
#1

#2

Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• Small-Step Contextual Semantics

– Reductions, Redexes, and Contexts

• Applications and Recent Research

#3

Bookkeeping

• Hookkeeper (wire ring that holds a fly-fishing
hook in place)

• Tattooee
• Sweettooth

• Any others?

#4

60 Second Summary -
Semantics

• A formal semantics is a system for
assigning meanings to programs.

• For now, programs are IMP commands and
expressions

• In operational semantics the meaning of
a program is “what it evaluates to”

• Any opsem system gives rules of
inference that tell you how to evaluate
programs

#5

Summary - Judgments

• Rules of inference allow you to derive
judgments (“something that is knowable”) like

<e, >  n
– In state , expression e evaluates to n

<c, >  ’
– After evaluating command c in state  the new state

will be ’

• State  maps variables to values ( : L ! Z)

• Inferences equivalent up to variable renaming:
<c, >  ’ === <c’, >  

#6

Notation: Rules of Inference

• We express the evaluation rules as rules
of inference for our judgment
– called the derivation rules for the judgment

– also called the evaluation rules (for
operational semantics)

• In general, we have one rule for each
language construct:

<e1 + e2, >  n1 + n2

<e1, >  n1 <e2, >  n2 This is the only
rule for e1 + e2

#7

Evaluation By Inversion

• We must find n1 and n2 such that
e1  n1 and e2  n2 are derivable

– This is done recursively

• If there is exactly one rule for each kind of
expression we say that the rules are syntax-
directed
– At each step at most one rule applies

– This allows a simple evaluation procedure as
above (recursive tree-walk)

– True for our Aexp but not Bexp.

#8

Summary - Rules

• Rules of inference list the hypotheses
necessary to arrive at a conclusion

• A derivation involves interlocking (well-
formed) instances of rules of inference

<x, >  (x) <e1 - e2, >  n1 minus n2

<e1, >  n1 <e2, >  n2

<(4*2) - 6, >  2
<4*2, >  8 <6, >  6

<4, >  4 <2, >  2

#9

Operational SemanticsOperational Semantics
Small-Step SemanticsSmall-Step Semantics

#10

Provability

• Given an opsem system, <e, >  n is
provable if there exists a well-formed
derivation with <e, >  n as its conclusion
– “well-formed” = “every step in the derivation is

a valid instance of one of the rules of inference
for this opsem system”

– “` <e, >  n” = “it is provable that <e, >  n”

• We would like truth and provability to be
closely related

#11

Truth?

• “A Vorlon said understanding is a three-
edged sword. Your side, their side and
the truth.”
– Sheridan, Babylon 5, Into The Fire

• We will not formally define “truth” yet
• Instead we appeal to your intuition

– <2+2, >  4 -- should be true

– <2+2, >  5 -- should be false

#12

Completeness

• A proof system (like our operational
semantics) is complete if every true
judgment is provable.

• If we replaced the subtract rule with:

• Our opsem would be incomplete:
<4-2, >  2 -- true but not provable

<e1 - e2, >  n
<e1, >  n <e2, >  0

#13

Consistency
• A proof system is consistent (or sound) if

every provable judgment is true.
• If we replaced the subtract rule with:

• Our opsem would be inconsistent (or
unsound):
– <6-1, >  9 -- false but provable

<e1 - e2, >  n1 + 3

<e1, >  n1 <e2, >  n2

“A foolish consistency is the hobgoblin of little minds,
adored by little statesmen and philosophers and divines.”
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.

#14

Desired Traits
• Typically a system (of operational semantics) is

always complete (unless you forget a rule)

• If you are not careful, however, your system may
be unsound

• Usually that is very bad
– A paper with an unsound type system is usually rejected

– Papers often prove (sketch) that a system is sound

– Recent research (e.g., Engler, ESP) into useful but
unsound systems exists, however

• In this class your work should be complete and
consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here.
What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously
and every molecule in your body exploding at the speed of light.

#15

With That In Mind

• We now return to opsem for IMP

<while b do c, >  
<b, >  false

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, >  [x := n]

<e, >  n

<while b do c,  >  ’
<b, >  true <c; while b do c, >  ’

#16

Command Evaluation Notes

• The order of evaluation is important
– c1 is evaluated before c2 in c1; c2

– c2 is not evaluated in “if true then c1 else c2”

– c is not evaluated in “while false do c”

– b is evaluated first in “if b then c1 else c2”

– this is explicit in the evaluation rules

• Conditional constructs (e.g., b1 Ç b2) have
multiple evaluation rules
– but only one can be applied at one time

#17

Command Evaluation Trials

• The evaluation rules are not syntax-
directed
– See the rules for while, Æ

– The evaluation might not terminate

• Recall: the evaluation rules suggest an
interpreter

• Natural-style semantics has two big
disadvantages (continued …)

#18

Disadvantages of Natural-Style
Operational Semantics

• It is hard to talk about commands whose
evaluation does not terminate
– When there is no ’ such that <c, >  ’

– But that is true also of ill-formed or
erroneous commands (in a richer language)!

