
#1

Monomorphic Type SystemsMonomorphic Type Systems

#2

The Reading
• Explain the Xavier Leroy article to me …

• How did he do register allocation?

#3

One-Slide Summary

• The simply-typed lambda calculus is an
important tool for studying and designing new
programming language features.

• Soundness is a critical property of any type
system (if ¢` e : and e v then ¢ ` v :). We
can prove it by induction.

• We can extend the type system to handle
tuples, unions, and imperative references. We
model meaning with contextual operational
semantics.

#4

Type Soundness for F1

• Theorem: If ¢` e : and e v then ¢ ` v :
– Also called, subject reduction theorem, type

preservation theorem

• This is one of the most important sorts of
theorems in PL

• Whenever you make up a new safe language
you are expected to prove this
– Examples: Vault, TAL, CCured, …

What does
this mean?

#5

How Might We Prove It?
• Theorem: If ¢` e : and e v then ¢ ` v :

#6

Proof Approaches To Type Safety

• Theorem: If ¢` e : and e v then ¢ ` v :

• Try to prove by induction on e
– Won’t work because [v2/x]e’1 in the evaluation of e1 e2

– Same problem with induction on ¢` e :

• Try to prove by induction on
– Won’t work because e1 has a “bigger” type than e1 e2

• ???

#7

Proof Approaches To Type Safety

• Theorem: If ¢` e : and e v then ¢ ` v :

• Try to prove by induction on e
– Won’t work because [v2/x]e’1 in the evaluation of e1 e2

– Same problem with induction on ¢` e :

• Try to prove by induction on
– Won’t work because e1 has a “bigger” type than e1 e2

• Try to prove by induction on e v
– To address the issue of [v2/x]e’1

– This is it!

#8

Type Soundness Proof

• Consider the function application case

• From IH on e1 … we have ¢, x : 2 ` e1’ :
• From IH on e2 … we have ¢ ` v2 : 2

• Need to infer that ¢ ` [v2/x]e1’ : and use the IH
– We need a substitution lemma (by induction on e1’)

#9

Significance of Type Soundness
• The theorem says that the result of an evaluation

has the same type as the initial expression

• The theorem does not say that
– The evaluation never gets stuck (e.g., trying to apply a

non-function, to add non-integers, etc.), nor that

– The evaluation terminates

• Even though both of the above facts are true of F1

• What formal system of semantics do we use to
reason about programs that might not terminate?

#10

Significance of Type Soundness
• The theorem says that the result of an evaluation

has the same type as the initial expression

• The theorem does not say that
– The evaluation never gets stuck (e.g., trying to apply a

non-function, to add non-integers, etc.), nor that

– The evaluation terminates

• Even though both of the above facts are true of F1

• We need a small-step semantics to prove that the
execution never gets stuck

• I Assert: the execution always terminates in F1

– When does the base lambda calculus ever not terminate?

#11

Small-Step Contextual Semantics
for F1

• We define redexes
 r ::= n1 + n2 | if b then e1 else e2 | (x:.e1) v2

• and contexts
 H ::= H1 + e2 | n1 + H2 | if H then e1 else e2

 | H1 e2 | (x:. e1) H2 | ²

• and local reduction rules
 n1 + n2 ! n1 plus n2

 if true then e1 else e2 ! e1

 if false then e1 else e2 ! e2

 (x:. e1) v2 ! [v2/x]e1

• and one global reduction rule
 H[r] ! H[e] iff r ! e

#12

Decomposition Lemmas for F1

– If ¢ ` e : and e is not a (final) value then there
exist (unique) H and r such that e = H[r]
– any well typed expression can be decomposed
– any well-typed non-value can make progress

– Furthermore, there exists ’ such that ¢ ` r : ’
– the redex is closed and well typed

– Furthermore, there exists e’ such that r ! e’ and
¢ ` e’ : ’
– local reduction is type preserving

– Furthermore, for any e’, ¢ ` e’ : ’ implies
 ¢ ` H[e’] :
– the expression preserves its type if we replace the redex

with an expression of same type

#13

Type Safety of F1

• Type preservation theorem
– If ¢ ` e : and e ! e’ then ¢ ` e’ :
– Follows from the decomposition lemma

• Progress theorem
– If ¢ ` e : and e is not a value then there exists e’ such

that e can make progress: e ! e’

• Progress theorem says that execution can make
progress on a well typed expression

• From type preservation we know the execution of
well typed expressions never gets stuck
– This is a (very!) common way to state and prove type

safety of a language

#14

What’s Next?

