
#1

Second-Order Second-Order
Type SystemsType Systems

#2

One-Slide Summary

• A polymorphic type system is flexible: it allows one
functions to be applied to many types of arguments.

• Parametric impredicative polymorphism allows any
type to be used polymorphically. This has simple
syntax but complicated expressive semantics and
type reconstruction is undecidable.

• Parametric predicative polymorphism allows only
monomorphic types as type variables.

• Prenex predicative polymorphism and the value
restriction are two constrained, weaker versions of
predicative polymorphism that are used in practice.

#3

Upcoming Lectures
• We’re now reaching the point where you

have all of the tools and background to
understand advanced topics.

• Upcoming Topics:
– Dependent Types + Data Abstraction

– Communication and Concurrency

– Fault Localization

– Automated Program Repair

#4

Review: Modeling References
• A heap is a mapping from addresses to values

h ::= ¢ | h, a Ã v : 
– a 2 Addresses (Addresses  Z ?)
– We tag the heap cells with their types
– Types are useful only for static semantics. They are not

needed for the evaluation) are not a part of the
implementation

• We call a program an expression with a heap
 p ::= heap h in e
– The initial program is “heap ¢ in e”
– Heap addresses act as bound variables in the expression
– This is a trick that allows easy reuse of properties of

local variables for heap addresses
• e.g., we can rename the address and its occurrences at will

#5

Static Semantics of References
• Typing rules for expressions:

• and for programs

#6

Contextual Semantics for
References

• Addresses are values: v ::= ... | a
• New contexts: H ::= ref H | H1 := e2 | a1 := H2 | ! H
• No new local reduction rules
• But some new global reduction rules

– heap h in H[ref v : ] ! heap h, a Ã v : in H[a]
• where a is fresh (this models allocation – the heap is extended)

– heap h in H[! a] ! heap h in H[v]
• where a Ã v :  2 h (heap lookup – can we get stuck?)

– heap h in H[a := v] ! heap h[a Ã v] in H[*]
• where h[a Ã v] means a heap like h except that the part “a Ã v1

: ” in h is replaced by “a Ã v : ” (memory update)

• Global rules are used to propagate the effects of a
write to the entire program (eval order matters!)

#7

Example with References
• Consider these (the redex is underlined)

– heap ¢ in (f:int ! int ref. !(f 5)) (x:int. ref x :
int)

– heap ¢ in !((x:int. ref x : int) 5)

– heap ¢ in !(ref 5 : int)

– heap a = 5 : int in !a

– heap a = 5 : int in 5
• The resulting program has a useless memory cell

• An equivalent result would be

heap ¢ in 5

• This is a simple way to model garbage collection

#8

The Limitations of F1

• In F1 a function works exactly for one type
• Example: the identity function

– id = x:. x :  ! 
– We need to write one version for each type
– Worse: sort : ( !  ! bool) !  array !  array

• The various sorting functions differ only in typing
– At runtime they perform exactly the same operations
– We need different versions only to keep the type checker

happy

• Two alternatives:
– Circumvent the type system (see C, Java, ...), or
– Use a more flexible type system that lets us write only

one sorting function (but use it on many types of objs)

#9

Cunning Plan

• Introduce Polymorphism (much vocab)
• It’s Strong: Encode Stuff
• It’s Too Strong: Restrict

– Still too strong … restrict more

• Final Answer:
– Polymorphism works “as expect”

– All the good stuff is handled

– No tricky decideability problems

• Done early?

#10

Polymorphism

• Informal definition
 A function is polymorphic if it can be applied to “many”

types of arguments

• Various kinds of polymorphism depending on the
definition of “many”
– subtype polymorphism (aka bounded polymorphism)

• “many” = all subtypes of a given type

– ad-hoc polymorphism
• “many” = depends on the function
• choose behavior at runtime (depending on types, e.g. sizeof)

– parametric predicative polymorphism
• “many” = all monomorphic types

– parametric impredicative polymorphism
• “many” = all types

#11

Parametric Polymorphism:
Types as Parameters

• We introduce type variables and allow expressions
to have variable types

• We introduce polymorphic types
  ::= b | 1 ! 2 | t | 8t. 
 e ::= x | x:.e | e1 e2 | t. e | e[]

– t. e is type abstraction (or generalization, “for all t”)
– e[] is type application (or instantiation)

• Examples:
– id = t.x:t. x : 8t.t ! t
– id[int] = x:int. x : int ! int
– id[bool] = x:bool. x : bool ! bool
– “id 5” is invalid. Use “id[int] 5” instead