• It does not give us a way to talk about
intermediate states
– Thus we cannot say that on a parallel

machine the execution of two commands is
interleaved (= no modeling threads)

#19

Semantics Solution

• Small-step semantics addresses these
problems
– Execution is modeled as a (possible infinite)

sequence of states

• Not quite as easy as large-step natural
semantics, though

• Contextual semantics is a small-step
semantics where the atomic execution
step is a rewrite of the program

#20

Contextual Semantics

• We will define a relation <c, >  <c’, ’>
– c’ is obtained from c via an atomic rewrite step

– Evaluation terminates when the program has
been rewritten to a terminal program
• one from which we cannot make further progress

– For IMP the terminal command is “skip”

– As long as the command is not “skip” we can
make further progress
• some commands never reduce to skip (e.g., “while

true do skip”)

#21

Contextual Derivations

• In small-step contextual semantics,
derivations are not tree-structured

• A contextual semantics derivation is a
sequence (or list) of atomic rewrites:

<x+(7-3),> ! <x+(4),> ! <5+4,> ! <9,>

x)=5

#22

What is an Atomic Reduction?
• What is an atomic reduction step?

– Granularity is a choice of the semantics designer

• How to select the next reduction step, when
several are possible?
– This is the order of evaluation issue

Columbian Spanish Literature

• This Columbian novelist received the Nobel
Prize for Literature and is viewed as one of
the most significant authors in the 20th
century. His works include Cien años de
soledad, Crónica de una muerte anunciada
and El amor en los tiempos del cólera. He
helped popularize the magical realism literary
style.

• Bonus: What is Macondo?

Correcting English Prose
4. Lizzy drank in the sight of him like a thirst craven

man consumes water.

421. "I go here, silly," said Kimi with a proud
expression. "And how I might ask? Your scores were
not legible for this school."

312. Every member of the Thespians, or anyone who
has ever acted in one of our school plays was a pre-
Madonna, mellow-dramatic; over-actor and I didn't
want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence
evil. But Livvy doesn't she see's something no one
else does.

Q: Computer Science
• This American computer scientist won the

2009 Turing award for her work on design of
programming languages and software
methodology that led to the development of
object-oriented programming. In addition to
the first high-level language to support
distributed programs and notable results on
Byzantine fault tolerance, she is perhaps
best known for her formulation of object-
oriented subtyping.

• Bonus: What is her eponymous principle?

#26

Redexes
• A redex is a syntactic expression or command that

can be reduced (transformed) in one atomic step

• Redexes are defined via a grammar:
r ::= x (x 2 L)

 | n1 + n2

 | x := n

 | skip; c

 | if true then c1 else c2

 | if false then c1 else c2

 | while b do c

• For brevity, we mix exp and command redexes

• Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

#27

Local Reduction Rules for IMP
• One for each redex: <r, >  <e, ’>

– means that in state , the redex r can be replaced in
one step with the expression e

<x, >  <(x), >
<n1 + n2, >  <n, > where n = n1 plus n2

<n1 = n2, >  <true, > if n1 = n2

<x := n, >  <skip, [x := n]>
<skip; c, >  <c, >
<if true then c1 else c2, >  <c1, >

<if false then c1 else c2, >  <c2, >

<while b do c, > 
<if b then c; while b do c else skip, >

#28

The Global Reduction Rule

• General idea of contextual semantics
– Decompose the current expression into

the redex-to-reduce-next and the
remaining program
•The remaining program is called a context

– Reduce the redex “r” to some other
expression “e”

– The resulting (reduced) expression
consists of “e” with the original context

Not happy? I’ll explain with pictures soon!

#29

As A Picture (1)

(Context)
…
x := 2+2 ;
print x

Step 1: Find The Redex

#30

As A Picture (2)

(Context)
…
x := ;
print x

2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex

#31

As A Picture (3)

(Context)
…
x := ;
print x

2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex

4 (reduced)

#32

As A Picture (4)

(Context)
…
x := ;
print x

4

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context

#33

Contextual Analysis

• We use H to range over contexts
• We write H[r] for the expression obtained

by placing redex r in context H
• Now we can define a small step

If <r, >  <e, ’>
then <H[r], >  <H[e], ’>

#34

Contexts

• A context is like an expression (or
command) with a marker  in the place
where the redex goes

• Examples:
– To evaluate “(1 + 3) + 2” we use the redex

1 + 3 and the context “+ 2”

– To evaluate “if x > 2 then c1 else c2” we use
the redex x and the context “if  > 2 then c1
else c2”

#35

Context Terminology

• A context is also called an “expression
with a hole”

