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One-Slide Summary
• A system of axiomatic semantics is sound if everything 

we can prove is also true: if ` { A } c { B } then ² { A } c 
{ B } 

• We prove this by simultaneous induction on the 
structure of the operational semantics derivation and 
the axiomatic semantics proof.

• A system of axiomatic semantics is complete if we can 
prove all true things: if ² { A } c { B } then ` { A } c { B } 

• Our system is relatively complete (= just as complete 
as the underlying logic). We use weakest 
preconditions to reason about soundness. Verification 
conditions are preconditions that are easy to compute. 
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Where Do We Stand?
• We have a language for asserting properties 

of programs
• We know when such an assertion is true
• We also have a symbolic method for deriving 

assertions

A
{A} c {B}

 ² A
² {A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness
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Soundness of Axiomatic Semantics

• Formal statement of soundness:
       if ` { A } c { B } then ² { A } c { B } 

   or, equivalently
       For all , if  ² A 

and Op :: <c, >  ’ 
       and Pr :: ` { A } c { B } 

then ’ ² B 

• “Op” === “Opsem Derivation”
• “Pr” === “Axiomatic Proof” 

How shall we 
prove this, oh 

class?



#5

Not Easily!

• By induction on the structure of c?
– No, problems with while and rule of consequence

• By induction on the structure of Op?
– No, problems with while

• By induction on the structure of Pr?
– No, problems with consequence

• By simultaneous induction on the structure 
of Op and Pr
– Yes! New Technique!
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Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering 

         (o, p) Á (o’, p’) iff    

o < o’   or   o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well founded order and leads to 
simultaneous induction 

• If o < o’ then p can actually be larger than p’! 

• It can even be unrelated to p’!
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Soundness of Axiomatic Semantics

• Formal statement of soundness:
       If ` { A } c { B } then ² { A } c { B } 

   or, equivalently
       For all , if  ² A 

and Op :: <c, >  ’ 
and Pr :: ` { A } c { B } 

then ’ ² B 

• “Op” = “Opsem Derivation”
• “Pr” = “Axiomatic Proof” 
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Soundness of the While Rule
(Indiana Proof and the Slide of Doom)

• Case: last rule used in Pr : ` {A} c {B} was the while rule:

• Two possible rules for the root of Op (by inversion)
– We’ll only do the complicated case:

Assume that  ² A
To show that ’’ ² A Æ : b

• By soundness of booleans and Op1 we get  ² b
– Hence  ² A Æ b

• By IH on Pr1 and Op2 we get ’ ² A

• By IH on Pr and Op3 we get  ’’ ² A Æ : b, q.e.d. (tricky!)

` {A} while b do c {A Æ : b}

Pr1 :: ` {A Æ b} c {A}

<while b do c,  >  ’’

Op1 :: <b, >  true      Op2 :: <c,>  ’      Op3 ::  <while b do c, ’ >  ’’
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Soundness of the While Rule

• Note that in the last use of IH the derivation 
Pr did not decrease

• But Op3 was a sub-derivation of Op

• See Winskel, Chapter 6.5, for another 
example of a soundness proof
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Completeness of Axiomatic 
Semantics

• If ² {A} c {B} can we always derive ` {A} c {B} ?

• If so, axiomatic semantics is complete

• If not then there are valid properties of programs 
that we cannot verify with Hoare rules :-( 

• Good news: for our language the Hoare triples are 
complete

• Bad news: only if the underlying logic is complete
(whenever ² A we also have ` A)

- this is called relative completeness
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Examples, General Plan

• OK, so:
² { x < 5 Æ z = 2 } y := x + 2 { y < 7 }

• Can we prove it? 
?`? { x < 5 Æ z = 2 } y := x + 2 { y < 7 }

• Well, we could easily prove: 
` { x+2 < 7 } y := x + 2 { y < 7 }

• And we know … 
` x < 5 Æ z = 2 ) x+2 < 7

• Shouldn’t those two proofs be enough? 
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Proof Idea
• Dijkstra’s idea: To verify that { A } c { B }

a) Find out all predicates A’ such that ² { A’ } c { B } 
• call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ 2 Pre(c, B) that A ) A’ 

• Assertions can be ordered:
false true)

strong weak 
Pre(c, B)

weakest
precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A ) WP(c, B)

A
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Proof Idea (Cont.)
• Completeness of axiomatic semantics:

If ² { A } c { B } then ` { A } c { B }

• Assuming that we can compute wp(c, B) with the 
following properties: 
• wp is a precondition (according to the Hoare rules)
             ` { wp(c, B) } c { B } 
• wp is (truly) the weakest precondition          
             If  ² { A } c { B }   then  ² A ) wp(c, B)

• We also need that whenever ² A then ` A !

