Simply-Typed Lambda Calculus

You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!
Back to School

• What is operational semantics? When would you use contextual (small-step) semantics?
• What is satisfiability modulo theories?
• What is axiomatic semantics? What is a verification condition?
Today’s (Short?) Cunning Plan

• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety
Types

• A program variable can assume a range of values during the execution of a program.

• An upper bound of such a range is called a type of the variable.
 - A variable of type “bool” is supposed to assume only boolean values.
 - If x has type “bool” then the boolean expression “not(x)” has a sensible meaning during every run of the program.
Typed and Untyped Languages

- **Untyped languages**
 - Do *not* restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure λ-calculus is an extreme case of an untyped language (however, its behavior is completely specified)

- **(Statically) Typed languages**
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed
The Purpose Of Types

- The foremost purpose of types is to prevent certain types of run-time execution errors

 - Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)

- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment
Execution Errors

• A program is deemed safe if it does not cause untrapped errors
 - Languages in which all programs are safe are safe languages

• For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 • e.g., null pointer dereference

• Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI ‘05)
 - prevent insecure information flow (e.g., Li POPL ’05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)
Preventing Forbidden Errors - Static Checking

• Forbidden errors can be caught by a combination of static and run-time checking

• Static checking
 - Detects errors early, *before testing*
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is *undecidable* in most languages
Preventing Forbidden Errors - Dynamic Checking

- Required when static checking is undecidable
 - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g. Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g. null-pointer)
Why Typed Languages?

- **Development**
 - *Type checking catches early many mistakes*
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation

- **Maintenance**
 - Types act as checked specifications
 - Types can enforce abstraction

- **Execution**
 - Static checking reduces the need for dynamic checking
 - *Safe languages are easier to analyze statically*
 - the compiler can generate better code
Why Not Typed Languages?

• Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g. OO programming in a non-OO language, but cf. Ruby, OCaml, etc.)

• Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 • In practice, the overall cost is much smaller
 - Memory management must be automatic ⇒ need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)
Safe Languages

- There are typed languages that are not safe ("weakly typed languages")
- All safe languages use types (static or dynamic)

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Safe</td>
<td>ML, Java, Ada, C#, Haskell, ...</td>
<td>Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python, ...</td>
</tr>
<tr>
<td>Unsafe</td>
<td>C, C++, Pascal, ...</td>
<td>?</td>
</tr>
</tbody>
</table>

- We focus on statically typed languages
Properties of Type Systems

• How do types differ from other program annotations?
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications

• Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be transparent
 • Should be easy to see why a program is not well-typed
Why Formal Type Systems?

• Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)

• A fair amount of careful analysis is required to avoid false claims of type safety

• A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety

• But even informal knowledge of the principles of type systems help
Formalizing a Language

1. Syntax
 - Of expressions (programs)
 - Of types
 - Issues of binding and scoping

2. Static semantics (typing rules)
 - Define the typing judgment and its derivation rules

3. Dynamic Semantics (e.g., operational)
 - Define the evaluation judgment and its derivation rules

4. Type soundness
 - Relates the static and dynamic semantics
 - State and prove the soundness theorem
Typing Judgments

- **Judgment** (recall)
 - A statement \(J \) about certain formal entities
 - Has a truth value \(\models J \)
 - Has a derivation \(\vdash J \) (= “a proof”)

- A common form of **typing judgment**:
 \[\Gamma \vdash e : \tau \]
 (\(e \) is an expression and \(\tau \) is a type)

- \(\Gamma \) (Gamma) is a set of **type assignments for the free variables of** \(e \)
 - Defined by the grammar \(\Gamma ::= \cdot | \Gamma, x : \tau \)
 - Type assignments for variables not free in \(e \) are not relevant
 - e.g., \(x : \text{int}, y : \text{int} \vdash x + y : \text{int} \)
Typing rules

• **Typing rules** are used to derive typing judgments

• Examples:

\[
\begin{align*}
\Gamma &\vdash 1 : \text{int} \\
\Gamma &\vdash x : \tau \\
\Gamma &\vdash e_1 : \text{int} \quad \Gamma &\vdash e_2 : \text{int} \\
\hline
\Gamma &\vdash e_1 + e_2 : \text{int}
\end{align*}
\]
Typing Derivations

- A **typing derivation** is a derivation of a typing judgment (big surprise there ...)

