
#1

Soundness Soundness
and and

CompletenessCompleteness
ofof

AxiomaticAxiomatic
SemanticsSemantics

#2

One-Slide Summary
• A system of axiomatic semantics is sound if everything

we can prove is also true: if ` { A } c { B } then ² { A } c
{ B }

• We prove this by simultaneous induction on the
structure of the operational semantics derivation and
the axiomatic semantics proof.

• A system of axiomatic semantics is complete if we can
prove all true things: if ² { A } c { B } then ` { A } c { B }

• Our system is relatively complete (= just as complete
as the underlying logic). We use weakest
preconditions to reason about soundness. Verification
conditions are preconditions that are easy to compute.

#3

Where Do We Stand?
• We have a language for asserting properties

of programs
• We know when such an assertion is true
• We also have a symbolic method for deriving

assertions

A
{A} c {B}

 ² A
² {A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness

#4

Soundness of Axiomatic Semantics

• Formal statement of soundness:
 if ` { A } c { B } then ² { A } c { B }

 or, equivalently
 For all , if  ² A

and Op :: <c, >  ’
 and Pr :: ` { A } c { B }

then ’ ² B

• “Op” === “Opsem Derivation”
• “Pr” === “Axiomatic Proof”

How shall we
prove this, oh

class?

#5

Not Easily!

• By induction on the structure of c?
– No, problems with while and rule of consequence

• By induction on the structure of Op?
– No, problems with while

• By induction on the structure of Pr?
– No, problems with consequence

• By simultaneous induction on the structure
of Op and Pr
– Yes! New Technique!

#6

Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering

 (o, p) Á (o’, p’) iff

o < o’ or o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well founded order and leads to
simultaneous induction

• If o < o’ then p can actually be larger than p’!

• It can even be unrelated to p’!

#7

Soundness of Axiomatic Semantics

• Formal statement of soundness:
 If ` { A } c { B } then ² { A } c { B }

 or, equivalently
 For all , if  ² A

and Op :: <c, >  ’
and Pr :: ` { A } c { B }

then ’ ² B

• “Op” = “Opsem Derivation”
• “Pr” = “Axiomatic Proof”

#8

Soundness of the While Rule
(Indiana Proof and the Slide of Doom)

• Case: last rule used in Pr : ` {A} c {B} was the while rule:

• Two possible rules for the root of Op (by inversion)
– We’ll only do the complicated case:

Assume that  ² A
To show that ’’ ² A Æ : b

• By soundness of booleans and Op1 we get  ² b
– Hence  ² A Æ b

• By IH on Pr1 and Op2 we get ’ ² A

• By IH on Pr and Op3 we get ’’ ² A Æ : b, q.e.d. (tricky!)

` {A} while b do c {A Æ : b}

Pr1 :: ` {A Æ b} c {A}

<while b do c,  >  ’’

Op1 :: <b, >  true Op2 :: <c,>  ’ Op3 :: <while b do c, ’ >  ’’

#9

Soundness of the While Rule

• Note that in the last use of IH the derivation
Pr did not decrease

• But Op3 was a sub-derivation of Op

• See Winskel, Chapter 6.5, for another
example of a soundness proof

#10

Completeness of Axiomatic
Semantics

• If ² {A} c {B} can we always derive ` {A} c {B} ?

• If so, axiomatic semantics is complete

• If not then there are valid properties of programs
that we cannot verify with Hoare rules :-(

• Good news: for our language the Hoare triples are
complete

• Bad news: only if the underlying logic is complete
(whenever ² A we also have ` A)

- this is called relative completeness

#11

Examples, General Plan

• OK, so:
² { x < 5 Æ z = 2 } y := x + 2 { y < 7 }

• Can we prove it?
?`? { x < 5 Æ z = 2 } y := x + 2 { y < 7 }

• Well, we could easily prove:
` { x+2 < 7 } y := x + 2 { y < 7 }

• And we know …
` x < 5 Æ z = 2) x+2 < 7

• Shouldn’t those two proofs be enough?

#12

Proof Idea
• Dijkstra’s idea: To verify that { A } c { B }

a) Find out all predicates A’ such that ² { A’ } c { B }
• call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ 2 Pre(c, B) that A) A’

• Assertions can be ordered:
false true)

strong weak
Pre(c, B)

weakest
precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A) WP(c, B)

A

#13

Proof Idea (Cont.)
• Completeness of axiomatic semantics:

If ² { A } c { B } then ` { A } c { B }

• Assuming that we can compute wp(c, B) with the
following properties:
• wp is a precondition (according to the Hoare rules)
 ` { wp(c, B) } c { B }
• wp is (truly) the weakest precondition
 If ² { A } c { B } then ² A) wp(c, B)

• We also need that whenever ² A then ` A !