` {A} c {B}

` A ) wp(c, B)         ` {wp(c, B)} c {B}



Q:  Bonus
• Despite having physically appeared in only 

about ten movies, this Indian singer has 
received the Bharat Ratna (India's highest 
civilian honor) and held a controversial 
Guinness Book of World Records entry for 
“most recordings” for a time. At one point 
the Pakistani prime minister said the he 
would “gladly exchange [her] for Kashmir”. 
She is the sister of Asha Bhosle and 
specializes in “playback” or “voiceover” 
movie music. 



Q: Countries

• This “lower” country is 
famous for having the 
tallest citizens in the world 
(on average), housing the 
UN's International Court of 
Justice, hosting Europe's 
busiest seaport, being the 
first country to legalize 
same-sex marriage (in 
2001), and producing artists 
such as Rembrandt van 
Rijn, Johannes Vermeer and 
Vincent van Gogh.



Q: Writing
• "Some coffee, Mr. Covenant?"

• "No!" he panted, glaring.  The gelid liquid was anthraciously 
black, atramentous, nigrescent as his carious and macerated 
soul.  "No," he groaned.  "Do you hear?  I will not!"  Shaking, 
he fumbled for his empty mug, clawing at it with numb hands 
like blocks of rotted wood.  Finally, gasping, he closed his 
fingers on the malefic vessel, upending it, then ramming it 
downward to the table again... violently stopping the 
irrefragable, ineluctable maw with intransigent formica.  The 
sudden whipcrack sound threw a refulgent oriflamme of pain 
across his sight, and he closed his eyes with a febrile 
shudder.  "No," he whispered.  No more.  No more.

• "All righty then, I'll be right back with your check!"



Simplifying Writing

• “In order to X, we do Y” 
– “To X we do Y”

• “By induction on the hypothesis”
– “By the induction hypothesis”

• “Choose X at random”
– “Let X be arbitrary”

• “For the next step in the proof to proceed, 
set the value of x to be 2.”
– “Let x be 2.”
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Axiomatic Semantics:Axiomatic Semantics:
PreconditionsPreconditions
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Weakest Preconditions
• Define wp(c, B) inductively on c, following the Hoare rules:

• wp(c1; c2, B) = 
    wp(c1, wp(c2, B))

• wp(x := e, B) = 
    [e/x]B

• wp(if E then c1 else c2, B) = 
    E ) wp(c1, B) Æ :E ) wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C}            {C} c2 {B}

{ [e/x]B } x := E {B}

{ E ) A1 Æ : E ) A2} if E then c1 else c2 {B}

{A1} c1 {B}            {A2} c2 {B}
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Weakest Preconditions for Loops

• We start from the unwinding equivalence
         while b do c    =  

if b then c; while b do c else skip
• Let   w = while b do c   and   W = wp(w, B)
• We have that 
          W = b ) wp(c, W)   Æ   : b ) B
• But this is a recursive equation!

– Mathematicians solve these using domain theory

• But we need a domain for assertions
– This will give us a way to define “weakest”
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A Partial Order for Assertions
• Which assertion contains the least information?

– “true” : it does not say anything about the state

• What is an appropriate information ordering ?
A v A’      iff       ² A’ ) A

• Is this partial order complete? 
– Take a chain A1 v A2 v …

– Let ÆAi be the infinite conjunction of Ai

             ² ÆAi  iff for all i we have that  ² Ai

– I assert that ÆAi is the least upper bound

• Can ÆAi be expressed finitely in our language of 
assertions?
– In many cases: yes (see Winskel), we’ll assume yes for 

now
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Weakest Precondition for WHILE
• Use the fixed-point theorem
           F(A) = b ) wp(c, A) Æ : b ) B

– (Where did this come from? Two slides back!)
– I assert that F is both monotonic and continuous

• The least-fixed point (= the weakest fixed 
point) is

wp(w, B) = ÆFi(true)
• (Notice that we are not working on a flat domain, 

such as numbers plus a minimal element.)
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Weakest Preconditions (Cont.)
• Define a family of wp’s

– wpk(while e do c, B) = weakest precondition on which 
the loop terminates in B if it terminates in k or fewer 
iterations

wp0 = : E ) B 
wp1 = E ) wp(c, wp0) Æ : E ) B
…

• wp(while e do c, B) = Æk ¸ 0 wpk = lub {wpk | k ¸ 0}
• See Necula document on the web page for the 

proof of completeness with weakest preconditions
• Weakest preconditions are 

– Impossible to compute (in general)
– Can we find something easier to compute yet sufficient?
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Not Quite Weakest Preconditions

• Recall what we are trying to do:
false true)

strong weak 
Pre(s, B)

weakest
precondition: WP(c, B)A

verification 
condition: VC(c, B)

• Construct a verification condition: VC(c, B)
– Our loops will be annotated with loop invariants!

