

Question 1. Word Bank Matching
(1 point each, 16 points total)

For each statement below, input the letter of the term that is
best and most specifically described.
Note that you can click each
cell to mark it off. Each word
can only be used at most once.

Sometimes multiple words may appear to apply. Pick the best and
most specific match. As one example, a hypothetical
prompt about
"running a program on an input and using a comparator to check
the output against an oracle" logically

matches both "testing"
and "quality assurance". In such a case you would want to pick
"testing", because "testing" is more
specifically described.

A. — Code Review B. — Delta Debugging C. — Design Patterns D. — Elicitation

E. — Fault Localization F. — Informal Goal G. — Maintainability H. — Priority

I. — Productivity J. — Profiling K. — Readability L. — Requirements

M. — Risk N. — Severity O. — Stakeholder P. — Static Analysis

Q. — Triage R. — Validation S. — Watchpoint T. — Weak Conflict

Q1.1: L Detailed descriptions of what the software/program should do.

Q1.2: A

Before changed code is accepted, other developers must inspect
the proposed change and its

justification. This iterative process
is mandated at most major software engineering
companies.

Q1.3: Q The team meets to discuss and assign a priority to each one of a
list of reported defects.

Q1.4: R

You are reading the project specification for Project 2 in EECS
370. You think something seems

wrong with the specification itself,
so ask the course member about a possible mistake in the
specification.

Q1.5: S
When debugging, you are interested in stopping the program's
execution every time the global
variable
global_request_hash changes. Since that variable is
assigned to in many potential

places, you employ ...

Q1.6: N
The potential negative effect of a bug on the coding
or running of a system, encompassing

what happens if the bug
is not fixed.

Q1.7: O

Product managers at Spotify meet with artists, record companies
and lawyers to find out what

new feature they want the most. What
role do artists, record companies and lawyers play in
this scenario?

Q1.8: K
This static quality property of software relates to its ability
to be comprehended and thus
maintained.

Q1.9: E
You are working on Euchre for EECS 280. You know there is a bug in your
player.cpp file
because you are failing a relevant test
case. Now you are trying to figure out which
specific

lines are likely implicated in this bug.

Q1.10: J
You analyze your code for projects in 281, measuring the space and time complexity. You want

to know the values of these quality properties so that you can optimize them.

Q1.11: F
A high-level notion in requirements elicitation that is
communicated but is not precise enough

to be measured.

Q1.12: T

You are working at a database company. In conversations,
the client requests that "temporary

tables must be deleted
within five weeks" and then also requests that
"temporary tables must
be retained long enough for regulatory compliance".

You are the product manager at TikTok. You are given a new task to work on a
new feature on

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Q1.13: D the backend of the application. You begin by trying to
better understand what it should do by

communicating with the stakeholders.

Q1.14: C

These are best practices that are employed to solve
commonly-recurring problems across

multiple pieces of software. Common solutions often relate to object creation, structure or
behavior.

Q1.15: P
An examination of the potential behaviors of a program without actually running it. May be
manual or automatic
and is often conservative.

Q1.16: M
You are working at Accenture at the start of the pandemic. It is
possible that many of your
developers may fall ill and may thus not
be able to complete their tasks on time. You set up a

meeting to
discuss this possibility, its consequences, and its potential
mitigations.

Question 2. Delta Debugging (21 points)

(a) (2 points each; 6 points total) Consider
the three problems below. For each problem, specify if delta debugging
can be used

to solve the problem. If it can, provide a brief description
of an "Interesting" function that will help solve the problem. If it
cannot, specify which properties of delta debugging make it not suitable
to solve the problem.

(i) (2 points) We have a list of distinct strings, and every letter of the alphabet
is present at least once somewhere in at least
one of the strings in the
list. We want to find a one-minimal subset of this list such that every
letter of the alphabet is still

present at least once somewhere in at
least one of the strings in the subset.

ANSWER: Delta debugging is not suitable for this use case. Delta debugging
requires an unambiguous Interesting() function,

and checking for the
presence of certain letters is an ambiguous problem. Consider running
delta debugging on "the quick
brown fox jumps over the lazy dog". The
algorithm will output "quick brown fox jumps over lazy dog".

Your answer here.