` {A} c {B}

` A) wp(c, B) ` {wp(c, B)} c {B}

Q: Bonus
• Despite having physically appeared in only

about ten movies, this Indian singer has
received the Bharat Ratna (India's highest
civilian honor) and held a controversial
Guinness Book of World Records entry for
“most recordings” for a time. At one point
the Pakistani prime minister said the he
would “gladly exchange [her] for Kashmir”.
She is the sister of Asha Bhosle and
specializes in “playback” or “voiceover”
movie music.

Q: Countries

• This “lower” country is
famous for having the
tallest citizens in the world
(on average), housing the
UN's International Court of
Justice, hosting Europe's
busiest seaport, being the
first country to legalize
same-sex marriage (in
2001), and producing artists
such as Rembrandt van
Rijn, Johannes Vermeer and
Vincent van Gogh.

Q: Writing
• "Some coffee, Mr. Covenant?"

• "No!" he panted, glaring. The gelid liquid was anthraciously
black, atramentous, nigrescent as his carious and macerated
soul. "No," he groaned. "Do you hear? I will not!" Shaking,
he fumbled for his empty mug, clawing at it with numb hands
like blocks of rotted wood. Finally, gasping, he closed his
fingers on the malefic vessel, upending it, then ramming it
downward to the table again... violently stopping the
irrefragable, ineluctable maw with intransigent formica. The
sudden whipcrack sound threw a refulgent oriflamme of pain
across his sight, and he closed his eyes with a febrile
shudder. "No," he whispered. No more. No more.

• "All righty then, I'll be right back with your check!"

Simplifying Writing

• “In order to X, we do Y”
– “To X we do Y”

• “By induction on the hypothesis”
– “By the induction hypothesis”

• “Choose X at random”
– “Let X be arbitrary”

• “For the next step in the proof to proceed,
set the value of x to be 2.”
– “Let x be 2.”

#18

Axiomatic Semantics:Axiomatic Semantics:
PreconditionsPreconditions

#19

Weakest Preconditions
• Define wp(c, B) inductively on c, following the Hoare rules:

• wp(c1; c2, B) =
 wp(c1, wp(c2, B))

• wp(x := e, B) =
 [e/x]B

• wp(if E then c1 else c2, B) =
 E) wp(c1, B) Æ :E) wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C} {C} c2 {B}

{ [e/x]B } x := E {B}

{ E) A1 Æ : E) A2} if E then c1 else c2 {B}

{A1} c1 {B} {A2} c2 {B}

#20

Weakest Preconditions for Loops

• We start from the unwinding equivalence
 while b do c =

if b then c; while b do c else skip
• Let w = while b do c and W = wp(w, B)
• We have that
 W = b) wp(c, W) Æ : b) B
• But this is a recursive equation!

– Mathematicians solve these using domain theory

• But we need a domain for assertions
– This will give us a way to define “weakest”

#21

A Partial Order for Assertions
• Which assertion contains the least information?

– “true” : it does not say anything about the state

• What is an appropriate information ordering ?
A v A’ iff ² A’) A

• Is this partial order complete?
– Take a chain A1 v A2 v …

– Let ÆAi be the infinite conjunction of Ai

  ² ÆAi iff for all i we have that  ² Ai

– I assert that ÆAi is the least upper bound

• Can ÆAi be expressed finitely in our language of
assertions?
– In many cases: yes (see Winskel), we’ll assume yes for

now

#22

Weakest Precondition for WHILE
• Use the fixed-point theorem
 F(A) = b) wp(c, A) Æ : b) B

– (Where did this come from? Two slides back!)
– I assert that F is both monotonic and continuous

• The least-fixed point (= the weakest fixed
point) is

wp(w, B) = ÆFi(true)
• (Notice that we are not working on a flat domain,

such as numbers plus a minimal element.)

#23

Weakest Preconditions (Cont.)
• Define a family of wp’s

– wpk(while e do c, B) = weakest precondition on which
the loop terminates in B if it terminates in k or fewer
iterations

wp0 = : E) B
wp1 = E) wp(c, wp0) Æ : E) B
…

• wp(while e do c, B) = Æk ¸ 0 wpk = lub {wpk | k ¸ 0}
• See Necula document on the web page for the

proof of completeness with weakest preconditions
• Weakest preconditions are

– Impossible to compute (in general)
– Can we find something easier to compute yet sufficient?

#24

Not Quite Weakest Preconditions

• Recall what we are trying to do:
false true)

strong weak
Pre(s, B)

weakest
precondition: WP(c, B)A

verification
condition: VC(c, B)

• Construct a verification condition: VC(c, B)
– Our loops will be annotated with loop invariants!

– VC is guaranteed to be stronger than WP

– But still weaker than A: A) VC(c, B)) WP(c, B)

#25

Groundwork

• Factor out the hard work
– Loop invariants
– Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
– Good software engineering practice anyway
– Requiring annotations = Kiss of Death?

