
#1

Abstract InterpretationAbstract Interpretation
(Non-Standard Semantics)(Non-Standard Semantics)

a.k.a.a.k.a.
“Picking The Right Abstraction”“Picking The Right Abstraction”

#2

Why
analyze

programs
statically?

#3

The Problem

• It is extremely useful to predict program behavior
statically (= without running the program)
– For optimizing compilers, program analyses, software

engineering tools, finding security flaws, etc.

• The semantics we studied so far give us the precise
behavior of a program

• However, precise static predictions are impossible
– The exact semantics is not computable

• We must settle for approximate, but correct, static
analyses (e.g. VC vs. WP)

#4

One-Slide Summary

• Abstraction interpretation is a static analysis for
soundly approximating the semantics of a program.

• While the concrete semantics refers to what actually
happens when you run the program (e.g., “x*x+1”
may result in multiple integers), the abstract
semantics tracks only certain information about that
computation (e.g., “x*x+1” will be some positive
number, but we don't know which one).

• Special functions transfer between the abstract
domain (typically a lattice) and the concrete
domain.

#5

The Plan

• We will introduce abstract
interpretation by example

• Starting with a miniscule language we
will build up to a fairly realistic
application

• Along the way we will see most of the
ideas and difficulties that arise in a big
class of applications

#6

A Tiny Language

• Consider the following language of
arithmetic (“shrIMP”?)

 e ::= n | e1 * e2

• The operational semantics of this language

 n n

 e1 * e2 = e1 £ e2

• We’ll take opsem as the “ground truth”
• For this language the precise semantics is

computable (but in general it’s not)

#7

An Abstraction

• Assume that we are interested not in the
value of the expression, but only in its sign:
– positive (+), negative (-), or zero (0)

• We can define an abstract semantics that
computes only the sign of the result
 : Exp ! {-, 0, +}

 (n) = sign(n)

 (e1 * e2) = (e1) (e2) +0-+

0000

-0+-

+0-

#8

 I Saw the Sign
• Why did we want to compute the sign of an

expression?
– One reason: no one will believe you know

abstract interpretation if you haven’t seen the
sign example :-)

• What could we be computing instead?
– Alex Aiken was here …

#9

Correctness of Sign Abstraction

• We can show that the abstraction is correct
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -

#10

Correctness of Sign Abstraction

• We can show that the abstraction is correct
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -

• Our semantics is abstract but precise
• Proof is by structural induction on the

expression e
– Each case repeats similar reasoning

#11

Another View of Soundness

• Link each concrete value to an abstract one:
 : Z ! { -, 0, + }

• This is called the abstraction function ()
– This three-element set is the abstract domain

• Also define the concretization function ():
 : {-, 0, +} ! P(Z)

 (+) = { n 2 Z | n > 0 }

 (0) = { 0 }
 (-) = { n 2 Z | n < 0 }

#12

Another View of Soundness 2

• Soundness can be stated succinctly

8e 2 Exp. e 2 ((e))
 (the real value of the expression is among the concrete

values represented by the abstract value of the expression)

• Let C be the concrete domain (e.g. Z) and A be the
abstract domain (e.g. {-, 0, +})

• Commutative diagram:

P(C)

Exp A

C
2

#13

Another View of Soundness 3

• Consider the generic abstraction of an operator

 (e1 op e2) = (e1) op (e2)

• This is sound iff

8a18a2. (a1 op a2) ¾ {n1 op n2 | n1 2 (a1), n2 2 (a2)}

• e.g. (a1 a2) ¾ { n1 * n2 | n1 2 (a1), n2 2 (a2) }

• This reduces the proof of correctness to one proof
for each operator

#14

Abstract Interpretation

• This is our first example of an abstract
interpretation

• We carry out computation in an abstract
domain

• The abstract semantics is a sound
approximation of the standard semantics

• The concretization and abstraction functions
establish the connection between the two
domains

#15

Adding Unary Minus and Addition

• We extend the language to
e ::= n | e1 * e2 | - e

• We define (- e) = ª (e)

• Now we add addition:
e ::= n | e1 * e2 | - e | e1 + e2

• We define (e1 + e2) = (e1) © (e2)

-0+ª
+0-

++?+

+0-0

?---

+0-©

#16

Adding Addition
• The sign values are not closed under addition
• What should be the value of “+ © –”?

• Start from the soundness condition:

(+ © –) ¾ { n1 + n2 | n1 > 0, n2 < 0} = Z
• We don’t have an abstract
value whose concretization
includes Z, so we add one:

 > (“top” = “don’t know”)
>++>+

>

+

>
+

>

>

>

>

>>>

0-0

0-©

#17

Loss of Precision
• Abstract computation may lose information:

«(1 + 2) + -3¬ = 0

but: ((1+2) + -3) =

((1) © (2)) © (-3) =

(+ © +) © - = >

• We lost some precision
• But this will simplify the computation of the

abstract answer in cases when the precise
answer is not computable

#18

Adding Division
• Straightforward except for division by 0

– We say that there is no answer in that case

– (+ ® 0) = { n | n = n1 / 0 , n1 > 0 } = ;

• Introduce ? to be the abstraction of the ;
– We also use the same

abstraction for

non-termination!

