vdash y := x; \ f(\! y)\]
 - Unsound: \(f \) is called on a \(\sigma \) but is defined only on \(\tau \)
 - Java has covariant arrays!

- If we want covariance of references we can **recover type safety with a runtime check** for each \(y := x \)
 - The actual type of \(x \) matches the actual type of \(y \)
 - But this is generally considered a **bad design**
Subtyping References (Part 2)

- **Contravariance?**

 \[
 \tau < \sigma \\
 \sigma \text{ ref} < \tau \text{ ref}
 \]

 Also Wrong!

 - Example: assume \(\tau < \sigma \)
 - The following holds (if we assume the above rule):

 \[
 x : \sigma, \; y : \sigma \text{ ref}, \; f : \tau \rightarrow \text{ int} \vdash y := x; \; f (! y)
 \]

 - Unsound: \(f \) is called on a \(\sigma \) but is defined only on \(\tau \)

- **References are invariant**
 - *No subtyping for references* (unless we are prepared to add run-time checks)
 - hence, *arrays* should be invariant
 - hence, *mutable records* should be invariant
Subtyping Recursive Types

• Recall \(\tau \text{ list} = \mu t.(\text{unit} + \tau \times t) \)
 - We would like \(\tau \text{ list} < \sigma \text{ list} \) whenever \(\tau < \sigma \)
• Covariance?

\[
\frac{\tau < \sigma}{\mu t.\tau < \mu t.\sigma}
\]

Wrong!

• This is wrong if \(t \) occurs contravariantly in \(\tau \)
• Take \(\tau = \mu t.t \rightarrow \text{int} \) and \(\sigma = \mu t.t \rightarrow \text{real} \)
• Above rule says that \(\tau < \sigma \)
• We have \(\tau \bowtie \tau \rightarrow \text{int} \) and \(\sigma \bowtie \sigma \rightarrow \text{real} \)
• \(\tau < \sigma \) would mean covariant function type!
• How can we get safe subtyping for lists?
Subtyping Recursive Types

- The correct rule

\[
\begin{align*}
t < s \\
\vdots \\
\tau < \sigma
\end{align*}
\]

\[\mu t. \tau < \mu s. \sigma\]

Means assume \(t < s\) and use that to prove \(\tau < \sigma\)

- We add as an \textit{assumption} that the type variables stand for types with the desired subtype relationship
 - Before we assumed they stood for the \textit{same} type!

- Verify that now \textbf{subtyping works properly for lists}

- There is no subtyping between \(\mu t. t \rightarrow \text{int}\) and \(\mu t. t \rightarrow \text{real}\) (recall:

\[
\begin{align*}
\tau < \sigma \\
\mu t. \tau < \mu t. \sigma
\end{align*}
\]

Wrong!
Conversion Interpretation

- The **subset interpretation** of types leads to an abstract modeling of the operational behavior
 - e.g., we say int < real even though an int could not be directly used as a real in the concrete x86 implementation (cf. IEEE 754 bit patterns)
 - The int needs to be converted to a real

- We can get closer to the “machine” with a **conversion interpretation** of subtyping
 - We say that $\tau < \sigma$ when there is a conversion function that converts values of type τ to values of type σ
 - Conversions also help explain issues such as contravariance
 - But: must be careful with conversions
Conversions

• Examples:
 - nat < int with conversion $\lambda x. x$
 - int < real with conversion 2’s comp \rightarrow IEEE

• The subset interpretation is a *special case* when all conversions are *identity functions*

• Write "$\tau < \sigma \Rightarrow C(\tau, \sigma)$" to say that $C(\tau, \sigma)$ is the *conversion function* from subtype τ to σ
 - If $C(\tau, \sigma)$ is expressed in F_1 then $C(\tau, \sigma) : \tau \rightarrow \sigma$
Issues with Conversions

• Consider the expression “printreal 1” typed as follows:

\[
\text{printreal : real → unit} \quad \quad 1 : \text{real} \\
\hline
\text{printreal 1 : unit}
\]

we convert 1 to real: printreal \((C(\text{int, real}) \ 1)\)

• But we can also have another type derivation:

\[
\text{printreal : real → unit} \quad \text{real → unit \ < \ int \ → \ unit} \\
\hline
\text{printreal : int → unit} \quad 1 : \text{int}
\]

with conversion “(C(\text{real → unit, int → unit}) \ printreal) \ 1”