 = Lambda

#12

Impredicative Typing Rules

• The typing rules:

#13

Impredicative Polymorphism

• Verify that “id[int] 5” has type int

• Note the side-condition in the rule for type
abstraction
– Prevents ill-formed terms like: x:t.t.x

• The evaluation rules are just like those of F1

– This means that type abstraction and application are all
performed at compile time (no run-time cost)

– We do not evaluate under  (t. e is a value)

– We do not have to operate on types at run-time

– This is called phase separation: type checking is separate
from execution

#14

(Aside:) Parametricity or
“Theorems for Free” (P. Wadler)

• Can prove properties of a term just from its type

• There is only one value of type 8t.t!t
– The identity function

• There is no value of type 8t.t

• Take the function reverse : 8t. t List ! t List
– This function cannot inspect the elements of the list

– It can only return a list of “original list elements”

– If L1 and L2 have the same length and let “match” be a
function that compares two lists element-wise according
to an arbitrary predicate

– then “match L1 L2”) “match (reverse L1) (reverse L2)” !

#15

Expressiveness of
Impredicative Polymorphism

• This calculus is called
– F2

– system F

– second-order -calculus

– polymorphic -calculus

• Polymorphism is extremely expressive
• We can encode many base and structured

types in F2

#16

Encoding Base Types in F2

• Booleans
– bool = 8t.t ! t ! t (given any two things, select one)
– There are exactly two values of this type!
– true = t. x:t.y:t. x
– false = t. x:t.y:t. y
– not = b:bool. t.x:t.y:t. b [t] y x

• Naturals
– nat = 8t. (t ! t) ! t ! t (given a successor and a zero

element, compute a natural number)
– 0 = t. s:t! t.z:t. z
– n = t. s:t! t.z:t. s (s (s...s(n)))
– add = n:nat. m:nat. t. s:t! t.z:t. n [t] s (m [t] s z)
– mul = n:nat. m:nat. t. s:t! t.z:t. n [t] (m [t] s) z

#17

Expressiveness of F2

• We can encode similarly:

– 1 + 2 as 8t. (1 ! t) ! (2 ! t) ! t

– 1 £ 2 as 8t. (1 ! 2 ! t) ! t

– unit as 8t. t ! t

• We cannot encode full recursion (next lecture: t.)
– We can encode primitive recursion but not full recursion

– All terms in F2 have a termination proof in second-order
Peano arithmetic (Girard, 1971)

• This is the set of naturals defined using zero, successor,
induction along with quantification both over naturals and over
sets of naturals

Computer Science

• This American Turing-award winner is
known as the DARPA program
manager in charge of funding groups
developing TCP/IP. He funded and
founded ICANN and the Internet
Society. He helped develop the first
commercial email system connected
to the internet.

#19

Computer Science, Mathematics

• This American mathematician did not
win the Turing award, but developed in
1936, independently of Alan Turing, a
model of computation that was
equivalent to Turing Machines. The
unsolvability of the Entscheidung-
sproblem was exactly what was needed
to obtain unsolvability results in the
theory of formal languages.

Logic in Prose
148. Except living with others our whole life, we are

both alone, solitary.

211. It was an uncomfortable silence. It was as if they
were both as ease with each other.

222. He is just as powerful as myself, but not equally so.

270. He probably does know me but he where's a mask,
so illogically he could be a number of people that I
know.

426. Though her grades proved otherwise, Maeby wasn't
an idiot.

Q: Books (702 / 842)

•This 1953 dystopian novel by Ray
Bradbury has censorship as a
major theme. The main
character, Guy Montag, is a
fireman.

#22

What’s Wrong with F2

• Simple syntax but very complicated semantics
– id can be applied to itself: “id [8t. t ! t] id”
– This can lead to paradoxical situations in a pure set-

theoretic interpretation of types
– e.g., the meaning of id is a function whose domain

contains a set (the meaning of 8t.t! t) that contains id!
– This suggests that giving an interpretation to

impredicative type abstraction is tricky

• Complicated termination proof (Girard)
• Type reconstruction (typeability) is undecidable

– If the type application and abstraction are missing

• How to fix it?
– Restrict the use of polymorphism

#23

Predicative Polymorphism

• Restriction: type variables can be instantiated only
with monomorphic types

• This restriction can be expressed syntactically
  ::= b | 1 ! 2 | t // monomorphic types
  ::=  | 8t.  | 1 ! 2 // polymorphic types
 e ::= x | e1 e2 | x:. e | t.e | e []
– Type application is restricted to mono types
– Cannot apply “id” to itself anymore

• Same great typing rules
• Simple semantics and termination proof

#24

Was that good enough?

