Monomorphic Type Systems

L)

o

diow,
! ;‘Hff/f
i
gy KNS

HOW CAN SOMETHING SEEM
50 PLAUSIBLE AT THE TIME

AND S0 IDIOTIC N
RETROSPECT? ./

”,.-—-'""-..

The Reading

e Explain the Xavier Leroy article to me ...

The correctness of the translation follows from a simulation
arcument between the executions of the Cminor source and the

RTL translation, proved by induction on the Cminor evaluation
derivation. In the case of expressions, the simulation property is

summarized by the following diagram:

sp, L,a, B, M

l

sp, L,v, E", M" -

I

P

IAQ

. K

¥

sp.ns, B, M

sp,ng, B, M’

cuages, and

On the choice of semantics
source language, “mixed-step™ semantics for the intermediate lan-

small-step semantics

We used big-step semantics

for the

for the target language.

of the form "if the source program evaluates to result »”
do not hold for non-terminating proerams. This is unfortunate for

A con-

sequence of this choice is that our semantic preservation theorems
hold only for terminating source programs: they all have p

remises

| which

 How did he do register allocation?

#2

One-Slide Summary

e The simply-typed lambda calculus is an
important tool for studying and designing new
programming language features.

e Soundness is a critical property of any type
system (if --e:t ande U vthen +v:1). We
can prove it by induction.

« We can extend the type system to handle
tuples, unions, and imperative references. We
model meaning with contextual operational
semantics.

#3

Type Soundness for F,
“Whatdoes
this mean?
e Theorem: If -Fe:t andel vthen -Fv:rz

- Also called, subject reduction theorem, type
preservation theorem

e This is one of the most important sorts of
theorems in PL

« Whenever you make up a new safe language
you are expected to prove this

- Examples: Vault, TAL, CCured, ...

#4

How Might We Prove It?

e« Theorem: If . Fe:t andel vthen -Fv:=z

R o T
2R Wil TEF‘J s L/OG

B e e
f } Ne¢uTReN ENcRusTE D lfo\ 0)
#

/) b A | STEAMING HeT
: |
"\.\., \r._ f; :;‘Lbnﬁg—"' Mﬁ.ﬁ&ﬂ- 9)’/

.f.'l : "1 = gl N L hhhhh g
f | - o ﬁ\”'f_ :
i'-':Z ‘/j(| ! I"Ill'«. L-'I.n-__
{;'! x_-J -

Proof Approaches To Type Safety

Theorem: If --e: 1 ande vthen - Fv:t

Try to prove by induction on e

- Won’t work because [v,/x]e’, in the evaluation of e, e,
- Same problem with inductionon -+ e : t

Try to prove by induction on t

- Won’t work because e, has a “bigger” type than e, e,
?2707?

#6

Proof Approaches To Type Safety

Theorem: If --e:t ande U vthen Fv:r

Try to prove by induction on e

- Won’t work because [v,/x]e’, in the evaluation of e, e,
- Same problem with inductionon -+ e : t

Try to prove by induction on t
- Won’t work because e, has a “bigger” type than e, e,

Try to prove by inductionon e U v
- To address the issue of [v,/x]e’,

- This is it!

#7

Type Soundness Proof

Consider the function application case

e1 I Az : 7'2.6'1

ex Jvo [va/x]el] Lo

E

e; ex v
and by inversion on the derivation of ejes T

D .

°|—€127'2—>T ~|—€22T2

-k

FromIHone U ... we
FromIHone, U ... we
Need to infer that - F

€1 > . T

nave ., X:t,Fe’ it
nave - v, @1,
v,/x]e,” : T and use the |H

- We need a substitution lemma (by induction on e,’)

#8

Significance of Type Soundness

The theorem says that the result of an evaluation
has the same type as the initial expression
The theorem does not say that

- The evaluation never gets stuck (e.g., trying to apply a
non-function, to add non-integers, etc.), nor that

- The evaluation terminates
Even though both of the above facts are true of F.