• We’ve got the basic simply-typed
monomorphic lambda calculus

• Now let’s make it more complicated …
• By adding features!

#15

Product Types: Static Semantics
• Extend the syntax with (binary) tuples

 e ::= ... | (e1, e2) | fst e | snd e

 ::= ... | 1 £ 2

– This language is sometimes called F1
£

• Same typing judgment ` e :

#16

Dynamic Semantics and Soundness

• New form of values: v ::= ... | (v1, v2)

• New (big step) evaluation rules:

• New contexts: H ::= ... | (H1, e2) | (v1, H2) | fst H | snd H

• New redexes:
 fst (v1, v2) ! v1

 snd (v1, v2) ! v2

• Type soundness holds just as before

Q: General (454 / 842)

•In traditional logic this is an
inference in which one
proposition (the conclusion)
necessarily follows from two
others (the premises). An
overused example is: "All humans
are mortal. Socrates is a human.
Therefore, Socrates is a mortal."

Q: General (473 / 842)

• Which of the following chemical
processes or reactions would be the
most difficult to conduct in a high
school chemistry lab?
– Hall-Heroult (Aluminum Extraction)

Process
– Making Nitrocellulose (Guncotton)
– Making Slime (disodium tetraborate)
– Thermite Reaction (which reaches

5000(F))

Q: Games (534 / 842)

•Each face of this 1974 six-sided
plastic puzzle is subdivided into
nine smaller faces, each of
which can be one of six colors.

Computer Science
• This American Turing award winner is

known for foundational work in data
structures and algorithms. Examples
include off-line least common ancestors,
strongly connected components, the
Fibonacci heap, the splay tree, and the
disjoint-set data structure. This prolific
author has about 300 refereed
publications.

Q: Games (547 / 842)

• This viscoelastic silicone plastic
"clay" came out of efforts to find a
rubber substitute in World War II. It
is now sold in plastic eggs as a toy
for children. It bounces and can
absorb the ink from newsprint. It
was also used by the crew of Apollo
8 to secure tools in zero gravity.

#22

General PL Feature Plan
• The general plan for language feature design
• You invent a new feature (tuples)
• You add it to the lambda calculus
• You invent typing rules and opsem rules
• You extend the basic proof of type safety
• You declare moral victory, and milling

throngs of cheering admirers wait to carry
you on their shoulders to be knighted by the
Queen, etc.

#23

Records
• Records are like tuples with labels (w00t!)
• New form of expressions

 e ::= ... | {L1 = e1, ..., Ln = en} | e.L

• New form of values
 v ::= {L1 = v1, ..., Ln = vn}

• New form of types
 ::= ... | {L1 : 1, ..., Ln : n}

• ... follows the model of F1
£

– typing rules
– derivation rules
– type soundness

“On the
board!”

#24

Sum Types
• We need disjoint union types of the form:

– either an int or a float
– either 0 or a pointer
– either a (binary tree node with two children) or a (leaf)

• New expressions and types
e ::= ... | injl e | injr e |

 case e of injl x ! e1 | injr y ! e2

 ::= ... | 1 + 2

– A value of type 1 + 2 is either a 1 or a 2

– Like union in C or Pascal, but safe
• distinguishing between components is under compiler control

– case is a binding operator (like “let”): x is bound in e1
and y is bound in e2 (like OCaml’s “match … with”)

#25

Examples with Sum Types
• Consider the type unit with a single element called

* or ()
• The type integer option defined as “unit + int”

– Useful for optional arguments or return values
• No argument: injl * (OCaml’s “None”)
• Argument is 5: injr 5 (OCaml’s “Some(5)”)

– To use the argument you must test the kind of argument
– case arg of injl x) “no_arg_case” | injr y) “...y...”
– injl and injr are tags and case is tag checking

• bool is the union type “unit + unit”
– true is injl *
– false is injr *
– if e then e1 else e2 is case e of injl x) e1 | injr y) e2

#26

Static Semantics of Sum Types

• New typing rules

• Types are not unique anymore
 injl 1 : int + bool

 injl 1 : int + (int ! int)

– this complicates type checking, but it is still doable

#27

Dynamic Semantics of Sum Types
• New values v ::= ... | injl v | injr v
• New evaluation rules

