
#1

Abstract InterpretationAbstract Interpretation

(Galois, Collections, Widening)(Galois, Collections, Widening)

#2

One Slide Summary
• In abstract interpretation, the abstraction function

 and concretization function  form a Galois
connection: they are almost inverses.

• To abstract the state  at each program point we
use a collecting semantics (the abstract domain
holds sets of states). This shows the link between
abstract interpretation and model checking.

• This will result in recursively-defined equations. We
use the fixed point theorem to solve them. This
shows the link between abstract interpretation and
dataflow analysis.

• Widening operators help accelerate convergence.

#3

Abstract Interpretation

• We have an abstract domain A

– e.g., A = { positive, negative, zero }
– An abstraction function  : Z ! A

• Z is our concrete domain

– A concretization function  : A ! P(Z)

• Positive + Positive = ???
• Positive + Negative = ???
• Positive / Zero = ???

#4

We don't want security to get suspicious ...

#5

#6

Review

• We introduced abstract interpretation
• An abstraction mapping from concrete to

abstract values
– Has a concretization mapping which forms a

Galois connection

• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• … and we’ll discuss the mythic “widening”

#7

Why Galois Connections?

• We have an abstract domain A
– An abstraction function  : Z ! A

– Induces  : P(Z) ! A and  : A ! P(Z)

• We argued that for correctness
(a1 op a2) ¾ (a1) op (a2)

– We wish for the set on the left to be as small as possible
– To reduce the loss of information through abstraction

• For each set S µ C, define (S) as follows:
– Pick smallest S’ that includes S and is in the image of 
– Define (S) = -1(S’)
– Then we define: a1 op a2 = ((a1) op (a2))

• Then  and  form a Galois connection

#8

Galois Connections
• A Galois connection between complete

lattices A and P(C) is a pair of functions 
and  such that:
–  and  are monotonic

• (with the µ ordering on P(C))

–  ( (a)) = a for all a 2 A
–  ((S)) ¾ S for all S 2 P(C)

S

C

 
1

2 4

3
21 3 4

?

>

1,2

#9

More on Galois Connections

• All Galois
connections
are monotonic

• In a Galois
connection
one function
uniquely and
absolutely
determines
the other

#10

Abstract Interpretation for
Imperative Programs

• So far we abstracted the value of
expressions

• Now we want to abstract the state
at each point in the program

• First we define the concrete
semantics that we are abstracting
– We’ll use a collecting semantics

#11

Collecting Semantics

• Recall
– A state  2 . Any state  has type Var ! Z
– States vary from program point to program point

• We introduce a set of program points: labels
• We want to answer questions like:

– Is x always positive at label i?
– Is x always greater or equal to y at label j?

• To answer these questions we’ll construct
C 2 Contexts. C has type Labels ! P()

– For each label i, C(i) = all possible states at label i
– This is called the collecting semantics of the program
– This is basically what SLAM (and BLAST, ESP, …)

approximate (using BDDs to store P() efficiently)

#12

Defining the Collecting Semantics
• We first define relations between the collecting

semantics at different labels
– We do it for unstructured CFGs (cf. HW6!)

– Can do it for IMP with careful notion of program points

• Define a label on each edge in the CFG

• For assignment

 Cj = {[x := n] |  2 Ci Æ e = n}x := e

i

j

#13

Defining the Collecting Semantics

• For conditionals

Celse = {  |  2 Cin Æ b = false}

Cthen = {  |  2 Cin Æ b = true}

• Assumes b has no side effects (as in IMP or HW6)

in

b truefalse

else then

#14

Defining the Collecting Semantics

• For a join
i

out

j

#15

Defining the Collecting Semantics

• For a join

Cout = Ci [Cj

• Verify that these relations are monotonic
– If we increase a Cx all other Cy can only increase

i

out

j

#16

Collecting Semantics: Example
• Assume x ¸ 0 initially (explain this?)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}

#17

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}

#18

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
C3 = C2 Å { | (x)  0}

#19

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
C3 = C2 Å { | (x)  0}
C4 = {[y:=(y)*(x)] |

 2 C3}

#20

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
[{[x:=(x)-1] | 2C4}
C3 = C2 Å { | (x)  0}
C4 = {[y:=(y)*(x)] |

 2 C3}

#21

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
[{[x:=(x)-1] | 2C4}
C3 = C2 Å { | (x)  0}
C4 = {[y:=(y)*(x)] |

 2 C3}
C5 = C2 Å { | (x) = 0}

#22

Why Does This Work?
• We just made a system of recursive

equations that are defined largely in terms
of themselves
– e.g., C2 = F(C4), C4 = G(C3), C3 = H(C2)

• Why do we have any reason to believe that
this will get us what we want?