(ii) (2 points) In an effort to reduce the memory footprint of our C++ program, we
have decided to replace all uses of int with
short. However, when we do so, our program fails some of
its test cases (we suspect due to integer overflow). We want to

identify
which int fields can be replaced with short
fields such that the program still passes all tests.

ANSWER: Support: Delta debugging is suitable for this use case. We can define
script is_interesting.sh such that it takes a

list of
occurrences of int and replaces each with a
short. The script exits 1 if the code compiles and runs the
tests
successfully, and it exits 0 if the code doesn't compile or fails
any tests.

Reject: Because some operations (such as binary operators) only function
correctly if all of the arguments are of the same type,
delta debugging
may find a one-minimal set but not a minimal set of fields that can be
converted from int to short. As a

concrete example,
a loop like int x; for (x=0;x<65537;x++) ... will
terminate if x is a 32-bit int but
will loop forever
based on integer overflow if x is
a 16-bit short (since the largest 16-bit number
is 65535, it will always satisfy the loop guard).

This would
result in a test case that neither passes nor fails, but
instead loops forever, violating the consistency
requirement.

Your answer here.

(iii) (2 points) We have a list of distinct non-negative integers. We want to find a
one-minimal subset of this list of integers such

that the sum of the
subset is greater than twenty.

ANSWER: Delta debugging is not suitable for this use case. Delta debugging
requires an unambiguous Interesting() function,

and number summation is
an ambiguous problem.

Your answer here.

(b) We decide to design a new version of the delta debugging algorithm,
shuffle debugging, which doesn't require any set

intersections or
unions. Instead, if neither the first half nor the second half of the
set is interesting, shuffle debugging finds an
irrelevant element (if
one exists), performs a riffle shuffle of the two halves (in which the
two halves are interleaved element by

element, also called an "in
shuffle"), and tries over again. If no irrelevant element exists, we
conclude that we have a one-
minimal set. We redesign the algorithm as
described in the following Python code (note - make sure to read the
full code if

some is cut off):

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

We test out this new algorithm on the following example:

Interesting(X) = [1, 9] is a subset of X

(2 points each; 6 points total) For each of
the following values of C, list how many calls to
Interesting are made when SD(C)
is called.
If the algorithm never terminates, write INCONCLUSIVE.

(i) (2 points) C = [1, 2, 5, 0, 4, 3]

Your answer here.

ANSWER: 8

(ii) (2 points) C = [1, 4, 3, 2, 5, 0, 9]

Your answer here.

ANSWER: 24

(iii) (2 points) C = [1, 9, 5, 3, 4, 2, 0]

Your answer here.

ANSWER: 10

(c) (3 points each; 9 points total) In order
for shuffle debugging (SD) to find a one-minimal subset, some of the
requirements of
delta debugging may or may not be necessary for shuffle
debugging. For each of the following requirements, indicate whether

violating the requirement could result in SD failing to return a
one-minimal subset ("necessary") or whether SD can always

Interleave lists A and B, return a new list containing
alternating elements of A and B every other.

Ex:
interleave([1, 2, 3], [4, 5, 6]) = [1, 4, 2, 5, 3, 6]

interleave([], [4, 5, 6]) = [4, 5, 6]
interleave([1, 2], [3, 4, 5, 6]) = [1, 3, 2, 4, 5, 6]

def interleave(A, B):
 result = []

 for i in range(max(len(A), len(B))):
 if i < len(A):

 result.append(A[i])
 if i < len(B):

 result.append(B[i])
 return result

​
Split a list in half and return (first_half, second_half).

If the list isn't evenly divisible, the length of the first
half will be smaller than that of the second half

def split(l):
 first_half = l[:len(l)//2]

 second_half = l[len(l)//2:]
 return first_half, second_half

​
def SD(C):

 if len(C) == 1:
 return C

 # P1 is the first half, and P2 is the second
 P1, P2 = split(C)

 if interesting(P1):
 return SD(P1)

 if interesting(P2):
 return SD(P2)

 for i in range(len(C)):
 # C_prime is every element of C except the one at index i

 C_prime = [x for j, x in enumerate(C) if j != i]
 if interesting(C_prime):

 # C_i isn't necessary, so remove it
 P1_prime, P2_prime = split(C_prime)

 shuffled = interleave(P1_prime, P2_prime)
 return SD(shuffled)

 # The set is already one-minimal
 return C

​

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

operate
correctly on inputs that do not meet that requirement ("optional"). If a
requirement is necessary for shuffle debugging,

give an example where
not having it results in an incorrect answer. If a requirement is
optional for shuffle debugging, give an
example where delta debugging
would give the wrong answer but shuffle debugging would give the right
answer.