What formal system of semantics do we use to
reason about programs that might not terminate?

#9

Significance of Type Soundness

The theorem says that the result of an evaluation
has the same type as the initial expression
The theorem does not say that

- The evaluation never gets stuck (e.g., trying to apply a
non-function, to add non-integers, etc.), nor that

- The evaluation terminates
Even though both of the above facts are true of F.

We need a small-step semantics to prove that the
execution never gets stuck

| Assert: the execution always terminates in F.

- When does the base lambda calculus ever not terminate?
#10

Small-Step Contextual Semantics

for F,
We define redexes

r::=n,+n, | ifbthene, elsee, | (Ax:t.€e,) Vv,
and contexts

H::=H,+e, | n, +H, | if H then e, else g,
| H, e, | (AX:t. €,) H, K
and local reduction rules
n, +n, — n, plus n,
if true then e, else e, — €,
if false then e, else e, — e,
(AX:T. €)) V, — [v,/X]e,

and one global reduction rule
H[r] — H[e] iffr—e

#11

Decomposition Lemmas for F,

If -+ e : tand e isnota (final) value then there
exist (unique) H and r such that e = HJr]

- any well typed expression can be decomposed

- any well-typed non-value can make progress
Furthermore, there exists t’ such that - ~r : t’

- the redex is closed and well typed

Furthermore, there exists e’ such that r — e’ and
e’ T

- local reduction is type preserving

Furthermore, forany e’, - e’ : v’ implies

-+ H[e’]: =

- the expression preserves its type if we replace the redex
with an expression of same type

#12

Type Safety of F,

Type preservation theorem
-If-Fe:tande — e’ then-Fe’:1

- Follows from the decomposition lemma
Progress theorem

- If -+ e : 1t and e is not a value then there exists e’ such
that e can make progress: e — e’

Progress theorem says that execution can make
progress on a well typed expression

From type preservation we know the execution of
well typed expressions never gets stuck

- This is a (very!) common way to state and prove type
safety of a language

#13

What’s Next?

e We’ve got the basic simply-typed
monomorphic lambda calculus

e Now let’s make it more complicated ...
e By adding features!

Product Types: Static Semantics

e Extend the syntax with (binary) tuples
e :=...|(e,e,) |fste]|snde

T = | T X,
- This language is sometimes called F

e Same typing judgment I'F e : 1
|_|—€1:T1 |_|—€21T2

[(61,62) . T1 X T2

[Fe:mTqy X170 [Fe:itTy X1
[Ffste:m [msnde: 1

#15

Dynamic Semantics and Soundness

« New form of values: v:i:=...| (v, V,)
 New (big step) evaluation rules:

epd vy exd v

(e1,e2) U (vy,v2)

el (v1,v2) el (v1,v2)

fst el v1 snd e | vo

« New contexts: H:=...| (H,,e) | (v, H) | fstH | snd H
e New redexes:

fst (v,, v,) =V,
snd (v,, V,) =V,
« Type soundness holds just as before

#16

Q: General (454 / 842)

e In traditional logic this is an
inference in which one
proposition (the conclusion)

necessarily follows from two
others (the premises). An
overused example is: "All humans
are mortal. Socrates is a human.
Therefore, Socrates is a mortal.”

Q: General (473 / 842)

e Which of the following chemical
processes or reactions would be the
most difficult to conduct in a high
school chemistry lab?

- Hall-Heroult (Aluminum Extraction)
Process

- Making Nitrocellulose (Guncotton)
- Making Slime (disodium tetraborate)

- Thermite Reaction (which reaches
5000(F))

Q: Games (534 / 842)

e Each face of this 1974 six-sided
plastic puzzle is subdivided into
nine smaller faces, each of

which can be one of six colors.

Computer Science

e This American Turing award winner is
known for foundational work in data
structures and algorithms. Examples
include off-line least common ancestors,
strongly connected components, the
Fibonacci heap, the splay tree, and the
disjoint-set data structure. This prolific
author has about 300 refereed
publications.

