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One Slide Summary
• In abstract interpretation, the abstraction function 

 and concretization function  form a Galois 
connection: they are almost inverses.

• To abstract the state  at each program point we 
use a collecting semantics (the abstract domain 
holds sets of states). This shows the link between 
abstract interpretation and model checking. 

• This will result in recursively-defined equations. We 
use the fixed point theorem to solve them. This 
shows the link between abstract interpretation and 
dataflow analysis.

• Widening operators help accelerate convergence.
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Abstract Interpretation

• We have an abstract domain A 

– e.g., A = { positive, negative, zero } 
– An abstraction function  : Z ! A

• Z is our concrete domain

– A concretization function  : A ! P(Z)

• Positive + Positive = ???
• Positive + Negative = ???
• Positive / Zero = ???
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We don't want security to get suspicious ...
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Review

• We introduced abstract interpretation
• An abstraction mapping from concrete to 

abstract values
– Has a concretization mapping which forms a 

Galois connection 

• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• … and we’ll discuss the mythic “widening”
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Why Galois Connections?

• We have an abstract domain A
– An abstraction function  : Z ! A

– Induces  : P(Z) ! A and  : A ! P(Z)

• We argued that for correctness
(a1 op a2) ¾ (a1) op (a2)

– We wish for the set on the left to be as small as possible
– To reduce the loss of information through abstraction

• For each set S µ C, define (S) as follows:
– Pick smallest S’ that includes S and is in the image of 
– Define (S) = -1(S’)
– Then we define: a1 op a2 = ((a1) op (a2))

• Then  and  form a Galois connection
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Galois Connections
• A Galois connection between complete 

lattices A and P(C) is a pair of functions  
and  such that:
–   and  are monotonic 

• (with the µ ordering on P(C))  

–   ( (a)) = a for all a 2 A
–   ((S)) ¾ S for all S 2 P(C)

S

C

 
1

2 4

3
21 3 4
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>
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More on Galois Connections

• All Galois 
connections 
are monotonic

• In a Galois 
connection 
one function 
uniquely and 
absolutely 
determines 
the other 
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Abstract Interpretation for 
Imperative Programs

• So far we abstracted the value of 
expressions

• Now we want to abstract the state 
at each point in the program

• First we define the concrete 
semantics that we are abstracting
– We’ll use a collecting semantics
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Collecting Semantics

• Recall
– A state  2 . Any state  has type Var ! Z
– States vary from program point to program point

• We introduce a set of program points: labels
• We want to answer questions like:

– Is x always positive at label i?
– Is x always greater or equal to y at label j?

• To answer these questions we’ll construct
C 2 Contexts. C has type Labels ! P()

– For each label i, C(i) = all possible states at label i
– This is called the collecting semantics of the program
– This is basically what SLAM (and BLAST, ESP, …) 

approximate (using BDDs to store P() efficiently)
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Defining the Collecting Semantics
• We first define relations between the collecting 

semantics at different labels
– We do it for unstructured CFGs (cf. HW6!) 

– Can do it for IMP with careful notion of program points

• Define a label on each edge in the CFG

• For assignment

                      Cj = {[x := n] |  2 Ci Æ e = n}x := e

i

j
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Defining the Collecting Semantics

• For conditionals

Celse = {  |  2 Cin Æ b = false}

Cthen = {  |  2 Cin Æ b = true}

• Assumes b has no side effects (as in IMP or HW6)

in

b truefalse

else then
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Defining the Collecting Semantics

• For a join
i

out

j
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Defining the Collecting Semantics

• For a join

Cout = Ci [ Cj

• Verify that these relations are monotonic
– If we increase a Cx all other Cy can only increase

i

out

j
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Collecting Semantics: Example
• Assume x ¸ 0 initially (explain this?)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
C3 = C2 Å { | (x)  0}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
C3 = C2 Å { | (x)  0}
C4 = {[y:=(y)*(x)] | 

 2 C3}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
[ {[x:=(x)-1] | 2C4}
C3 = C2 Å { | (x)  0}
C4 = {[y:=(y)*(x)] | 

 2 C3}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
[ {[x:=(x)-1] | 2C4}
C3 = C2 Å { | (x)  0}
C4 = {[y:=(y)*(x)] | 

 2 C3}
C5 = C2 Å { | (x) = 0}
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Why Does This Work?
• We just made a system of recursive 

equations that are defined largely in terms 
of themselves
– e.g., C2 = F(C4), C4 = G(C3), C3 = H(C2)