#23

The Collecting Semantics
• We have an equation with the unknown C

– The equation is defined by a monotonic and
continuous function on domain Labels ! P()

• We can use the least fixed-point theorem
– Start with C0(L)=; (aka C0 = L.;)

– Apply the relations between Ci and Cj to get C1
i

from C0
j

– Stop when all Ck = Ck-1

– Problem: we’ll go on forever for most programs

– But we know the fixed point exists

#24

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

;

;

;

;

;

;

#25

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

;

;

;

;

;

#26

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

;

;

;

;

#27

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

;

;

{x>0,y=1}

#28

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

{x>0,y=x}

;

{x>0,y=1}

#29

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}

#30

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = { | (x) ¸ 0}
C2 = { [y:=1] |  2 C1}
 [{[x:=(x)-1] |  2 C4}
C3 = C2 Å { | (x)  0}
C5 = C2 Å { | (x) = 0}
C4 = {[y:=(y)*(x) |  2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1 Ç y = x + 1}

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}

#31

Spanish Novels

• This 1605 Spanish novel, El ingenioso hidalgo
___ ___ de la Mancha, is considered
foundational to Western literature and is the
second most-translated book in the world. In
it, a noble believes he is a knight-errant and
travels with a witty farmer, along the way
making social commentary about individuals
and society.

#32

Sanskrit Epics & Memory Test

• This Sanskrit epic is one of the two great
canon stories of India, and is attributed to the
Hindu sage Valmiki. It covers dharma and
human values while explaining the
protagonist's attempt to recover his wife,
Sita, who has been taken by the demons of
Lanka. It is heavy on allegory and philosophy.
Archery, including an epic use of the
brahmastra, is often involved.

#33

Computer Science

• This American Turing-award winner is known
for work on the B and C programming
languages, the Unix and Plan 9 operating
systems, regular expressions in text editors,
UTF-8, and chess endgames. Almost all
programs that use regular expressions today
use his notation for them.

#34

Abstract Interpretation

• Pick a complete lattice A (abstractions for P())
– Along with a monotonic abstraction  : P() ! A

– Alternatively, pick  :  ! A

– This uniquely defines its Galois connection 

• Take the relations between Ci and move them to
the abstract domain:

a : Label ! A

• Assignment

 Concrete: Cj = {[x := n] |  2 Ci Æ e = n}

 Abstract: aj =  {[x := n] |  2 (ai) Æ e = n}

#35

Abstract Interpretation

• Conditional

 Concrete: Cj = {  |  2 Ci Æ b = false} and

 Ck = {  |  2 Ci Æ b = true}

 Abstract: aj =  {  |  2 (ai) Æ b = false} and

 ak =  {  |  2 (ai) Æ b = true}

• Join

 Concrete: Ck = Ci [Cj

 Abstract: ak =  ((ai) [(aj)) = lub {ai, aj}

#36

Least Fixed Points
In The Abstract Domain

• We have a recursive equation with unknown “a”
– Defined by a monotonic and continuous function on the

domain Labels ! A

• We can use the least fixed-point theorem:
– Start with a0 = L.? (aka: a0(L) = ?)
– Apply the monotonic function to compute ak+1 from ak

– Stop when ak+1 = ak

• Exactly the same computation as for the collecting
semantics
– What is new?
– “There is nothing new under the sun but there are lots

of old things we don't know.” – Ambrose Bierce

#37

Least Fixed Points
In The Abstract Domain

• We have a hope of termination!
• Classic setup: A has only uninteresting chains (finite

number of elements in each chain)
– A has finite height h (= “finite-height lattice”)

• The computation takes O(h £ |Labels|2) steps
– At each step “a” makes progress on at least one label
– We can only make progress h times
– And each time we must compute |Labels| elements

• This is a quadratic analysis: good news
– This is exactly the same as Kildall’s 1973 analysis of

dataflow’s polynomial termination given a finite-height
lattice and monotonic transfer functions.

#38

Abstract Interpretation: Example
• Consider the following program, x>0

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
False True

We want to do the
sign analysis on it.

#39

Abstract Domain for Sign Analysis

• Invent the complete sign lattice
S = { ?, -, 0, +, > }

• Construct the complete lattice
A = {x, y} ! S

– With the usual point-wise ordering
– Abstract state gives the sign for x and y

• We start with a0 = L.v2{x,y}.?
– aka: a0(L,v) = ?

#40

Let’s Do It!

?y

?x5

?y

?x4

?y

?x3

?y

?x2

>y

+x1

Iterations !Label

#41

Let’s Do It!

>>+?y

00?x5

>>+?y

>>+?x4

>>+?y

>>+?x3

>>+?y

>>+?x2

>>y

++x1

Iterations !Label

#42

Notes, Weaknesses, Solutions
• We abstracted the state of each variable

independently
A = {x, y } ! {?, -, 0, +, > }

• We lost relationships between variables
– e.g., at a point x and y may always have the

same sign

– In the previous abstraction we get {x := >, y :=
>} at label 2 (when in fact y is always positive!)