#28

Type Soundness for F1
+

• Type soundness still holds

• No way to use a 1 + 2 inappropriately

• The key is that the only way to use a 1 + 2
is with case, which ensures that you are not
using a 1 as a 2

• In C or Pascal checking the tag is the
responsibility of the programmer!
– Unsafe

#29

Types for Imperative Features
• So far: types for pure functional languages
• Now: types for imperative features
• Such types are used to characterize non-

local effects
– assignments

– exceptions

– typestate

• Contextual semantics is useful here
– Just when you thought it was safe to forget it …

#30

Reference Types
• Such types are used for mutable memory cells

• Syntax (as in ML)
 e ::= ... | ref e : | e1 := e2 | ! e

 ::= ... | ref

– ref e : - evaluates e, allocates a new memory cell,
stores the value of e in it and returns the address of the
memory cell

• like malloc + initialization in C, or new in C++ and Java

– e1 := e2, evaluates e1 to a memory cell and updates its
value with the value of e2

– ! e - evaluates e to a memory cell and returns its
contents

Why do I need : ?

#31

Global Effects, Reference Cells
• A reference cell can escape the static scope

where it was created
(f:int ! int ref. !(f 5)) (x:int. ref x : int)

• The value stored in a reference cell must be
visible from the entire program

• The “result” of an expression must now
include the changes to the heap that it
makes (cf. IMP’s opsem)

• To model reference cells we must extend
the evaluation model

#32

Modeling References
• A heap is a mapping from addresses to values

h ::= ¢ | h, a Ã v :
– a 2 Addresses (Addresses Z ?)
– We tag the heap cells with their types
– Types are useful only for static semantics. They are not

needed for the evaluation) are not a part of the
implementation

• We call a program an expression with a heap
 p ::= heap h in e
– The initial program is “heap ¢ in e”
– Heap addresses act as bound variables in the expression
– This is a trick that allows easy reuse of properties of

local variables for heap addresses
• e.g., we can rename the address and its occurrences at will

#33

Static Semantics of References
• Typing rules for expressions:

• and for programs

#34

Contextual Semantics for
References

• Addresses are values: v ::= ... | a
• New contexts: H ::= ref H | H1 := e2 | a1 := H2 | ! H
• No new local reduction rules
• But some new global reduction rules

– heap h in H[ref v :] ! heap h, a Ã v : in H[a]
• where a is fresh (this models allocation – the heap is extended)

– heap h in H[! a] ! heap h in H[v]
• where a Ã v : 2 h (heap lookup – can we get stuck?)

– heap h in H[a := v] ! heap h[a Ã v] in H[*]
• where h[a Ã v] means a heap like h except that the part “a Ã v1

: ” in h is replaced by “a Ã v : ” (memory update)

• Global rules are used to propagate the effects of a
write to the entire program (eval order matters!)

#35

Example with References
• Consider these (the redex is underlined)

– heap ¢ in (f:int ! int ref. !(f 5)) (x:int. ref x :
int)

– heap ¢ in !((x:int. ref x : int) 5)

– heap ¢ in !(ref 5 : int)

– heap a = 5 : int in !a

– heap a = 5 : int in 5
• The resulting program has a useless memory cell

• An equivalent result would be

heap ¢ in 5

• This is a simple way to model garbage collection

#36

Homework
• The usual :-)

	Monomorphic Type Systems
	The Reading
	Slide 3
	Type Soundness for F1
	How Might We Prove It?
	Proof Approaches To Type Safety
	Slide 7
	Type Soundness Proof
	Significance of Type Soundness
	Slide 10
	Small-Step Contextual Semantics for F1
	Decomposition Lemmas for F1
	Type Safety of F1
	What’s Next?
	Product Types: Static Semantics
	Dynamic Semantics and Soundness
	Q: General (454 / 842)
	Q: General (473 / 842)
	Q: Games (534 / 842)
	Slide 20
	Q: Games (547 / 842)
	General PL Feature Plan
	Records
	Sum Types
	Examples with Sum Types
	Static Semantics of Sum Types
	Dynamic Semantics of Sum Types
	Type Soundness for F1+
	Types for Imperative Features
	Reference Types
	Global Effects, Reference Cells
	Modeling References
	Static Semantics of References
	Contextual Semantics for References
	Example with References
	Homework

