Abstract Interpretation
(Non-Standard Semantics)

a.k.a.
“Picking The Right Abstraction”
Why analyze programs statically?
The Problem

- It is extremely useful to predict program behavior \textit{statically} (= without running the program)
 - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
- The semantics we studied so far give us the precise behavior of a program
- However, precise static predictions are impossible
 - The exact semantics is \textit{not computable}
- We must settle for \textit{approximate}, but correct, static analyses (e.g. VC vs. WP)
The Plan

- We will introduce abstract interpretation by example
- Starting with a miniscule language we will build up to a fairly realistic application
- Along the way we will see most of the ideas and difficulties that arise in a big class of applications
A Tiny Language

• Consider the following language of arithmetic (“shrIMP”)?

\[e ::= n \mid e_1 \ast e_2 \]

• The operational semantics of this language

\[n \Downarrow n \]

\[e_1 \ast e_2 \Downarrow = e_1 \Downarrow \times e_2 \Downarrow \]

• We’ll take opsem as the “ground truth”

• For this language the precise semantics is computable (but in general it’s not)
An Abstraction

• Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)
• We can define an abstract semantics that computes only the sign of the result

\[\sigma: \text{Exp} \rightarrow \{-, 0, +\} \]

\[\sigma(n) = \text{sign}(n) \]

\[\sigma(e_1 \ast e_2) = \sigma(e_1) \otimes \sigma(e_2) \]
I Saw the Sign

• Why did we want to compute the sign of an expression?
 - One reason: **no one will believe you** know abstract interpretation if you haven’t seen the sign example :-(

• What could we be computing instead?
Correctness of Sign Abstraction

• We can show that the abstraction is correct in the sense that it predicts the sign

\[
\begin{align*}
e \downarrow > 0 & \iff \sigma(e) = + \\
e \downarrow = 0 & \iff \sigma(e) = 0 \\
e \downarrow < 0 & \iff \sigma(e) = -
\end{align*}
\]
Correctness of Sign Abstraction

• We can show that the abstraction is correct in the sense that it predicts the sign
 \[e \downarrow > 0 \iff \sigma(e) = + \]
 \[e \downarrow = 0 \iff \sigma(e) = 0 \]
 \[e \downarrow < 0 \iff \sigma(e) = - \]

• Our semantics is abstract but precise

• Proof is by *structural induction* on the expression \(e \)
 - Each case repeats similar reasoning
Another View of Soundness

• Link each concrete value to an abstract one:
 \[\beta : \mathbb{Z} \rightarrow \{ -, 0, + \} \]

• This is called the **abstraction function** \((\beta)\)
 - This three-element set is the **abstract domain**

• Also define the **concretization function** \((\gamma)\):
 \[\gamma : \{-, 0, +\} \rightarrow \mathcal{P}(\mathbb{Z}) \]

 \[
 \begin{align*}
 \gamma(+) &= \{ n \in \mathbb{Z} \mid n > 0 \} \\
 \gamma(0) &= \{ 0 \} \\
 \gamma(-) &= \{ n \in \mathbb{Z} \mid n < 0 \}
 \end{align*}
 \]
Another View of Soundness 2

- Soundness can be stated succinctly

\[\forall e \in \text{Exp. } e\Downarrow \in \gamma(\sigma(e)) \]

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

- Let C be the **concrete domain** (e.g. \(\mathbb{Z} \)) and A be the **abstract domain** (e.g. \{-, 0, +\})

- **Commutative diagram:**

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\Downarrow & & \Downarrow \gamma \\
C & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]
Another View of Soundness 3

• Consider the generic abstraction of an operator

\[\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2) \]

• This is sound iff

\[\forall a_1, \forall a_2. \ \gamma(a_1 \text{ op } a_2) \supseteq \{ n_1 \text{ op } n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

• e.g. \[\gamma(a_1 \otimes a_2) \supseteq \{ n_1 \ast n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

• This reduces the proof of correctness to one proof for each operator
Abstract Interpretation

• This is our first example of an abstract interpretation
• We carry out computation in an abstract domain
• The abstract semantics is a sound approximation of the standard semantics
• The concretization and abstraction functions establish the connection between the two domains
Adding Unary Minus and Addition

- We extend the language to
 \[e ::= n \mid e_1 \ast e_2 \mid - e \]

- We define \(\sigma(-e) = \ominus \sigma(e) \)

- Now we add addition:
 \[e ::= n \mid e_1 \ast e_2 \mid - e \mid e_1 + e_2 \]

- We define \(\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2) \)
Adding Addition

- The sign values are not closed under addition
- What should be the value of “+ ⊕ -”?
- Start from the soundness condition:
 \[\gamma(+ \oplus -) \supseteq \{n_1 + n_2 \mid n_1 > 0, n_2 < 0\} = \mathbb{Z} \]
- We don’t have an abstract value whose concretization includes \(\mathbb{Z} \), so we add one:

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>T</td>
<td>+</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Loss of Precision

• Abstract computation may lose information:
 \[[(1 + 2) + -3] = 0 \]

 but:
 \[\sigma((1+2) + -3) = \]
 \[(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) = \]
 \[(+ \oplus +) \oplus - = \top \]

• We lost some precision

• But this will simplify the computation of the abstract answer in cases when the precise answer is not computable
Adding Division

• Straightforward except for division by 0
 - We say that there is no answer in that case
 - $\gamma(+ \odot 0) = \{ n \mid n = n_1 / 0 , n_1 > 0 \} = \emptyset$