Example:

\[
\begin{array}{c}
\Gamma \vdash x : \text{int} \\
\Gamma \vdash x + 1 : \text{int}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash x : \text{int} \\
\Gamma \vdash x + (x + 1) : \text{int}
\end{array}
\]

- We say \(\Gamma \vdash e : \tau \) to mean there exists a derivation of this typing judgment (= “we can prove it”)

- **Type checking**: given \(\Gamma, e \) and \(\tau \) find a derivation

- **Type inference**: given \(\Gamma \) and \(e \), find \(\tau \) and a derivation
Proving Type Soundness

- A typing judgment is either true or false
- Define what it means for a value to have a type
 \[v \in \| \tau \| \]
 (e.g. \(5 \in \| \text{int} \| \) and \(\text{true} \in \| \text{bool} \| \))
- Define what it means for an expression to have a type
 \[e \in \mid \tau \mid \iff \forall v. (e \downarrow v \Rightarrow v \in \| \tau \|) \]
- Prove type soundness
 \[\text{If } \vdash e : \tau \quad \text{then } e \in \mid \tau \mid \]
 or equivalently
 \[\text{If } \vdash e : \tau \text{ and } e \downarrow v \quad \text{then } v \in \| \tau \| \]
- This implies safe execution (since the result of a unsafe execution is not in \(\| \tau \| \) for any \(\tau \))
Upcoming Exciting Episodes

• We will give formal description of first-order type systems (no type variables)
 - Function types (simply typed λ-calculus)
 - Simple types (integers and booleans)
 - Structured types (products and sums)
 - Imperative types (references and exceptions)
 - Recursive types (linked lists and trees)

• The type systems of most common languages are first-order

• Then we move to second-order type systems
 - Polymorphism and abstract types
This 1988 animated movie written and directed by Isao Takahata for Studio Ghibli was considered by Roger Ebert to be one of the most powerful anti-war films ever made. It features Seita and his sister Setsuko and their efforts to survive outside of society during the firebombing of Tokyo.
Computer Science

- This American-Canadian Turing-award winner is known for major contributions to the fields of complexity theory and proof complexity. He is known for formalizing the polynomial-time reduction, NP-completeness, P vs. NP, and showing that SAT is NP-complete. This was all done in the seminal 1971 paper “The Complexity of Theorem Proving Procedures.”
Q: Student

• This piece of diving equipment with an air-inflatable bladder changes its average density for use in SCUBA diving. It typically requires manual adjustment throughout the dive and can be augmented by breath control.
This 1985 falling-blocks computer game was invented by Alexey Pajitnov (Алексей Пажитнов) and inspired by pentominoes.
Simply-Typed Lambda Calculus

• Syntax:

Terms \(e ::= x \mid \lambda x: \tau. \ e \mid e_1 \ e_2 \)
\(\mid n \mid e_1 + e_2 \mid \text{iszero} \ e \)
\(\mid \text{true} \mid \text{false} \mid \text{not} \ e \)
\(\mid \text{if} \ e_1 \ \text{then} \ e_2 \ \text{else} \ e_3 \)

Types \(\tau ::= \text{int} \mid \text{bool} \mid \tau_1 \rightarrow \tau_2 \)

• \(\tau_1 \rightarrow \tau_2 \) is the function type

• \(\rightarrow \) associates to the right

• Arguments have typing annotations :\(\tau \)