(i) (3 points) Monotonicity?

ANSWER: For each of these three problems, we gave 0 points for the wrong
answer (regardless of associated wrong

explanation), 1 point for
leaving it blank (as per the test rules), 1.5 points for giving
half the answer (such as just saying it was
necessary without
giving the example), 2 points for the correct answer but an
incomplete or murky explanation, and 3 points

for the correct
answer with a solid explanation.

Shuffle debugging does require monotonicity. An example of a
non-monotonic problem that SD would get wrong is as follows.

Suppose the
only interesting set is exactly [1,9] --- bigger sets, like [1,2,9], are not
interesting. Running SD on an input like
[1,9,0,2,5,3,4] should return
[1,9], but does not.

Your answer here.

(ii) (3 points) Unambiguity?

ANSWER: Shuffle debugging does not require unambiguity.
Informally, the reason SD can get away with not requiring

unambiguity
compared to DD is the for loop at the end of SD: it does expensive work to
try all one-removal combinations. That
means that SD is slower than DD, but
it also means that SD works in ambiguous situations.

An example of an ambiguous situation where SD works but DD fails is that a
set is interesting if it contains both X and -X. So
[3,1,-3] is interesting,
and so is [1,5,-5]. However, their intersection, [1], is not interesting. SD
correctly finds one-minimal

interesting subsets in this case, while DD does
not.

A potential common mistake is considering the situation where a set is
interesting if its elements sum to zero: [1,2,-3] is

interesting, for
example. That definition is interesting is ambiguous, but SD fails to work
correctly for it. The reason is that that
definition of interesting is also
non-monotonic, and monotonicity is required for SD. So such an example is
not the right one to

use when reasoning about SD and ambiguity, because it
also brings in monotonicity.

Your answer here.

(iii) (3 points) Consistency?

ANSWER: Shuffle debugging does require consistency. While the types are not
always written out explicitly in Python, SD is
treating interesting as
boolean that is used to drive "if" statements in Python. An inconsistent
definition of interesting might

return True, False or Unknown — or
might not return at all. SD does not have handle for any such case. (To
handle
inconsistency, you might imagine writing an algorithm where a
switch/case construct is used to consider three return values

from
interesting, but nothing like that is given here.)

Your answer here.

Question 3. Short Answer (18 points)

Provide an answer to each of the questions below.

(a) (3 points) In 3 sentences or less, describe and explain three things that we can do to reinforce the
readability of our code.

ANSWER: A strong answer would address points such as: 1) Include comments, 2) Avoid long lines,
3) Avoid having many
different identifiers, 4) Fully blank lines may matter more than indentation. A strong answer could also use evidence from the

medical imaging brain studies
presented, such as mentioning 5) beacons or 6) semantic cues. Students could also bring in
notions such as "requiring readability badges
for code review", but more finesse would be required since that notion is
more

directly about improving code review and the question asks about
reinforcing readability.

Your answer here.

(b) (3 points) In 4 sentences or less, describe and explain
the tradeoffs/differences between working in academia and working

in industry according to Dr. Ciera Jaspan
and/or Dr. Kevin Leach.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

ANSWER: A correct answer might address: 1) Academia: freedom to do
research in a topic of your choice, but you must ask

agencies for
funding, 2) Industry: can’t always pursue topic that interest you,
but you know who’s providing the funding have
ability to
communicate directly. In industry it is often possible to work with
real developers on important problems directly, but

at the same
time any problem you pursue must help the company's bottom line.

Your answer here.

(c) (3 points) In 2 sentences or less, describe and explain two major benefits of using Medical Imaging to gather information

about software engineering processes.

ANSWER: The correct answer should address points such as: 1) Unreliable self-reporting,
2) Inform Pedagogy, 3) Understand

Expertise, 4) Retrain Aging Engineers, 5) Guide Technology Transfer. We also accept answers that mention 6) Fundamental
Understanding, even though it is arguably not directly related to SE. An example of an inadequate answer would be suggesting

that medical imaging is 'more precise' or 'allows you to look at humans' or the like. Those alone do not fully complete the
logical link to software engineering.