• Which one is right? What do they mean?
Introducing Conversions

- We can compile a language with subtyping into one without subtyping by introducing conversions.
- The process is similar to type checking:
 \[\Gamma \vdash e : \tau \Rightarrow e \]
 - Expression \(e \) has type \(\tau \) and its conversion is \(e \).
- Rules for the conversion process:
 \[
 \frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \Rightarrow e_1 \quad \Gamma \vdash e_2 : \tau_2 \Rightarrow e_2}{\Gamma \vdash e_1 \ e_2 : \tau \Rightarrow e_1 \ e_2}
 \]
 \[
 \Gamma \vdash e : \tau \Rightarrow e \quad \tau < \sigma \Rightarrow C(\tau, \sigma)
 \]
 \[
 \Gamma \vdash e : \sigma \Rightarrow C(\tau, \sigma)e
 \]
Coherence of Conversions

- Questions and Concerns:
 - Can we build *arbitrary subtype relations* just because we can write conversion functions?
 - Is `real < int` just because the “*floor*” function is a conversion?
 - *What is the conversion* from “`real → int`” to “`int → int`”?

- What are the restrictions on conversion functions?

- A system of conversion functions is **coherent** if whenever we have \(\tau < \tau' < \sigma \) then
 - \(C(\tau, \tau) = \lambda x. x \)
 - \(C(\tau, \sigma) = C(\tau', \sigma) \circ C(\tau, \tau') \) (= composed with)

- Example: if `b` is a `bool` then \((\text{float})b == (\text{float})(\text{int})b \)
 - otherwise we end up with confusing uses of subsumption
Example of Coherence

• We want the following subtyping relations:
 - int < real ⇒ λx:int. toIEEE x
 - real < int ⇒ λx:real. floor x

• For this system to be coherent we need
 - C(int, real) ◦ C(real, int) = λx.x, and
 - C(real, int) ◦ C(int, real) = λx.x

• This requires that
 - ∀x : real . (toIEEE (floor x) = x)
 - which is not true
Building Conversions

• We start from conversions on basic types

\[
\begin{align*}
\tau < \tau & \Rightarrow \lambda x : \tau. x \\
\tau_1 < \tau_2 & \Rightarrow C(\tau_1, \tau_2) \quad \tau_2 < \tau_3 & \Rightarrow C(\tau_2, \tau_3) \\
\tau_1 < \tau_3 & \Rightarrow C(\tau_2, \tau_3) \circ C(\tau_1, \tau_2) \\
\tau_1 < \sigma_1 & \Rightarrow C'(\tau_1, \sigma_1) \quad \tau_2 < \sigma_2 & \Rightarrow C'(\tau_2, \sigma_2) \\
\tau_1 \times \tau_2 < \sigma_1 \times \sigma_2 & \Rightarrow \lambda x : \tau_1 \times \tau_2. (C(\tau_1, \sigma_1)(\text{fst}(x)), C'(\tau_2, \sigma_2)(\text{snd}(x))) \\
\tau_1 \times \tau_2 < \tau_1 & \Rightarrow \lambda x : \tau_1 \times \tau_2. \text{fst}(x) \\
\sigma_1 < \tau_1 & \Rightarrow C'(\sigma_1, \tau_1) \quad \tau_2 < \sigma_2 & \Rightarrow C'(\tau_2, \sigma_2) \\
\tau_1 \rightarrow \tau_2 < \sigma_1 \rightarrow \sigma_2 & \Rightarrow \lambda f : \tau_1 \rightarrow \tau_2. \lambda x : \sigma_1. C'(\tau_2, \sigma_2)(f(C'(\sigma_1, \tau_1)(x)))
\end{align*}
\]
Comments

- With the conversion view we see why we do not necessarily want to impose antisymmetry for subtyping
 - Can have multiple representations of a type
 - We want to reserve type equality for representation equality
 - $\tau < \tau'$ and also $\tau' < \tau$ (are interconvertible) but not necessarily $\tau = \tau'$
 - e.g., Modula-3 has packed and unpacked records

- We’ll encounter subtyping again for object-oriented languages
 - Serious difficulties there due to recursive types
Homework

• How's that project going?