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Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• Small-Step Contextual Semantics

– Reductions, Redexes, and Contexts

• Applications and Recent Research
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Bookkeeping

• Hookkeeper (wire ring that holds a fly-fishing 
hook in place)

• Tattooee
• Sweettooth

• Any others?
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60 Second Summary - 
Semantics

• A formal semantics is a system for 
assigning meanings to programs.

• For now, programs are IMP commands and 
expressions

• In operational semantics the meaning of 
a program is “what it evaluates to” 

• Any opsem system gives rules of 
inference that tell you how to evaluate 
programs
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Summary - Judgments

• Rules of inference allow you to derive 
judgments (“something that is knowable”) like

<e, >  n
– In state , expression e evaluates to n

<c, >  ’
– After evaluating command c in state  the new state 

will be ’

• State  maps variables to values ( : L ! Z)

• Inferences equivalent up to variable renaming:
<c, >  ’    ===   <c’, >  
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Notation: Rules of Inference

• We express the evaluation rules as rules 
of inference for our judgment
– called the derivation rules for the judgment

– also called the evaluation rules (for 
operational semantics)

• In general, we have one rule for each 
language construct:

<e1 + e2, >   n1 + n2

<e1, >  n1    <e2, >  n2 This is the only
rule for e1 + e2
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Evaluation By Inversion

• We must find n1 and n2 such that                   
e1  n1 and e2  n2 are derivable

– This is done recursively

• If there is exactly one rule for each kind of 
expression we say that the rules are syntax-
directed
– At each step at most one rule applies

– This allows a simple evaluation procedure as 
above (recursive tree-walk) 

– True for our Aexp but not Bexp.
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Summary - Rules

• Rules of inference list the hypotheses 
necessary to arrive at a conclusion

• A derivation involves interlocking (well-
formed) instances of rules of inference

<x, >  (x) <e1 - e2, >  n1 minus n2

<e1, >  n1     <e2, >  n2

<(4*2) - 6, >  2
<4*2, >  8               <6, >  6

<4, >  4    <2, >  2
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Operational SemanticsOperational Semantics
Small-Step SemanticsSmall-Step Semantics
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Provability

• Given an opsem system, <e, >  n is 
provable if there exists a well-formed 
derivation with <e, >  n as its conclusion
– “well-formed” = “every step in the derivation is 

a valid instance of one of the rules of inference 
for this opsem system”

– “` <e, >  n” = “it is provable that <e, >  n”

• We would like truth and provability to be 
closely related
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Truth?

• “A Vorlon said understanding is a three-
edged sword. Your side, their side and
the truth.”
– Sheridan, Babylon 5, Into The Fire

• We will not formally define “truth” yet
• Instead we appeal to your intuition

– <2+2, >  4 -- should be true

– <2+2, >  5 -- should be false
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Completeness

• A proof system (like our operational 
semantics) is complete if every true 
judgment is provable.

• If we replaced the subtract rule with:

• Our opsem would be incomplete:
<4-2, >  2 -- true but not provable

<e1 - e2, >  n
<e1, >  n        <e2, >  0
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Consistency
• A proof system is consistent (or sound) if 

every provable judgment is true.
• If we replaced the subtract rule with:

• Our opsem would be inconsistent (or 
unsound):
– <6-1, >  9 -- false but provable

<e1 - e2, >  n1 + 3

<e1, >  n1            <e2, >  n2

“A foolish consistency is the hobgoblin of little minds, 
adored by little statesmen and philosophers and divines.” 
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.
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Desired Traits
• Typically a system (of operational semantics) is 

always complete (unless you forget a rule)

• If you are not careful, however, your system may 
be unsound

• Usually that is very bad
– A paper with an unsound type system is usually rejected

– Papers often prove (sketch) that a system is sound

– Recent research (e.g., Engler, ESP) into useful but 
unsound systems exists, however

• In this class your work should be complete and 
consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. 
What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously 
and every molecule in your body exploding at the speed of light.
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With That In Mind

• We now return to opsem for IMP

<while b do c, >  
<b, >  false

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, >  [x := n]

<e, >  n

<while b do c,  >  ’
<b, >  true   <c; while b do c, >  ’
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Command Evaluation Notes

• The order of evaluation is important
– c1 is evaluated before c2 in c1; c2

– c2 is not evaluated in “if true then c1 else c2”

– c is not evaluated in “while false do c”

– b is evaluated first in “if b then c1 else c2”

– this is explicit in the evaluation rules

• Conditional constructs (e.g., b1 Ç b2) have 
multiple evaluation rules
– but only one can be applied at one time
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Command Evaluation Trials

• The evaluation rules are not syntax-
directed
– See the rules for while, Æ

– The evaluation might not terminate

• Recall: the evaluation rules suggest an 
interpreter

• Natural-style semantics has two big 
disadvantages (continued …)
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Disadvantages of Natural-Style 
Operational Semantics

• It is hard to talk about commands whose 
evaluation does not terminate
– When there is no ’ such that <c, >  ’

– But that is true also of ill-formed or 
erroneous commands (in a richer language)!