• Why do we have any reason to believe that 
this will get us what we want?
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The Collecting Semantics
• We have an equation with the unknown C

– The equation is defined by a monotonic and 
continuous function on domain Labels ! P()

• We can use the least fixed-point theorem 
– Start with C0(L)=;      (aka C0 = L.;)

– Apply the relations between Ci and Cj to get C1
i 

from C0
j

– Stop when all Ck = Ck-1

– Problem: we’ll go on forever for most programs

– But we know the fixed point exists
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

;

;

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

;

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

;

;

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

;

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 =    { [y:=1] |  2 C1}
       [ {[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1 Ç y = x + 1} 

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}
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Spanish Novels

• This 1605 Spanish novel, El ingenioso hidalgo 
___ ___ de la Mancha, is considered 
foundational to Western literature and is the 
second most-translated book in the world. In 
it, a noble believes he is a knight-errant and 
travels with a witty farmer, along the way 
making social commentary about individuals 
and society.
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Sanskrit Epics & Memory Test

• This Sanskrit epic is one of the two great 
canon stories of India, and is attributed to the 
Hindu sage Valmiki. It covers dharma and 
human values while explaining the 
protagonist's attempt to recover his wife, 
Sita, who has been taken by the demons of 
Lanka. It is heavy on allegory and philosophy. 
Archery, including an epic use of the 
brahmastra, is often involved. 
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Computer Science

• This American Turing-award winner is known 
for work on the B and C programming 
languages, the Unix and Plan 9 operating 
systems, regular expressions in text editors, 
UTF-8, and chess endgames. Almost all 
programs that use regular expressions today 
use his notation for them. 
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Abstract Interpretation 

• Pick a complete lattice A (abstractions for P() )
– Along with a monotonic abstraction  : P() ! A

– Alternatively, pick  :  ! A

– This uniquely defines its Galois connection 

• Take the relations between Ci and move them to 
the abstract domain:

a : Label ! A

• Assignment

      Concrete: Cj = {[x := n] |  2 Ci Æ e = n}

      Abstract:  aj =  {[x := n] |  2 (ai) Æ e = n}
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Abstract Interpretation

• Conditional

       Concrete: Cj = {  |  2 Ci Æ b = false} and  

                       Ck = {  |  2 Ci Æ b = true}

       Abstract: aj =  {  |  2 (ai) Æ b = false} and  

                      ak =  {  |  2 (ai) Æ b = true}

• Join

      Concrete: Ck = Ci [ Cj

      Abstract: ak =  ((ai) [ (aj)) = lub {ai, aj}
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Least Fixed Points 
In The Abstract Domain

• We have a recursive equation with unknown “a”
– Defined by a monotonic and continuous function on the 

domain Labels ! A

• We can use the least fixed-point theorem:
– Start with a0 = L.?       (aka: a0(L) = ?)
– Apply the monotonic function to compute ak+1 from ak

– Stop when ak+1 = ak

• Exactly the same computation as for the collecting 
semantics
– What is new?
– “There is nothing new under the sun but there are lots 

of old things we don't know.” – Ambrose Bierce 
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Least Fixed Points 
In The Abstract Domain

• We have a hope of termination!
• Classic setup: A has only uninteresting chains (finite 

number of elements in each chain)
– A has finite height h (= “finite-height lattice”)

• The computation takes O(h £ |Labels|2) steps
– At each step “a” makes progress on at least one label
– We can only make progress h times 
– And each time we must compute |Labels| elements

• This is a quadratic analysis: good news
– This is exactly the same as Kildall’s 1973 analysis of 

dataflow’s polynomial termination given a finite-height 
lattice and monotonic transfer functions. 
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Abstract Interpretation: Example
• Consider the following program, x>0

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
False True

We want to do the
sign analysis on it.
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Abstract Domain for Sign Analysis

• Invent the complete sign lattice 
S = { ?, -, 0, +, > }

• Construct the complete lattice 
A = {x, y} ! S

– With the usual point-wise ordering
– Abstract state gives the sign for x and y

• We start with a0 = L.v2{x,y}.?
– aka: a0(L,v) = ?
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Let’s Do It!

?y

?x5

?y

?x4

?y

?x3

?y

?x2

>y

+x1

Iterations !Label
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Let’s Do It!

