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The Reading
• Explain the Xavier Leroy article to me …

• How did he do register allocation? 
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One-Slide Summary

• The simply-typed lambda calculus is an 
important tool for studying and designing new 
programming language features. 

• Soundness is a critical property of any type 
system (if ¢` e :   and e  v then ¢ ` v : ). We 
can prove it by induction.

• We can extend the type system to handle 
tuples, unions, and imperative references. We 
model meaning with contextual operational 
semantics.
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Type Soundness for F1

• Theorem: If ¢` e :   and e  v then ¢ ` v : 
– Also called, subject reduction theorem, type 

preservation theorem

• This is one of the most important sorts of 
theorems in PL

• Whenever you make up a new safe language 
you are expected to prove this
– Examples: Vault, TAL, CCured, …

What does 
this mean?
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How Might We Prove It?
• Theorem: If ¢` e :   and e  v then ¢ ` v : 
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Proof Approaches To Type Safety

• Theorem: If ¢` e :   and e  v then ¢ ` v : 

• Try to prove by induction on e
– Won’t work because [v2/x]e’1 in the evaluation of e1 e2

– Same problem with induction on ¢` e :  

• Try to prove by induction on 
– Won’t work because e1 has a “bigger” type than e1 e2

• ???
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Proof Approaches To Type Safety

• Theorem: If ¢` e :   and e  v then ¢ ` v : 

• Try to prove by induction on e
– Won’t work because [v2/x]e’1 in the evaluation of e1 e2

– Same problem with induction on ¢` e :  

• Try to prove by induction on 
– Won’t work because e1 has a “bigger” type than e1 e2

• Try to prove by induction on e  v 
– To address the issue of [v2/x]e’1

– This is it!
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Type Soundness Proof

• Consider the function application case

• From IH on e1  … we have  ¢, x : 2 ` e1’ : 
• From IH on e2  … we have ¢ ` v2 : 2

• Need to infer that ¢ ` [v2/x]e1’ : and use the IH
– We need a substitution lemma (by induction on e1’)
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Significance of Type Soundness
• The theorem says that the result of an evaluation 

has the same type as the initial expression

• The theorem does not say that
– The evaluation never gets stuck (e.g., trying to apply a 

non-function, to add non-integers, etc.), nor that

– The evaluation terminates

• Even though both of the above facts are true of F1

• What formal system of semantics do we use to 
reason about programs that might not terminate? 
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Significance of Type Soundness
• The theorem says that the result of an evaluation 

has the same type as the initial expression

• The theorem does not say that
– The evaluation never gets stuck (e.g., trying to apply a 

non-function, to add non-integers, etc.), nor that

– The evaluation terminates

• Even though both of the above facts are true of F1

• We need a small-step semantics to prove that the 
execution never gets stuck

• I Assert: the execution always terminates in F1

– When does the base lambda calculus ever not terminate? 



#11

Small-Step Contextual Semantics 
for F1

• We define redexes
     r ::= n1 + n2 | if b then e1 else e2 | (x:.e1) v2

• and contexts
   H ::= H1 + e2 | n1 + H2 | if H then e1 else e2                         

                                     | H1 e2 | (x:. e1) H2  | ²

• and local reduction rules
   n1 + n2                  ! n1 plus n2

   if true then e1 else e2 ! e1

   if false then e1 else e2 ! e2

   (x:. e1) v2            ! [v2/x]e1

• and one global reduction rule
   H[r] ! H[e]   iff r ! e
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Decomposition Lemmas for F1

– If ¢ ` e :  and e is not a (final) value then there 
exist (unique) H and r such that e = H[r] 
– any well typed expression can be decomposed
– any well-typed non-value can make progress

– Furthermore, there exists ’ such that ¢ ` r : ’
– the redex is closed and well typed

– Furthermore, there exists e’ such that r ! e’ and   
¢ ` e’ : ’
– local reduction is type preserving

– Furthermore, for any e’, ¢ ` e’  : ’  implies            
 ¢ ` H[e’] :   
– the expression preserves its type if we replace the redex 

with an expression of same type



#13

Type Safety of F1

• Type preservation theorem
– If ¢ ` e :  and e ! e’ then ¢ ` e’ : 
– Follows from the decomposition lemma

• Progress theorem
– If ¢ ` e :  and e is not a value then there exists e’ such 

that e can make progress: e ! e’

• Progress theorem says that execution can make 
progress on a well typed expression

• From type preservation we know the execution of 
well typed expressions never gets stuck
– This is a (very!) common way to state and prove type 

safety of a language
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What’s Next?