• It does not give us a way to talk about 
intermediate states
– Thus we cannot say that on a parallel 

machine the execution of two commands is 
interleaved (= no modeling threads)
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Semantics Solution

• Small-step semantics addresses these 
problems
– Execution is modeled as a (possible infinite) 

sequence of states

• Not quite as easy as large-step natural 
semantics, though

• Contextual semantics is a small-step 
semantics where the atomic execution 
step is a rewrite of the program
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Contextual Semantics

• We will define a relation <c, >  <c’, ’>
– c’ is obtained from c via an atomic rewrite step

– Evaluation terminates when the program has 
been rewritten to a terminal program
• one from which we cannot make further progress

– For IMP the terminal command is “skip”

– As long as the command is not “skip” we can 
make further progress
• some commands never reduce to skip (e.g., “while 

true do skip”)
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Contextual Derivations

• In small-step contextual semantics, 
derivations are not tree-structured

• A contextual semantics derivation is a 
sequence (or list) of atomic rewrites:

<x+(7-3),> ! <x+(4),> ! <5+4,> ! <9,>

x)=5
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What is an Atomic Reduction?
• What is an atomic reduction step?

– Granularity is a choice of the semantics designer

• How to select the next reduction step, when 
several are possible?
– This is the order of evaluation issue



Columbian Spanish Literature

• This Columbian novelist received the Nobel 
Prize for Literature and is viewed as one of 
the most significant authors in the 20th 
century. His works include Cien años de 
soledad, Crónica de una muerte anunciada 
and El amor en los tiempos del cólera. He 
helped popularize the magical realism literary 
style. 

• Bonus: What is Macondo? 



Correcting English Prose
4. Lizzy drank in the sight of him like a thirst craven 

man consumes water.

421. "I go here, silly," said Kimi with a proud 
expression. "And how I might ask? Your scores were 
not legible for this school."

312. Every member of the Thespians, or anyone who 
has ever acted in one of our school plays was a pre-
Madonna, mellow-dramatic; over-actor and I didn't 
want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence 
evil. But Livvy doesn't she see's something no one 
else does.



Q:  Computer Science
• This American computer scientist won the 

2009 Turing award for her work on design of 
programming languages and software 
methodology that led to the development of 
object-oriented programming. In addition to 
the first high-level language to support 
distributed programs and notable results on 
Byzantine fault tolerance, she is perhaps 
best known for her formulation of object-
oriented subtyping. 

• Bonus: What is her eponymous principle?
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Redexes
• A redex is a syntactic expression or command that 

can be reduced (transformed) in one atomic step

• Redexes are defined via a grammar:
r ::= x                                     (x 2 L)

       | n1 + n2

       | x := n

       | skip; c 

       | if true then c1 else c2

       | if false then c1 else c2

       | while b do c 

• For brevity, we mix exp and command redexes

• Note that (1 + 3) + 2 is not a redex, but 1 + 3 is 
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Local Reduction Rules for IMP
• One for each redex: <r, >  <e, ’>

– means that in state , the redex r can be replaced in 
one step with the expression e

<x, >  <(x), >
<n1 + n2, >  <n, > where n = n1 plus n2

<n1 = n2, >  <true, >    if n1 = n2

<x := n, >  <skip, [x := n]>
<skip; c, >  <c, >
<if true then c1 else c2, >  <c1, >

<if false then c1 else c2, >  <c2, >

<while b do c, >  
<if b then c; while b do c else skip, > 
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The Global Reduction Rule

• General idea of contextual semantics
– Decompose the current expression into 

the redex-to-reduce-next and the 
remaining program
•The remaining program is called a context

– Reduce the redex “r” to some other 
expression “e”

– The resulting (reduced) expression 
consists of “e” with the original context

Not happy? I’ll explain with pictures soon!
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As A Picture (1)

(Context)
…
x := 2+2 ;
print x

Step 1: Find The Redex
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As A Picture (2)

(Context)
…
x :=                     ;
print x

2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex
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As A Picture (3)

(Context)
…
x :=                     ;
print x

2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex

4 (reduced)
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As A Picture (4)