• Introduce \perp to be the abstraction of the \emptyset
 - We also use the same abstraction for non-termination!
 $\perp = “nothing”$
 $\top = “something unknown”$

\[\begin{array}{c|cccc}
\emptyset & - & 0 & + & \top & \perp \\
\hline
- & + & 0 & - & \top & \perp \\
0 & \perp & \perp & \perp & \perp & \perp \\
+ & - & 0 & + & \top & \perp \\
\top & \top & \top & \top & \top & \perp \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}\]
This 1962 Newbery Medal-winning novel by Madeleine L'Engle includes Charles Wallace, Mrs. Who, Mrs. Whatsit, Mrs. Which and the space-bending Tesseract.
• This American Turing-award winner is known for developing Speedcoding and FORTRAN (the first two high-level languages), as well creating a way to express the formal syntax of a language and using that approach to specify ALGOL. He later focused on function-level (as opposed to value-level) programming. His first major programming project calculated the positions of the Moon.
The Abstract Domain

- Our abstract domain forms a **lattice**
- A partial order is induced by γ
 \[a_1 \leq a_2 \text{ iff } \gamma(a_1) \subseteq \gamma(a_2) \]
 - We say that a_1 is more precise than a_2!
- Every **finite subset** has a least-upper bound (lub) and a greatest-lower bound (glb)
Lattice Facts

- A lattice is **complete** when every subset has a lub and a gub
 - Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a **complete partial order** (recall: proof techniques: induction!)
 - Since a chain is a subset
- Not every CPO is a complete lattice
 - Might not even be a lattice at all
Lattice History

- **Early work** in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \top and glb
Lattice History

- **Early work** in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \top and \bot

- In abstract interpretation we’ll use \top to denote *“I don’t know”*.
 - Corresponds to all values in the concrete domain
From One, Many

- We can start with the abstraction function \(\beta \)
 \[
 \beta : C \rightarrow A
 \]
 (maps a concrete value to the best abstract value)
 - A must be a lattice

- We can derive the concretization function \(\gamma \)
 \[
 \gamma : A \rightarrow \mathcal{P}(C)
 \]
 \[
 \gamma(a) = \{ x \in C \mid \beta(x) \leq a \}
 \]

- And the abstraction for sets \(\alpha \)
 \[
 \alpha : \mathcal{P}(C) \rightarrow A
 \]
 \[
 \alpha(S) = \operatorname{lub} \{ \beta(x) \mid x \in S \}
 \]
Example

- Consider our sign lattice
 \[\beta(n) = \begin{cases} + & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ - & \text{if } n < 0 \end{cases} \]

- \(\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \} \)
 - Example: \(\alpha(\{1, 2\}) = \text{lub} \{ + \} = + \)
 - \(\alpha(\{1, 0\}) = \text{lub} \{ +, 0 \} = \top \)
 - \(\alpha(\{\}) = \text{lub} \emptyset = \bot \)

- \(\gamma(a) = \{ n \mid \beta(n) \leq a \} \)
 - Example: \(\gamma(+) = \{ n \mid \beta(n) \leq + \} = \{ n \mid \beta(n) = + \} = \{ n \mid n > 0 \} \)
 - \(\gamma(\top) = \{ n \mid \beta(n) \leq \top \} = \mathbb{Z} \)
 - \(\gamma(\bot) = \{ n \mid \beta(n) \leq \bot \} = \emptyset \)
Galois Connections

• We can show that
 - γ and α are monotonic (with \subseteq ordering on $\mathcal{P}(C)$)
 - $\alpha(\gamma(a)) = a$ for all $a \in A$
 - $\gamma(\alpha(S)) \subseteq S$ for all $S \in \mathcal{P}(C)$

• Such a pair of functions is called a **Galois connection**
 - Between the lattices A and $\mathcal{P}(C)$
Correctness Condition

- In general, abstract interpretation satisfies the following (amazingly common) diagram:

\[
\begin{array}{cccccc}
\text{Exp} & \xrightarrow{\sigma} & \mathcal{A} & \xrightarrow{\gamma} & P(C) \\
\downarrow & & & & \\
\mathcal{C} & & \in & & \mathcal{P}(C)
\end{array}
\]

- means
- abstract semantics
- abstract domain
- conjunction function for sets
- abstraction function for sets
- concretization function
- concrete domain

• In general, abstract interpretation satisfies the following (amazingly common) diagram.
Three Little Correctness Conditions

- Three conditions define a correct abstract interpretation
- α and γ are monotonic
- α and γ form a Galois connection

 $= \ \text{“} \alpha \text{ and } \gamma \text{ are almost inverses”}$

1. Abstraction of operations is correct

\[a_1 \ \text{op} \ a_2 = \alpha(\gamma(a_1) \ \text{op} \ \gamma(a_2)) \]
On The Board Questions

• What is the VC for:

$$\text{for } i = e_{\text{low}} \text{ to } e_{\text{high}} \text{ do } c \text{ done}$$

• This axiomatic rule is unsound. Why?

$$\vdash \{A \land p\} \ c_{\text{then}} \ \{B_{\text{then}}\} \quad \vdash \{A \land \neg p\} \ c_{\text{else}} \ \{B_{\text{else}}\}$$

$$\vdash \{A\} \ \text{if } p \ \text{then} \ c_{\text{then}} \ \text{else} \ c_{\text{else}} \ \{B_{\text{then}} \lor B_{\text{else}}\}$$
Homework

• Read Cousot & Cousot Article