• New form of while that includes a loop invariant:

whileInv b do c
– Invariant formula Inv must hold every time before b is

evaluated

• A process for computing VC(annotated_command,
post_condition) is called VCGen

#26

Verification Condition Generation

• Mostly follows the definition of the wp
function:
VC(skip, B) = B

VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) =

b) VC(c1, B) Æ :b) VC(c2, B)

VC(x := e, B) = [e/x] B

VC(let x = e in c, B) = [e/x] VC(c, B)

VC(whileInv b do c, B) = ?

#27

 VC(whileInv e do c, B) =

Inv Æ (8x1…xn. Inv) (e) VC(c, Inv) Æ : e) B))

• Inv is the loop invariant (provided externally)
• x1, …, xn are all the variables modified in c
• The 8 is similar to the 8 in mathematical

induction:
P(0) Æ 8n 2 N. P(n)) P(n+1)

VCGen for WHILE

Inv holds
on entry

Inv is preserved in
an arbitrary iteration

B holds when the
loop terminates

in an arbitrary iteration

#28

Example VCGen Problem
• Let’s compute the VC of this program with

respect to post-condition x  0

x = 0;
y = 2;
whilex+y=2 y > 0 do

 y := y - 1;
 x := x + 1

First, what do we
expect? What pre-
condition do we
need to ensure
x0 after this?

#29

Example of VC
• By the sequencing rule, first we do the while loop

(call it w):
whilex+y=2 y > 0 do

 y := y - 1;
 x := x + 1

• VCGen(w, x  0) = x+y=2 Æ
8x,y. x+y=2) (y>0) VC(c, x+y=2) Æ y·0) x  0)

• VCGen(y:=y-1 ; x:=x+1, x+y=2) =
 (x+1) + (y-1) = 2

• w Result: x+y=2 Æ
8x,y. x+y=2) (y>0) (x+1)+(y-1)=2 Æ y·0) x  0)

Pr
es

e r
ve

 l
oo

p
in

va
ri

an
t

En
su

r e
 p

os
t

on

ex
it

#30

Example of VC (2)

• VC(w, x  0) = x+y=2 Æ

8x,y. x+y=2)

(y>0) (x+1)+(y-1)=2 Æ y·0) x  0)

• VC(x := 0; y := 2 ; w, x  0) = 0+2=2 Æ

8x,y. x+y=2)

(y>0) (x+1)+(y-1)=2 Æ y·0) x  0)

• So now we ask an automated theorem prover
to prove it.

#31

Thoreau, Thoreau, Thoreau

$./Simplify
> (AND (EQ (+ 0 2) 2)
(FORALL (x y) (IMPLIES (EQ (+ x y) 2)

(AND (IMPLIES (> y 0)
 (EQ (+ (+ x 1)(- y 1)) 2))

(IMPLIES (<= y 0) (NEQ x 0))))))
1: Valid.

• Huzzah!
• Simplify is a non-trivial five megabytes
• Z3 is 15+ megabytes

#32

Can We Mess Up VCGen?
• The invariant is from the user (= the

adversary, the untrusted code base)
• Let’s use a loop invariant that is too weak,

like “true”.
• VC = true Æ 8x,y. true)

 (y>0) true Æ y·0) x  0)

• Let’s use a loop invariant that is false, like
“x  0”.

• VC = 0  0 Æ 8x,y. x  0)
 (y>0) x+1  0 Æ y·0) x  0)

#33

Emerson, Emerson, Emerson
$./Simplify
> (AND TRUE
 (FORALL (x y) (IMPLIES TRUE
 (AND (IMPLIES (> y 0) TRUE)
 (IMPLIES (<= y 0) (NEQ x 0))))))
Counterexample: context:
 (AND
 (EQ x 0)
 (<= y 0)
)
1: Invalid.

• OK, so we won’t be fooled.

#34

Soundness of VCGen

• Simple form
² { VC(c,B) } c { B }

• Or equivalently that
² VC(c, B)) wp(c, B)

• Proof is by induction on the structure of c
– Try it!

• Soundness holds for any choice of invariant!
• Next: properties and extensions of VCs

#35

Questions

• Homework for later
• No class on Wednesday
• Peer review now

	Soundness and Completeness
	Slide 2
	Where Do We Stand?
	Soundness of Axiomatic Semantics
	Not Easily!
	Slide 6
	Slide 7
	Soundness of the While Rule (Indiana Proof and the Slide of Doom)
	Soundness of the While Rule
	Completeness of Axiomatic Semantics
	Examples, General Plan
	Proof Idea
	Proof Idea (Cont.)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Introduction to Axiomatic Semantics
	Weakest Preconditions
	Weakest Preconditions for Loops
	A Partial Order for Assertions
	Weakest Precondition for WHILE
	Weakest Preconditions (Cont.)
	Not Quite Weakest Preconditions
	Groundwork
	Verification Condition Generation
	VCGen for WHILE
	Example VCGen Problem
	Example of VC
	Example of VC (2)
	Thoreau, Thoreau, Thoreau
	Can We Mess Up VCGen?
	Emerson, Emerson, Emerson
	Soundness of VCGen
	Slide 35