Q: Games (547 / 842)

e This viscoelastic silicone plastic
"clay” came out of efforts to find a

rubber substitute in World War Il. It

is now sold in plastic eggs as a toy
for children. It bounces and can
absorb the ink from newsprint. It
was also used by the crew of Apollo
8 to secure tools in zero gravity.

General PL Feature Plan

e The general plan for language feature design
e You invent a new feature (tuples)

e You add it to the lambda calculus

e You invent typing rules and opsem rules

e You extend the basic proof of type safety

e You declare moral victory, and milling
throngs of cheering admirers wait to carry
you on their shoulders to be knighted by the
Queen, etc.

#22

Records

Records are like tuples with labels (wO00t!)

New form of expressions

ex=...|{L, =€, ..

New form of values

vi={L =v, ..., L

New form of types

to=.L LT, ..

... follows the model of F >

- typing rules
- derivation rules
- type soundness

“On the
board!”

oL =e}]|e.l

Sum Types

« We need disjoint union types of the form:

- either an int or a float

- either 0 or a pointer

- either a (binary tree node with two children) or a (leaf)
« New expressions and types

e::=... |injle | injre |

case eof injlx — e, | injry — e,
Ti=.. 1t T,
- A value of type 1, + 1, is either a t, or a 1,

- Like union in C or Pascal, but safe
o distinguishing between components is under compiler control
- case is a binding operator (like “let”): x is bound in e,
and y is bound in e, (like OCaml’s “match ... with”)

#24

Examples with Sum Types

« Consider the type unit with a single element called
“or ()
o The type integer option defined as “unit + int”

- Useful for optional arguments or return values
« No argument: injl * (OCaml’s “None”)
o Argument is 5: injr 5 (OCaml’s “Some(5)”)
- To use the argument you must test the kind of argument
- case arg of injl x = “no_arg_case” | injry = “...y...”
- injl and injr are tags and case is tag checking

« bool is the union type “unit + unit”

- true is injl *
- false is injr*
- ifethen e, elsee, iscaseeof injl x = e, | iInjry = ¢,

#25

Static Semantics of Sum Types

e New typing rules

|_|—€ZT1 |_|—€Z’T2
[Finjle: 74 + 7 [Finjre: 1 + ™

[Fep:m1+717 l,zo:mmbFe 7 Ty:imhker:T

[caseej of injlax = ¢ |injry=er: T

e Types are not unique anymore
injl 1 : int + bool
injl 1 :int + (int — int)
- this complicates type checking, but it is still doable

#26

Dynamic Semantics of Sum Types

 New values vi=...]linjlv |injrv
« New evaluation rules
el v el v

injle | injlv injre | injro

el injlov [v/x]e; | o/

case e of injlx = ¢; | injry = e, | v’

el injrv [v/yler § V'

case e of injl x = ¢; | injry = e | v/

#27

Type Soundness for F.*

e Type soundness still holds
« No way to use a 1, + 1, inappropriately

e The key is that the only way touse a t, + 1,
is with case, which ensures that you are not
using at,asar,

e In C or Pascal checking the tag is the
responsibility of the programmer!

' Unsafe T |

NO, REALLY?

OF HOSTILE ALIENS

< YEAH, | DION'T
| HIT THIS BUG | i< oW GATHERING '

- KNOW C# COULD
dee]=] |\DO THAT EITHER,

THAT RIPPED TO SWEEP THROUGH
OFEN A FORTAL | | AND TAKE OVER
OUR. PLANET.

TO A PARALLEL
UNIVERSE...

.........

Types for Imperative Features

e S0 far: types for pure functional languages
 Now: types for imperative features

e Such types are used to characterize non-
local effects

- assignments
- exceptions
- typestate
e Contextual semantics is useful here
- Just when you thought it was safe to forget it ...

