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Why
analyze

programs
statically?
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The Problem

• It is extremely useful to predict program behavior 
statically (= without running the program)
– For optimizing compilers, program analyses, software 

engineering tools, finding security flaws, etc.

• The semantics we studied so far give us the precise 
behavior of a program

• However, precise static predictions are impossible
– The exact semantics is not computable

• We must settle for approximate, but correct, static 
analyses (e.g. VC vs. WP)
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One-Slide Summary

• Abstraction interpretation is a static analysis for 
soundly approximating the semantics of a program. 

• While the concrete semantics refers to what actually 
happens when you run the program (e.g., “x*x+1” 
may result in multiple integers), the abstract 
semantics tracks only certain information about that 
computation (e.g., “x*x+1” will be some positive 
number, but we don't know which one). 

• Special functions transfer between the abstract 
domain (typically a lattice) and the concrete 
domain.
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The Plan

• We will introduce abstract 
interpretation by example

• Starting with a miniscule language we 
will build up to a fairly realistic 
application

• Along the way we will see most of the 
ideas and difficulties that arise in a big 
class of applications
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A Tiny Language

• Consider the following language of 
arithmetic (“shrIMP”?) 

                   e ::= n | e1 * e2

• The operational semantics of this language

                   n  n

                   e1 * e2  = e1 £ e2

• We’ll take opsem as the “ground truth”
• For this language the precise semantics is 

computable (but in general it’s not)
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An Abstraction

• Assume that we are interested not in the 
value of the expression, but only in its sign: 
– positive (+), negative (-), or zero (0)

• We can define an abstract semantics that 
computes only the sign of the result
                : Exp ! {-, 0, +}

 (n) = sign(n)

 (e1 * e2) = (e1)  (e2) +0-+

0000

-0+-

+0-
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   I Saw the Sign
• Why did we want to compute the sign of an 

expression?
– One reason: no one will believe you know 

abstract interpretation if you haven’t seen the 
sign example :-)

• What could we be computing instead? 
– Alex Aiken was here …
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Correctness of Sign Abstraction

• We can show that the abstraction is correct 
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -
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Correctness of Sign Abstraction

• We can show that the abstraction is correct 
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -

• Our semantics is abstract but precise
• Proof is by structural induction on the 

expression e
– Each case repeats similar reasoning
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Another View of Soundness

• Link each concrete value to an abstract one:
                        : Z ! { -, 0, + }

• This is called the abstraction function ()
– This three-element set is the abstract domain

• Also define the concretization function (): 
 : {-, 0, +} ! P(Z)

                  (+) = { n 2 Z | n > 0 }

                  (0) = { 0 } 
                  (-) = { n 2 Z | n < 0 }
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Another View of Soundness 2

• Soundness can be stated succinctly

8e 2 Exp. e 2 ((e)) 
   (the real value of the expression is among the concrete 

values represented by the abstract value of the expression)

• Let C be the concrete domain (e.g. Z) and A be the 
abstract domain (e.g. {-, 0, +})

• Commutative diagram:

P(C)

Exp A

C
2
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Another View of Soundness 3

• Consider the generic abstraction of an operator

                  (e1 op e2) = (e1) op  (e2)

• This is sound iff

8a18a2. (a1 op a2) ¾  {n1 op n2 | n1 2 (a1), n2 2 (a2)}

• e.g. (a1  a2) ¾  { n1 * n2 | n1 2 (a1), n2 2 (a2) }

• This reduces the proof of correctness to one proof 
for each operator
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Abstract Interpretation

• This is our first example of an abstract 
interpretation

• We carry out computation in an abstract 
domain

• The abstract semantics is a sound 
approximation of the standard semantics

• The concretization and abstraction functions 
establish the connection between the two 
domains
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Adding Unary Minus and Addition

• We extend the language to 
e ::= n | e1 * e2 | - e

• We define (- e) = ª (e)

• Now we add addition: 
e ::= n | e1 * e2 | - e | e1 + e2 

• We define (e1 + e2) = (e1) © (e2)

-0+ª
+0-

++?+

+0-0

?---

+0-©
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Adding Addition
• The sign values are not closed under addition
• What should be the value of “+ © –”?

• Start from the soundness condition:

(+ © –) ¾ { n1 + n2 | n1 > 0, n2 < 0} = Z
• We don’t have an abstract 
value whose concretization 
includes Z, so we add one:

    > (“top” = “don’t know”)
>++>+

>

+

>
+

>

>

>

>

>>>

0-0

---

0-©
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Loss of Precision
• Abstract computation may lose information:

«(1 + 2) + -3¬ = 0

but: ((1+2) + -3) = 

((1) © (2)) © (-3) = 

(+ © +) © - = >

• We lost some precision
• But this will simplify the computation of the 

abstract answer in cases when the precise 
answer is not computable
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Adding Division
• Straightforward except for division by 0

– We say that there is no answer in that case

–  (+ ® 0) = { n | n = n1 / 0 , n1 > 0 } = ;

• Introduce ? to be the abstraction of the ;
– We also use the same 

abstraction for 

non-termination!