• We can also abstract the state as a whole
A = P({?, -, 0, +, >} £ {?, -, 0, +, >})

#43

Other Abstract Domains
• Range analysis

– Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > }
– It is a complete lattice

• [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)]
• [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)]
• With appropriate care in dealing with 1

–  : Z ! R such that (n) = [n..n]

–  : P(Z) ! R such that (S) = lub {(n) | n 2 S} =
[min(S)..max(S)]

–  : R ! P(Z) such that (r) = { n | n 2 r }

• This lattice has infinite-height chains
– So the abstract interpretation might not terminate!

#44

Example of Non-Termination

• Consider this (common) program fragment

z := 1

z · n

z := z + 1

1

2

3 4
T F

We want to do range
analysis on it.

#45

Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …

– The analysis never terminates

– Or terminates very late if the loop bound is known
statically

#46

Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …

– The analysis never terminates

– Or terminates very late if the loop bound is known
statically

• It is time to approximate even more: widening

• We redefine the join (lub) operator of the lattice to
ensure that from [1..1] upon union with [2..2] the
result is [1..+1) and not [1..2]

• Now the sequence of states is
– [1..1], [1, +1), [1, +1) Done (no more infinite chains)

#47

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening 5 : (P £ P) ! P on a poset hP,vi
satisfies:
– 8 x, y 2 P . x v (x 5 y) Æ y v (x 5 y)
– For all increasing chains x0 v x1 v … the increasing chain

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly increasing.

• Two different main uses:
– Approximate missing lubs. (Not for us.)
– Convergence acceleration. (This is the real use.)

• A widening operator can be used to effectively compute an
upper approximation of the least fixpoint of F 2 L 5 L starting
from below when L is computer-representable but does not
satisfy the ascending chain condition.

#48

Formal Widening Example
[1,1]5[1,2] = [1,+1)

• Range Analysis on z:

L0: z := 1 ;

L1: while z<99 do

L2: z := z+1

L3: done /* z ¸ 99 */

L4:

yL4
0 = [99,+1)xL4

0 = [99,+1)

yL3
1 = [2,+1)xL3

1 = [2,+1)

yL2
1 = [1,+1)xL2

1 = [1,2]

yL3
0 = [2,2]xL3

0 = [2,2]

yL1
0 = [1,1]xL1

0 = [1,1]

stable (fewer than 99 iterations!)

yL2
0 = [1,1]xL2

0 = [1,1]

yL0
0 = ?xL0

0 = ?

Widened yiOriginal xi

xLi
j =def the jth iterative attempt

to compute an abstract value for
z at label Li

Recall lub S = [min(S)..max(S)]
lub {[2,+1),[1,+1)} = {[1,+1)}

#49

Other Abstract Domains

• Linear relationships between variables
– A convex polyhedron is a subset of Zk whose elements

satisfy a number of inequalities:

a1x1 + a2x2 + … + akxk ¸ ci

– This is a complete lattice; linear programming methods
compute lubs

• Linear relationships with at most two variables
– Convex polyhedra but with · 2 variables per constraint

– Octagons (x + y ¸ c) have efficient algorithms

• Modulus constraints (e.g. even and odd)

#50

Abstract Chatter
• AI, Dataflow and Software Model Checking

– The big three (aside from flow-insensitive type systems)
for program analyses

• Are in fact quite related:
– David Schmidt. Data flow analysis is model checking of

abstract interpretation. POPL ’98.

• AI is usually flow-sensitive (per-label answer)

• AI can be path-sensitive (if your abstract domain
includes Ç, for example), which is just where
model checking uses BDD’s

• Metal, SLAM, ESP, … can all be viewed as AI

#51

Abstract Interpretation
Conclusions

• AI is a very powerful technique that underlies a
large number of program analyses

– Including Dataflow Analysis and Model Checking
• AI can also be applied to functional and logic

programming languages
• There are a few success stories

– Strictness analysis for lazy functional languages
– PolySpace for linear constraints

• In most other cases however AI is still slow
• When the lattices have infinite height and widening

heuristics are used the result becomes
unpredictable

	Abstract Interpretation (Galois, Collections, Widening)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Review
	Why Galois Connections?
	Galois Connections
	More on Galois Connections
	Abstract Interpretation for Imperative Programs
	Collecting Semantics
	Defining the Collecting Semantics
	Slide 13
	Slide 14
	Slide 15
	Collecting Semantics: Example
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Why Does This Work?
	The Collecting Semantics
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Abstract Interpretation
	Abstract Interpretation
	Least Fixed Points In The Abstract Domain
	Slide 37
	Abstract Interpretation: Example
	Abstract Domain for Sign Analysis
	Slide 40
	Let’s Do It!
	Notes, Weaknesses, Solutions
	Other Abstract Domains
	Example of Non-Termination
	Slide 45
	Slide 46
	Formal Definition of Widening (Cousot 16.399 “Abstract Interpretation”, 2005)
	Formal Widening Example [1,1]5[1,2] = [1,+1)
	Slide 49
	Abstract Chatter
	Abstract Interpretation Conclusions