#29

Reference Types

« Such types are used for mutable memory cells

. Syntax (as in ML)

[S—

ei=...|lrefe:t]e =g, |le
tii=... | tref

- ref e : © - evaluates e, allocates a new memory cell,
stores the value of e in it and returns the address of the

memory cell
 like malloc + initialization in C, or new in C++ and Java

- e, := e,, evaluates e, to a memory cell and updates its
value with the value of e,

- | e - evaluates e to a memory cell and returns its

contents
#30

Global Effects, Reference Cells

e A reference cell can escape the static scope
where it was created

(AMf:int — int ref. 1(f 5)) (Ax:int. ref x : int)

 The value stored in a reference cell must be
visible from the entire program

e The “result” of an expression must now
include the changes to the heap that it
makes (cf. IMP’s opsem)

e To model reference cells we must extend
the evaluation model

#31

Modeling References

o A heap is a mapping from addresses to values

h:i:=-| h,a<v:rt
- a € Addresses (Addresses = Z ?)

- We tag the heap cells with their types

- Types are useful only for static semantics. They are not
needed for the evaluation = are not a part of the
implementation

« We call a program an expression with a heap
p::=heaphine
- The initial program is “heap - in e”
- Heap addresses act as bound variables in the expression

- This is a trick that allows easy reuse of properties of
local variables for heap addresses

e €.¢g., We can rename the address and its occurrences at will

#32

Static Semantics of References

 Typing rules for expressions:

[Fe:T [Fe:Tref
[+ (refe:T):Tref M Hle:r

[Fey:7ref [Feox:T

[Feq :=eo : unit
e and for programs
[Fv, . (i=1..n) [ke:T
—heap hine: T

where [= aq : 7y ref,...,an . ™ ref
and h=aq1 <« v1 .71,...,an < Un . Tn

#33

Contextual Semantics for
References

Addresses are values: Vv ::=... | a
New contexts: H ::=refH | H, :=e, | a,:=H, | I H
No new local reduction rules

But some new global reduction rules
- heap hin H[ref v: 1] — heap h, a «+ v : tin H[a]
o Where a is fresh (this models allocation - the heap is extended)
- heap hin H[! a] — heap h in H[V]
« where a «+ v : t € h (heap lookup - can we get stuck?)
- heap h in H[a := v] — heap h[a <+ v] in H[]
« Where h[a < v] means a heap like h except that the part “a « v,
: t7in his replaced by “a < v : t” (memory update)
Global rules are used to propagate the effects of a
write to the entire program (eval order matters!)

#34

Example with References

e Consider these (the redex is underlined)
- heap - in (Af:int — int ref. I(f 5)) (Ax:int. ref x :
int)

- heap - in I((Ax:int. ref x : int) 5)

- heap -in !(ref 5 : int)

- heapa=5_:intinla
- heapa=5:intinb
o The resulting program has a useless memory cell
« An equivalent result would be
heap -in 5
« This is a simple way to model garbage collection

#35

Homework
e The usual :-)

DAVICE-

DAACE-
SOCIALIST

REVOLUTION

	Monomorphic Type Systems
	The Reading
	Slide 3
	Type Soundness for F1
	How Might We Prove It?
	Proof Approaches To Type Safety
	Slide 7
	Type Soundness Proof
	Significance of Type Soundness
	Slide 10
	Small-Step Contextual Semantics for F1
	Decomposition Lemmas for F1
	Type Safety of F1
	What’s Next?
	Product Types: Static Semantics
	Dynamic Semantics and Soundness
	Q: General (454 / 842)
	Q: General (473 / 842)
	Q: Games (534 / 842)
	Slide 20
	Q: Games (547 / 842)
	General PL Feature Plan
	Records
	Sum Types
	Examples with Sum Types
	Static Semantics of Sum Types
	Dynamic Semantics of Sum Types
	Type Soundness for F1+
	Types for Imperative Features
	Reference Types
	Global Effects, Reference Cells
	Modeling References
	Static Semantics of References
	Contextual Semantics for References
	Example with References
	Homework