>>+?y

00?x5

>>+?y

>>+?x4

>>+?y

>>+?x3

>>+?y

>>+?x2

>>y

++x1

Iterations !Label
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Notes, Weaknesses, Solutions
• We abstracted the state of each variable 

independently
A = {x, y } ! {?, -, 0, +, > }

• We lost relationships between variables
– e.g., at a point x and y may always have the 

same sign

– In the previous abstraction we get {x := >, y := 
>} at label 2 (when in fact y is always positive!)

• We can also abstract the state as a whole
A = P({?, -, 0, +, >} £ {?, -, 0, +, >})
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Other Abstract Domains
• Range analysis

– Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > }
– It is a complete lattice

• [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)]
• [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)]
• With appropriate care in dealing with 1

–   : Z ! R such that (n) = [n..n]

–   : P(Z) ! R such that (S) = lub {(n) | n 2 S} = 
[min(S)..max(S)]

–   : R ! P(Z) such that (r) = { n | n 2 r }

• This lattice has infinite-height chains
– So the abstract interpretation might not terminate!
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Example of Non-Termination

• Consider this (common) program fragment

z := 1

z · n

z := z + 1

1

2

3 4
T F

We want to do range 
analysis on it.
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Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …

– The analysis never terminates

– Or terminates very late if the loop bound is known 
statically



#46

Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …

– The analysis never terminates

– Or terminates very late if the loop bound is known 
statically

• It is time to approximate even more: widening

• We redefine the join (lub) operator of the lattice to 
ensure that from [1..1] upon union with [2..2] the 
result is [1..+1) and not [1..2]

• Now the sequence of states is
– [1..1], [1, +1), [1, +1)  Done (no more infinite chains)



#47

Formal Definition of Widening 
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening 5 : (P £ P) ! P on a poset hP,vi 
satisfies:
– 8 x, y 2 P .   x v (x 5 y)   Æ   y v (x 5 y)
– For all increasing chains x0 v x1 v … the increasing chain 

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly increasing.

• Two different main uses:
– Approximate missing lubs.  (Not for us.) 
– Convergence acceleration.  (This is the real use.) 

• A widening operator can be used to effectively compute an 
upper approximation of the least fixpoint of F 2 L 5 L starting 
from below when L is computer-representable but does not 
satisfy the ascending chain condition. 



#48

Formal Widening Example 
[1,1]5[1,2] = [1,+1)

• Range Analysis on z:

L0:  z := 1 ;

L1:  while z<99 do

L2: z := z+1

L3:  done /* z ¸ 99 */

L4:     

yL4
0 = [99,+1)xL4

0 = [99,+1)

yL3
1 = [2,+1)xL3

1 = [2,+1)

yL2
1 = [1,+1)xL2

1 = [1,2]

yL3
0 = [2,2]xL3

0 = [2,2]

yL1
0 = [1,1]xL1

0 = [1,1]

stable (fewer than 99 iterations!)

yL2
0 = [1,1]xL2

0 = [1,1]

yL0
0 = ?xL0

0 = ?

Widened yiOriginal xi

xLi
j =def the jth iterative attempt 

to compute an abstract value for 
z at label Li

Recall lub S = [min(S)..max(S)]
lub {[2,+1),[1,+1)} = {[1,+1)}
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Other Abstract Domains

• Linear relationships between variables
– A convex polyhedron is a subset of Zk whose elements 

satisfy a number of inequalities: 

a1x1 + a2x2 + … + akxk ¸ ci

– This is a complete lattice; linear programming methods 
compute lubs

• Linear relationships with at most two variables
– Convex polyhedra but with · 2 variables per constraint

– Octagons (x + y ¸ c) have efficient algorithms

• Modulus constraints (e.g. even and odd)
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Abstract Chatter
• AI, Dataflow and Software Model Checking

– The big three (aside from flow-insensitive type systems) 
for program analyses

• Are in fact quite related:
– David Schmidt. Data flow analysis is model checking of 

abstract interpretation. POPL ’98. 

• AI is usually flow-sensitive (per-label answer)

• AI can be path-sensitive (if your abstract domain 
includes Ç, for example), which is just where 
model checking uses BDD’s

• Metal, SLAM, ESP, … can all be viewed as AI
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Abstract Interpretation 
Conclusions

• AI is a very powerful technique that underlies a 
large number of program analyses

– Including Dataflow Analysis and Model Checking
• AI can also be applied to functional and logic 

programming languages
• There are a few success stories

– Strictness analysis for lazy functional languages
– PolySpace for linear constraints

• In most other cases however AI is still slow
• When the lattices have infinite height and widening 

heuristics are used the result becomes 
unpredictable 
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