• We’ve got the basic simply-typed 
monomorphic lambda calculus

• Now let’s make it more complicated …
• By adding features!
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Product Types: Static Semantics
• Extend the syntax with (binary) tuples

              e ::= ... | (e1, e2)  | fst e | snd e

               ::= ... | 1 £ 2

– This language is sometimes called F1
£

• Same typing judgment   ` e : 
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Dynamic Semantics and Soundness

• New form of values:      v ::= ... | (v1, v2)

• New (big step) evaluation rules:

• New contexts:  H ::= ... | (H1, e2) | (v1, H2) | fst H | snd H

• New redexes:  
              fst (v1, v2) ! v1

              snd (v1, v2) ! v2

• Type soundness holds just as before



Q:  General  (454 / 842) 

•In traditional logic this is an 
inference in which one 
proposition (the conclusion) 
necessarily follows from two 
others (the premises). An 
overused example is: "All humans 
are mortal. Socrates is a human. 
Therefore, Socrates is a mortal."  
 



Q:  General  (473 / 842) 

• Which of the following chemical 
processes or reactions would be the 
most difficult to conduct in a high 
school chemistry lab? 
–  Hall-Heroult (Aluminum Extraction) 

Process 
–  Making Nitrocellulose (Guncotton) 
–  Making Slime (disodium tetraborate)
–  Thermite Reaction (which reaches 

5000(F))  



Q:  Games  (534 / 842) 

•Each face of this 1974 six-sided 
plastic puzzle is subdivided into 
nine smaller faces, each of 
which can be one of six colors.  



Computer Science
• This American Turing award winner is 

known for foundational work in data 
structures and algorithms. Examples 
include off-line least common ancestors, 
strongly connected components, the 
Fibonacci heap, the splay tree, and the 
disjoint-set data structure. This prolific 
author has about 300 refereed 
publications. 



Q:  Games  (547 / 842) 

• This viscoelastic silicone plastic 
"clay" came out of efforts to find a 
rubber substitute in World War II. It 
is now sold in plastic eggs as a toy 
for children. It bounces and can 
absorb the ink from newsprint. It 
was also used by the crew of Apollo 
8 to secure tools in zero gravity.  
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General PL Feature Plan
• The general plan for language feature design
• You invent a new feature (tuples)
• You add it to the lambda calculus
• You invent typing rules and opsem rules
• You extend the basic proof of type safety
• You declare moral victory, and milling 

throngs of cheering admirers wait to carry 
you on their shoulders to be knighted by the 
Queen, etc. 
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Records
• Records are like tuples with labels (w00t!)
• New form of expressions

                  e ::= ... | {L1 = e1, ..., Ln = en} | e.L

• New form of values
                   v ::= {L1 = v1, ..., Ln = vn}

• New form of types
                    ::= ... | {L1 : 1, ..., Ln : n}

• ... follows the model of F1
£

– typing rules
– derivation rules
– type soundness

“On the 
board!”
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Sum Types
• We need disjoint union types of the form: 

– either an int or a float
– either 0 or a pointer
– either a (binary tree node with two children) or a (leaf)

• New expressions and types
e ::= ... | injl e | injr e | 

   case e of injl x ! e1 | injr y ! e2

  ::= ... | 1 + 2

– A value of type 1 + 2 is either a 1 or a 2

– Like union in C or Pascal, but safe
• distinguishing between components is under compiler control

– case is a binding operator (like “let”): x is bound in e1 
and y is bound in e2 (like OCaml’s “match … with”)
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Examples with Sum Types
• Consider the type unit with a single element called 

* or ()
• The type integer option defined as “unit + int”