• Type
reconstruction
still undecidable

• Must. Restrict.
Further!

#25

Prenex Predicative Polymorphism
• Restriction: polymorphic type constructor at top

level only
• This restriction can also be expressed syntactically

  ::= b | 1 ! 2 | t
  ::=  | 8t. 
 e ::= x | e1 e2 | x:. e | t.e | e []
– Type application is predicative
– Abstraction only on mono types
– The only occurrences of 8 are at the top level of a type

 (8t. t ! t) ! (8t. t ! t) is not a valid type

• Same typing rules (less filling!)
• Simple semantics and termination proof
• Decidable type inference!

#26

Expressiveness of
Prenex Predicative F2

• We have simplified too much!
• Not expressive enough to encode nat, bool

– But such encodings are only of theoretical
interest anyway (cf. time wasting)

• Is it expressive enough in practice? Almost!
– Cannot write something like

(s:8t.. ... s [nat] x ... s [bool] y)

 (t. ... code for sort)

– Formal argument s cannot be polymorphic

#27

What are we trying to do again?

#28

ML and the Amazing
Polymorphic Let-Coat

• ML solution: slight extension of the predicative F2

– Introduce “let x :  = e1 in e2”

– With the semantics of “(x : .e2) e1”

– And typed as “[e1/x] e2” (result: “fresh each time”)

• This lets us write the polymorphic sort as
let
 s : 8t. = t. ... code for polymorphic sort ...
in
 ... s [nat] x s [bool] y

• We have found the sweet spot!

#29

ML and the Amazing
Polymorphic Let-Coat

• ML solution: slight extension of the predicative F2

– Introduce “let x :  = e1 in e2”

– With the semantics of “(x : .e2) e1”

– And typed as “[e1/x] e2” (result: “fresh each time”)

• This lets us write the polymorphic sort as
let
 s : 8t. = t. ... code for polymorphic sort ...
in
 ... s [nat] x s [bool] y

• Surprise: this was a major ML design flaw!

#30

ML Polymorphism and References

• let is evaluated using call-by-value but is typed
using call-by-name
– What if there are side effects?

• Example:
let x : 8t. (t ! t) ref = t.ref (x : t. x)
in
 x [bool] := x: bool. not x ;
 (! x [int]) 5
– Will apply “not” to 5
– Recall previous lectures: invariant typing of references
– Similar examples can be constructed with exceptions

• It took 10 years to find and agree on a clean
solution

#31

The Value Restriction in ML

• A type in a let is generalized only for syntactic
values

• Since e1 is a value, its evaluation cannot have side-
effects

• In this case call-by-name and call-by-value are the
same

• In the previous example ref (x:t. x) is not a value
• This is not too restrictive in practice!

#32

Subtype Bounded Polymorphism
• We can bound the instances of a given type

variable 8t < . 
• Consider a function f : 8t < . t ! 
• How is f different than g :  !  ?

• One Answer: can invoke f on any subtype of 
• Another: They are different if t appears in 

– e.g, let f : 8t<.t ! t and g :  !  both be the identity
function

– Take x : ’ where ’ < 
– f [’] x has static type ’
– g x (using subsumption) has static type 
– Since both have dynamic type ’, we have lost

information with g

#33

Homework

• Homework 5
• Partners for HW6?

	Second-Order Type Systems
	Slide 2
	Upcoming Lectures
	Modeling References
	Static Semantics of References
	Contextual Semantics for References
	Example with References
	The Limitations of F1
	Cunning Plan
	Polymorphism
	Parametric Polymorphism: Types as Parameters
	Impredicative Typing Rules
	Impredicative Polymorphism
	(Aside:) Parametricity or “Theorems for Free” (P. Wadler)
	Expressiveness of Impredicative Polymorphism
	Encoding Base Types in F2
	Expressiveness of F2
	Slide 18
	Slide 19
	Slide 20
	Q: Books (702 / 842)
	What’s Wrong with F2
	Predicative Polymorphism
	Slide 24
	Prenex Predicative Polymorphism
	Expressiveness of Prenex Predicative F2
	Slide 27
	ML and the Amazing Polymorphic Let-Coat
	Slide 29
	ML Polymorphism and References
	The Value Restriction in ML
	Subtype Bounded Polymorphism
	Homework