– VC is guaranteed to be stronger than WP

– But still weaker than A: A ) VC(c, B) ) WP(c, B)
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Groundwork

• Factor out the hard work
– Loop invariants
– Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
– Good software engineering practice anyway
– Requiring annotations = Kiss of Death? 

• New form of while that includes a loop invariant:

whileInv b do c
– Invariant formula Inv must hold every time before b is 

evaluated

• A process for computing VC(annotated_command, 
post_condition) is called VCGen
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Verification Condition Generation

• Mostly follows the definition of the wp 
function:
VC(skip, B) = B

VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) = 

b ) VC(c1, B) Æ :b ) VC(c2, B)

VC(x := e, B)  = [e/x] B

VC(let x = e in c, B) = [e/x] VC(c, B)

VC(whileInv b do c, B) = ?
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     VC(whileInv e do c, B) = 

Inv Æ (8x1…xn. Inv ) (e ) VC(c, Inv)  Æ  : e ) B) )

• Inv is the loop invariant (provided externally)
• x1, …, xn are all the variables modified in c
• The 8 is similar to the 8 in mathematical 

induction:
P(0) Æ 8n 2 N. P(n) ) P(n+1)

VCGen for WHILE

Inv holds
on entry

Inv is preserved in 
an arbitrary iteration

B holds when the 
loop terminates 

in an arbitrary iteration
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Example VCGen Problem
• Let’s compute the VC of this program with 

respect to post-condition x  0

x = 0;
y = 2;
whilex+y=2 y > 0 do

    y := y - 1; 
    x := x + 1

First, what do we 
expect? What pre-
condition do we 
need to ensure 
x0 after this?
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Example of VC
• By the sequencing rule, first we do the while loop 

(call it w):
whilex+y=2 y > 0 do

    y := y - 1; 
    x := x + 1

• VCGen(w, x  0) = x+y=2 Æ 
8x,y. x+y=2 ) (y>0 ) VC(c, x+y=2)  Æ y·0 ) x  0)

• VCGen(y:=y-1 ; x:=x+1, x+y=2) =
   (x+1) + (y-1) = 2

• w Result: x+y=2 Æ 
8x,y. x+y=2 ) (y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x  0)
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Example of VC (2)

• VC(w, x  0) = x+y=2 Æ 

8x,y. x+y=2 ) 

(y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x  0)

• VC(x := 0; y := 2 ; w, x  0) = 0+2=2 Æ

8x,y. x+y=2 ) 

(y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x  0)

• So now we ask an automated theorem prover 
to prove it. 
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Thoreau, Thoreau, Thoreau

$ ./Simplify 
> (AND (EQ (+ 0 2) 2) 
(FORALL ( x y ) (IMPLIES (EQ (+ x y) 2) 

(AND (IMPLIES (> y 0) 
 (EQ (+ (+ x 1)(- y 1)) 2))

(IMPLIES (<= y 0) (NEQ x 0))))))
1: Valid.

• Huzzah!
• Simplify is a non-trivial five megabytes
• Z3 is 15+ megabytes
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Can We Mess Up VCGen?
• The invariant is from the user (= the 

adversary, the untrusted code base)
• Let’s use a loop invariant that is too weak, 

like “true”. 
• VC = true Æ 8x,y. true ) 

             (y>0 ) true  Æ  y·0 ) x  0)

• Let’s use a loop invariant that is false, like 
“x  0”. 

• VC = 0  0 Æ 8x,y. x  0 ) 
            (y>0 ) x+1  0  Æ  y·0 ) x  0)
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Emerson, Emerson, Emerson
$ ./Simplify 
> (AND TRUE
  (FORALL ( x y ) (IMPLIES TRUE
    (AND (IMPLIES (> y 0) TRUE)
         (IMPLIES (<= y 0) (NEQ x 0))))))
Counterexample: context:
    (AND
      (EQ x 0)
      (<= y 0)
    )
1: Invalid.

• OK, so we won’t be fooled. 
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Soundness of VCGen

• Simple form
² { VC(c,B) } c { B }

• Or equivalently that
² VC(c, B) ) wp(c, B)

• Proof is by induction on the structure of c
– Try it!

• Soundness holds for any choice of invariant!
• Next: properties and extensions of VCs
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Questions

• Homework for later
• No class on Wednesday
• Peer review now
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