(Context)
…
x :=       ;
print x

4 

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
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Contextual Analysis

• We use H to range over contexts 
• We write H[r] for the expression obtained 

by placing redex r in context H
• Now we can define a small step

If <r, >  <e, ’> 
then <H[r], >  <H[e], ’>
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Contexts

• A context is like an expression (or 
command) with a marker  in the place 
where the redex goes

• Examples:
– To evaluate “(1 + 3) + 2” we use the redex     

1 + 3 and the context “+ 2”

– To evaluate “if x > 2 then c1 else c2” we use 
the redex x and the context “if  > 2 then c1 
else c2” 
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Context Terminology

• A context is also called an “expression 
with a hole”

• The marker  is sometimes called a hole
• H[r] is the expression obtained from H by 

replacing  with the redex r

“Avoid context and specifics; generalize 
and keep repeating the generalization.” 
-- Jack Schwartz 
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Contextual Semantics Example

•  x := 1 ; x := x + 1 with initial state [x:=0]

What happens next?

x :=  + 1x<x := x+1, [x := 1]>

skip; x := x+1<skip; x := x+1, [x := 1]>

; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex <Comm, State>
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Contextual Semantics Example

•  x := 1 ; x := x + 1 with initial state [x:=0]

<skip, [x := 2]>

x := 2<x := 2, [x := 1]>

x := 1 + 1<x := 1 + 1, [x := 1]>

x :=  + 1x<x := x+1, [x := 1]>

skip; x := x+1<skip; x := x+1, [x := 1]>

; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex <Comm, State>
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More On Contexts

• Contexts are defined by a grammar:

    H ::=  | n + H 
| H + e 
| x := H 
| if H then c1 else c2 

               | H; c 
• A context has exactly one  marker
• A redex is never a value
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What’s In A Context?
• Contexts specify precisely how to find the 

next redex
– Consider e1 + e2 and its decomposition as H[r]

– If e1 is n1 and e2 is n2 then H =  and r = n1 + n2

– If e1 is n1 and e2 is not n2 then H = n1 + H2 and e2 
= H2[r] 

– If e1 is not n1 then H = H1 + e2 and e1 = H1[r]

– In the last two cases the decomposition is done 
recursively

– Check that in each case the solution is unique
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Unique Next Redex:
Proof By Handwaving Examples

• Suppose c = “c1; c2”. Then either 
– c1 = skip and then c = H[skip; c2] with H = 

– or c1  skip and then c1 = H[r]; so c = H’[r] with 
H’ = H; c2

• Suppose c = “if b then c1 else c2”. Then
– either b = true or b = false and then c = H[r] 

with H = 
– or b is not a value and b = H[r]; so c = H’[r] with 

H’ = if H then c1 else c2



#41

Context Decomposition
• Decomposition theorem:

   If c is not “skip” then there exist unique 
H and r such that c is H[r]

– “Exist” means progress

– “Unique” means determinism
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Short-Circuit Evaluation

• What if we want to express short-circuit 
evaluation of  ?
– Define the following contexts, redexes and 

local reduction rules  
                H ::= ... | H  b2

                r ::= ... | true  b | false  b
                <true  b, >  <b, >
                <false  b, >  <false, >

– the local reduction kicks in before b2 is 
evaluated
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Contextual Semantics Summary
• Can view  as representing the program counter
• The advancement rules for ² are non-trivial

– At each step the entire command is decomposed
– This makes contextual semantics inefficient to 

implement directly

• The major advantage of contextual semantics: it 
allows a mix of local and global reduction rules
– For IMP we have only local reduction rules: only the 

redex is reduced
– Sometimes it is useful to work on the context too
– We’ll do that when we study memory allocation, etc. 
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Reading Real-World Examples

• Cobbe and Felleisen, POPL 2005
• Small-step contextual opsem for Java
• Their rule for object field access:

P ` <E[obj.fd],S> ! <E[F(fd)],S>
– where F=fields(S(obj)) and fd 2 dom(F)

• They use “E” for context, we use “H”
• They use “S” for state, we use “”
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Lost In Translation

• P ` <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

• They have “P `”, but that just means “it 
can be proved in our system given P”

• <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)
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Lost In Translation 2

• <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

• They model objects (like obj), but we do 
not (yet) – let’s just make fd a variable:

• <H[fd],> ! <H[F(fd)],>
– Where F= and fd 2 L

• Which is just our variable-lookup rule:

• <H[fd],> ! <H[(fd)],>    (when fd 2 L)
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“Sleep On It”
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Homework

• HW0 Peer Review Due Today
• Homework 1 Due soon
• Reading!
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