– Useful for optional arguments or return values
• No argument: injl *     ( OCaml’s “None”) 
• Argument is 5: injr 5 ( OCaml’s “Some(5)”)

– To use the argument you must test the kind of argument
– case arg of injl x ) “no_arg_case” | injr y ) “...y...”
– injl and injr are tags and case is tag checking

• bool is the union type “unit + unit”
– true is injl *
– false is injr *
– if e then e1 else e2  is case e of injl x ) e1 | injr y ) e2
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Static Semantics of Sum Types

• New typing rules

• Types are not unique anymore
    injl 1 : int + bool

    injl 1 : int + (int ! int)

– this complicates type checking, but it is still doable
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Dynamic Semantics of Sum Types
• New values            v ::= ... | injl v | injr v
• New evaluation rules
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Type Soundness for F1
+

• Type soundness still holds

• No way to use a 1 + 2 inappropriately

• The key is that the only way to use a 1 + 2 
is with case, which ensures that you are not 
using a 1 as a 2

• In C or Pascal checking the tag is the 
responsibility of the programmer!
– Unsafe 
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Types for Imperative Features
• So far: types for pure functional languages
• Now: types for imperative features
• Such types are used to characterize non-

local effects
– assignments

– exceptions

– typestate

• Contextual semantics is useful here
– Just when you thought it was safe to forget it …
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Reference Types
• Such types are used for mutable memory cells

• Syntax (as in ML)
                e ::= ... | ref e :  | e1 := e2 | ! e

                 ::= ... |  ref

– ref e :  - evaluates e, allocates a new memory cell, 
stores the value of e in it and returns the address of the 
memory cell

• like malloc + initialization in C, or new in C++ and Java

– e1 := e2, evaluates e1 to a memory cell and updates its 
value with the value of e2

– ! e - evaluates e to a memory cell and returns its 
contents

Why do I need :  ?
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Global Effects, Reference Cells
• A reference cell can escape the static scope 

where it was created
(f:int ! int ref. !(f 5))   (x:int. ref x : int)

• The value stored in a reference cell must be 
visible from the entire program

• The “result” of an expression must now 
include the changes to the heap that it 
makes (cf. IMP’s opsem)

• To model reference cells we must extend 
the evaluation model
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Modeling References
• A heap is a mapping from addresses to values

h ::= ¢ | h, a Ã v : 
– a 2 Addresses (Addresses  Z ?)
– We tag the heap cells with their types
– Types are useful only for static semantics. They are not 

needed for the evaluation ) are not a part of the 
implementation

• We call a program an expression with a heap
           p ::= heap h in e
– The initial program is “heap ¢ in e”
– Heap addresses act as bound variables in the expression
– This is a trick that allows easy reuse of properties of 

local variables for heap addresses
• e.g., we can rename the address and its occurrences at will
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Static Semantics of References
• Typing rules for expressions:

• and for programs
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Contextual Semantics for 
References

• Addresses are values:     v ::= ... | a
• New contexts: H ::= ref H | H1 := e2 | a1 := H2 | ! H
• No new local reduction rules
• But some new global reduction rules

– heap h in H[ref v : ] ! heap h, a Ã v : in H[a] 
• where a is fresh (this models allocation – the heap is extended)

– heap h in H[! a] ! heap h in H[v]
• where a Ã v :  2 h (heap lookup – can we get stuck?)

– heap h in H[a := v] ! heap h[a Ã v] in H[*]
• where h[a Ã v] means a heap like h except that the part “a Ã v1 

: ” in h is replaced by “a Ã v : ” (memory update)

• Global rules are used to propagate the effects of a 
write to the entire program (eval order matters!)
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Example with References
• Consider these (the redex is underlined)

– heap ¢ in (f:int ! int ref. !(f 5))   (x:int. ref x : 
int)

– heap ¢ in !((x:int. ref x : int)  5)

– heap ¢ in !(ref 5 : int)

– heap a = 5 : int in !a

– heap a = 5 : int in 5 
• The resulting program has a useless memory cell

• An equivalent result would be

heap ¢ in 5

• This is a simple way to model garbage collection
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Homework
• The usual :-)
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