? = “nothing”

> = “something unknown”
?

>

>

?

>

>

?

?

?

?

?

?

>>>>

????

+0-+

?
-

+

??0

0+-

0-®

Game Criticism

• This term refers to a conflict between
the mechanics or dynamics of a game
and its story. For example, Bioshock
was viewed as promoting selflessness
through story but selfishness through
gameplay, a disconnect that pulled
some players out of the game. The term
is often viewed as “highbrow” or
“pretentious”.

Q: Books (750 / 842)

•This 1962 Newbery Medal-
winning novel by Madeleine
L'Engle includes Charles
Wallace, Mrs. Who, Mrs.
Whatsit, Mrs. Which and the
space-bending Tesseract.

Computer Science

• This American Turing-award winner is known
for developing Speedcoding and FORTRAN
(the first two high-level languages), as well
creating a way to express the formal syntax of
a language and using that approach to specify
ALGOL. He later focused on function-level (as
opposed to value-level) programming. His
first major programming project calculated
the positions of the Moon.

#22

The Abstract Domain
• Our abstract domain forms a lattice

• A partial order is induced by
 a1 · a2 iff (a1) µ (a2)

– We say that a1 is more precise than a2!

• Every finite subset has a least-upper

bound (lub) and a greatest-lower bound (glb)

>

?

- 0 +

#23

Lattice Facts

• A lattice is complete when every subset has
a lub and a gub
– Even infinite subsets!

• Every finite lattice is (trivially) complete
• Every complete lattice is a complete partial

order (recall: proof techniques: induction!)
– Since a chain is a subset

• Not every CPO is a complete lattice
– Might not even be a lattice at all

#24

Lattice History

• Early work in denotational semantics used
lattices (instead of what?)
– But only chains need to have lubs

– And there was no need for > and glb

#25

Lattice History

• Early work in denotational semantics used
lattices (instead of what?)
– But only chains need to have lubs

– And there was no need for > and glb

• In abstract interpretation we’ll use > to
denote “I don’t know”.
– Corresponds to all values in the concrete domain

#26

From One, Many

• We can start with the abstraction function
 : C ! A

(maps a concrete value to the best abstract value)

– A must be a lattice

• We can derive the concretization function
 : A ! P(C)

 (a) = { x 2 C | (x) · a }

• And the abstraction for sets
 : P(C) ! A

 (S) = lub { (x) | x 2 S }

#27

Example
• Consider our sign lattice

 + if n > 0
 (n) = 0 if n = 0
 - if n < 0

• (S) = lub { (x) | x 2 S}
– Example: ({1, 2}) = lub { + } = +
 ({1, 0}) = lub { +, 0} = >
 ({}) = lub ; = ?

• (a) = { n | (n) · a }
– Example: (+) = { n | (n) · +} =

{ n | (n) = +} = { n | n > 0 }
 (>) = { n | (n) · > } = Z
 (?) = { n | (n) · ?} = ;

#28

Galois Connections
• We can show that

– and are monotonic (with µ ordering on P(C))

– ((a)) = a for all a 2 A

– ((S)) ¾ S for all S 2 P(C)

• Such a pair of functions is called a Galois
connection
– Between the lattices A and P(C)

S C

S

#29

Correctness Condition

• In general, abstract interpretation satisfies
the following (amazingly common) diagram

P(C)

Exp A

C
2

 (·)means

concrete
domain

abstract semantics

abstract
domain

concretization
function

abstraction
function for sets

#30

Three Little Correctness Conditions

• Three conditions define a
correct abstract interpretation

• and are monotonic

• and form a Galois
connection

= “ and are almost inverses”

1. Abstraction of operations is
correct
 a1 op a2 = ((a1) op (a2))

#31

“On The Board” Questions
• What is the VC for:

for i = elow to ehigh do c done

• This axiomatic rule is unsound. Why?

` {A} if p then cthen else celse {Bthen Ç Belse}
` {A Æ :p} celse {Belse}` {A Æ p} cthen {Bthen}

#32

Homework

• Read Cousot & Cousot Article

	Abstract Interpretation (Non-Standard Semantics) a.k.a. “Picking The Right Abstraction”
	Slide 2
	The Problem
	Slide 4
	The Plan
	A Tiny Language
	An Abstraction
	I Saw the Sign
	Correctness of Sign Abstraction
	Slide 10
	Another View of Soundness
	Another View of Soundness 2
	Another View of Soundness 3
	Abstract Interpretation
	Adding Unary Minus and Addition
	Adding Addition
	Loss of Precision
	Adding Division
	Slide 19
	Q: Books (750 / 842)
	Slide 21
	The Abstract Domain
	Lattice Facts
	Lattice History
	Slide 25
	From One, Many
	Example
	Galois Connections
	Correctness Condition
	Three Little Correctness Conditions
	On The Board Questions
	Slide 32