• This language is also called \(F_1 \)
Static Semantics of F_1

- The typing judgment

$$\Gamma \vdash e : \tau$$

- Some (simpler) typing rules:

$$\Gamma \vdash x : \tau \quad \frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x : \tau. e : \tau \to \tau'}$$

$$\Gamma \vdash e_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 : \tau_2 \quad \frac{\Gamma \vdash e_1 \, e_2 : \tau}{\Gamma \vdash e_1 \, e_2 : \tau}$$
More Static Semantics of F_1

\[
\begin{align*}
\Gamma \vdash e_1 : \text{int} & \quad \Gamma \vdash e_2 : \text{int} \\
\hline
\Gamma \vdash n : \text{int} & \quad \Gamma \vdash e_1 + e_2 : \text{int}
\end{align*}
\]

Why do we have this mysterious gap? I don’t know either!

\[
\begin{align*}
\Gamma \vdash e : \text{bool} \\
\hline
\Gamma \vdash \text{true} : \text{bool} & \quad \Gamma \vdash \text{not } e : \text{bool}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e_1 : \text{bool} & \quad \Gamma \vdash e_t : \tau & \quad \Gamma \vdash e_f : \tau \\
\hline
\Gamma \vdash \text{if } e_1 \text{ then } e_t \text{ else } e_f : \tau
\end{align*}
\]
Typing Derivation in F_1

- Consider the term

 $$\lambda x : \text{int. } \lambda b : \text{bool. if } b \text{ then } f x \text{ else } x$$

- With the initial typing assignment $f : \text{int} \rightarrow \text{Int}$

- Where $\Gamma = f : \text{int} \rightarrow \text{int}, x : \text{int}, b : \text{bool}$
Type Checking in F_1

- **Type checking** is *easy* because
 - Typing rules are *syntax directed*
 - Typing rules are *compositional* (what does this mean?)
 - All local variables are annotated with types

- In fact, **type inference** is *also easy* for F_1

- Without type annotations an expression may have **no unique type**

 - $\vdash \lambda x. \ x : \text{int} \to \text{int}$

 - $\vdash \lambda x. \ x : \text{bool} \to \text{bool}$
Operational Semantics of F_1

• Judgment:

\[e \downarrow v \]

• Values:

\[v ::= n \mid \text{true} \mid \text{false} \mid \lambda x: \tau. \ e \]

• The evaluation rules ...

 - Audience participation time: raise your hand and give me an evaluation rule.
Opsem of F_1 (Cont.)

- **Call-by-value** evaluation rules (sample)

\[
\begin{align*}
\lambda x : \tau\.e & \Downarrow \lambda x : \tau\.e \\
\text{eval rule} & \\
(e_1 \Downarrow \lambda x : \tau\.e_1) & \quad (e_2 \Downarrow v_2) & \quad (v_2/x)e_1' \Downarrow v \\
\frac{e_1 \Downarrow \lambda x : \tau\.e_1' \quad e_2 \Downarrow v_2 \quad (v_2/x)e_1' \Downarrow v}{e_1 e_2 \Downarrow v} \\
\frac{(e_1 \Downarrow n_1) \quad (e_2 \Downarrow n_2)}{n \Downarrow n} & \quad n = n_1 + n_2 \\
\frac{e_1 \Downarrow n_1 \quad e_2 \Downarrow n_2}{e_1 + e_2 \Downarrow n} \\
\frac{e_1 \Downarrow \text{true} \quad e_t \Downarrow v}{\text{if } e_1 \text{ then } e_t \text{ else } e_f \Downarrow v} \\
\frac{e_1 \Downarrow \text{false} \quad e_f \Downarrow v}{\text{if } e_1 \text{ then } e_t \text{ else } e_f \Downarrow v}
\end{align*}
\]

Where is the Call-By-Value? How might we change it?

Evaluation is **undefined** for ill-typed programs!
Type Soundness for F_1

- Thm: $\text{If } \vdash e : \tau \text{ and } e \Downarrow v \text{ then } \vdash v : \tau$
 - Also called, *subject reduction* theorem, *type preservation* theorem

- This is one of the *most important* sorts of theorems in PL

- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...

- Proof: next time!
Homework

- Read actually-exciting Leroy paper
- Finish Homework 5?
- Work on your projects!
 - Status Update Due