? = “nothing”

> = “something unknown”
?

>

>

?

>

>

?

?

?

?

?

?

>>>>

????

+0-+

?
-

+

??0

0+-

0-®



Game Criticism

• This term refers to a conflict between 
the mechanics or dynamics of a game 
and its story. For example, Bioshock 
was viewed as promoting selflessness 
through story but selfishness through 
gameplay, a disconnect that pulled 
some players out of the game. The term 
is often viewed as “highbrow” or 
“pretentious”.



Q:  Books  (750 / 842) 

•This 1962 Newbery Medal-
winning novel by Madeleine 
L'Engle includes Charles 
Wallace, Mrs. Who, Mrs. 
Whatsit, Mrs. Which and the 
space-bending Tesseract.  



Computer Science

• This American Turing-award winner is known 
for developing Speedcoding and FORTRAN 
(the first two high-level languages), as well 
creating a way to express the formal syntax of 
a language and using that approach to specify 
ALGOL. He later focused on function-level (as 
opposed to value-level) programming. His 
first major programming project calculated 
the positions of the Moon. 
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The Abstract Domain
• Our abstract domain forms a lattice

• A partial order is induced by 
                  a1 · a2   iff (a1) µ (a2)

– We say that a1 is more precise than a2!

• Every finite subset has a least-upper 

bound (lub) and a greatest-lower bound (glb)

>

?

- 0 +
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Lattice Facts

• A lattice is complete when every subset has 
a lub and a gub
– Even infinite subsets!

• Every finite lattice is (trivially) complete
• Every complete lattice is a complete partial 

order (recall: proof techniques: induction!)
– Since a chain is a subset

• Not every CPO is a complete lattice
– Might not even be a lattice at all
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Lattice History

• Early work in denotational semantics used 
lattices (instead of what?)
– But only chains need to have lubs

– And there was no need for > and glb
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Lattice History

• Early work in denotational semantics used 
lattices (instead of what?)
– But only chains need to have lubs

– And there was no need for > and glb

• In abstract interpretation we’ll use > to 
denote “I don’t know”.
– Corresponds to all values in the concrete domain
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From One, Many

• We can start with the abstraction function 
 : C ! A

(maps a concrete value to the best abstract value)

– A must be a lattice

• We can derive the concretization function 
     : A ! P(C)

    (a) = { x 2 C | (x) · a }

• And the abstraction for sets 
     : P(C) ! A 

    (S) = lub { (x) | x 2 S }
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Example
• Consider our sign lattice

             +    if n > 0
 (n) =   0     if n = 0
             -      if n < 0 

•  (S) = lub { (x) | x 2 S} 
– Example:  ({1, 2}) = lub { + } = +
                    ({1, 0}) = lub { +, 0} = >
                    ({}) = lub ; = ?

•  (a) = { n | (n) · a } 
– Example:  (+) = { n | (n) · +} = 

{ n | (n) = +}  =  { n | n > 0 }
 (>) = { n | (n) · > } = Z
 (?) = { n | (n) · ?} = ; 
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Galois Connections
• We can show that

–   and  are monotonic (with µ ordering on P(C))

–   ( (a)) = a for all a 2 A

–   ((S)) ¾ S for all S 2 P(C)

• Such a pair of functions is called a Galois 
connection
– Between the lattices A and P(C) 

S C

S
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Correctness Condition

• In general, abstract interpretation satisfies 
the following (amazingly common) diagram

P(C)

Exp A

C
2





  (·)means

concrete 
domain

abstract semantics

abstract 
domain

concretization
function

abstraction
function for sets
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Three Little Correctness Conditions

• Three conditions define a 
correct abstract interpretation

•   and  are monotonic

•   and  form a Galois 
connection

= “ and  are almost inverses”

1. Abstraction of operations is 
correct
          a1 op a2 = ((a1) op (a2)) 
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“On The Board” Questions
• What is the VC for:

for i = elow to ehigh do c done

• This axiomatic rule is unsound. Why?
 

` {A} if p then cthen else celse {Bthen Ç Belse}
` {A Æ :p} celse {Belse}` {A Æ p} cthen {Bthen}
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Homework

• Read Cousot & Cousot Article
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