• The marker  is sometimes called a hole
• H[r] is the expression obtained from H by

replacing  with the redex r

“Avoid context and specifics; generalize
and keep repeating the generalization.”
-- Jack Schwartz

#36

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

What happens next?

x :=  + 1x<x := x+1, [x := 1]>

skip; x := x+1<skip; x := x+1, [x := 1]>

; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex <Comm, State>

#37

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

<skip, [x := 2]>

x := 2<x := 2, [x := 1]>

x := 1 + 1<x := 1 + 1, [x := 1]>

x :=  + 1x<x := x+1, [x := 1]>

skip; x := x+1<skip; x := x+1, [x := 1]>

; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex <Comm, State>

#38

More On Contexts

• Contexts are defined by a grammar:

 H ::=  | n + H
| H + e
| x := H
| if H then c1 else c2

 | H; c
• A context has exactly one  marker
• A redex is never a value

#39

What’s In A Context?
• Contexts specify precisely how to find the

next redex
– Consider e1 + e2 and its decomposition as H[r]

– If e1 is n1 and e2 is n2 then H =  and r = n1 + n2

– If e1 is n1 and e2 is not n2 then H = n1 + H2 and e2
= H2[r]

– If e1 is not n1 then H = H1 + e2 and e1 = H1[r]

– In the last two cases the decomposition is done
recursively

– Check that in each case the solution is unique

#40

Unique Next Redex:
Proof By Handwaving Examples

• Suppose c = “c1; c2”. Then either
– c1 = skip and then c = H[skip; c2] with H = 

– or c1  skip and then c1 = H[r]; so c = H’[r] with
H’ = H; c2

• Suppose c = “if b then c1 else c2”. Then
– either b = true or b = false and then c = H[r]

with H = 
– or b is not a value and b = H[r]; so c = H’[r] with

H’ = if H then c1 else c2

#41

Context Decomposition
• Decomposition theorem:

 If c is not “skip” then there exist unique
H and r such that c is H[r]

– “Exist” means progress

– “Unique” means determinism

#42

Short-Circuit Evaluation

• What if we want to express short-circuit
evaluation of  ?
– Define the following contexts, redexes and

local reduction rules
 H ::= ... | H  b2

 r ::= ... | true  b | false  b
 <true  b, >  <b, >
 <false  b, >  <false, >

– the local reduction kicks in before b2 is
evaluated

#43

Contextual Semantics Summary
• Can view  as representing the program counter
• The advancement rules for ² are non-trivial

– At each step the entire command is decomposed
– This makes contextual semantics inefficient to

implement directly

• The major advantage of contextual semantics: it
allows a mix of local and global reduction rules
– For IMP we have only local reduction rules: only the

redex is reduced
– Sometimes it is useful to work on the context too
– We’ll do that when we study memory allocation, etc.

#44

Reading Real-World Examples

• Cobbe and Felleisen, POPL 2005
• Small-step contextual opsem for Java
• Their rule for object field access:

P ` <E[obj.fd],S> ! <E[F(fd)],S>
– where F=fields(S(obj)) and fd 2 dom(F)

• They use “E” for context, we use “H”
• They use “S” for state, we use “”

#45

Lost In Translation

• P ` <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

• They have “P `”, but that just means “it
can be proved in our system given P”

• <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

#46

Lost In Translation 2

• <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

• They model objects (like obj), but we do
not (yet) – let’s just make fd a variable:

• <H[fd],> ! <H[F(fd)],>
– Where F= and fd 2 L

• Which is just our variable-lookup rule:

• <H[fd],> ! <H[(fd)],> (when fd 2 L)

#47

“Sleep On It”

#48

Homework

• HW0 Peer Review Due Today
• Homework 1 Due soon
• Reading!

	Slide 1
	Today’s Cunning Plan
	Slide 3
	Summary - Semantics
	Summary - Judgments
	Notation: Rules of Inference
	Evaluation By Inversion
	Summary - Rules
	Operational Semantics Small-Step Semantics
	Provability
	Truth?
	Completeness
	Consistency
	Desired Traits
	With That In Mind
	Command Evaluation Notes
	Command Evaluation Trials
	Disadvantages of Natural-Style Operational Semantics
	Semantics Solution
	Contextual Semantics
	Contextual Derivations
	What is an Atomic Reduction?
	Slide 23
	Slide 24
	Slide 25
	Redexes
	Local Reduction Rules for IMP
	The Global Reduction Rule
	As A Picture (1)
	As A Picture (2)
	As A Picture (3)
	As A Picture (4)
	Contextual Analysis
	Contexts
	Context Terminology
	Contextual Semantics Example
	Slide 37
	More On Contexts
	What’s In A Context?
	Unique Next Redex: Proof By Handwaving Examples
	Context Decomposition
	Short-Circuit Evaluation
	Contextual Semantics Summary
	Reading Real-World Examples
	Lost In Translation
	Lost In Translation 2
	“Sleep On It”
	Slide 48