Your answer here.

(d) (3 points) In 3 sentences or less, describe two key differences between
experts and novices with respect to problem solving
and
productivity.

ANSWER: An answer might mention that experts and novices cluster
problems differently, that novices make more mistakes,
that novices
take longer, that the structure of the brain changes over time
as you learn more about a topic, or that experts are

more efficient
(in a physical sense regarding the brain) than novices.

Your answer here.

(e) (3 points) In 1 sentence, give an example of a quality requirement. In 2 sentences or less, describe and
explain the

connections between the environment and the machine.

ANSWER: A correct "quality requirement" (or non-functional requirement) example
might be within one of the following

categories: 1) Confidentiality
requirement, 2) Privacy requirement, 3) Integrity requirement, 4)
Availability requirement, 4)
Reliability requirement, 4) Accuracy
requirement, 5) Performance requirement.

For the second part, the Requirements and Specifications slideset
begins covering the environment and the machine around
slide #12. The environment domain includes the real world (e.g., how fast is
the car going?) while the machine domain includes

software
and variable (e.g., this variable should track how fast the
car is going). Input and output devices form the interface
between
them, and system and software requirements often state
relationships between them (see Slide #15).

Your answer here.

(f) (3 points) Consider a game of Nim with four piles: {A,A,A,A,A}, {B,B}, {C,C,C},
{D,D,D,D,D,D,D} (i.e., 5 2 3 7). It is your turn.
What move would
you take to win?

ANSWER: The current board has Nim-sum (XOR) value 3: (4+1) (2) (2+1) (4+2+1).
Your goal is to remove multiple pieces from a
single pile such that
your opponent is left facing a board with value 0. Answers such as "take all of C" reduce the value of the

board to 0.
Multiple solutions are possible: another possible answer would be "take 3 from D".

Your answer here.

Question 4. Fault Localization (14 points total)

Below is a buggy snippet from a Python program that determines which of the 3 values passed in is the largest (and returns 0

if they are all equivalent):

 ...

1 class differentValues(object):
2 def greatestValue(self, a, b, c):

3 if (a > b || a > c):
4 return a

5 else if (b > a || b > c):

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Use the standard Tarantula Fault-Localization Suspiciousness Ranking for necessary calculations:

Sus(s) = (failed(s) / totalfailed) / (failed(s) / totalfailed + passed(s) / totalpassed)

... where totalpassed is the number of passing test cases and passed(s) is the number of those that executed line s (similarly for
totalfailed and failed(s)). Note that this is the same formula presented in the Lecture: there is no "trick" in the formula.

(a) (6 points) Give two sets of inputs that cause line 5 to
have the highest suspiciousness ranking overall.
The first set should
pass (i.e., the program obtains the
correct answer) and the second set should fail (i.e., the
current program obtains the

incorrect answer).
Use only the values 1, 2 and 3 (in any combination, with repeats if
you like) in your answer. Format your
answer with the values
as triplets by commas and place one answer on each line, as in:

(4,5,6)

(7,8,9)

ANSWER: One potential answer is: (3, 2, 1) passing and (1, 2, 3) failing.
Note that in some cases there was some confusion about whether the
first set should pass and the
second should fail, etc., and thus in some
cases partial credit was given.

(b) (4 points) Choose either library-oriented
architectures (one approach to designing for maintainability)
or multi-language
projects (focusing on the glue
code that interfaces between two languages). Identify your choice,
and then either support or

refute
the claim that Tarantula-style fault localization would be effective
at localizing defects in that context. Use at most four
sentences.

ANSWER: For multi-language project glue code, the answer is likely "refute". In
glue code, as in the
examples shown in class, bugs typically relate to
particular data values and how they are converted.
By contrast,
the same lines are visited each time, so a fault localization approach
like Tarantula
would assign all of the glue code lines the same
suspiciousness. As a concrete example, consider glue
code that forgets
to register memory with the garbage collector or forgets to free it:
the crash or
memory leak will not happen immediately on that line
(indeed, the problem may be a missing function
call that has no associated
line), and thus standard fault localization will not be revealing.

For library-oriented architectures (introduced on Slide #41 of the Design
for Maintainability
slideset), the answer is likely "support".
Library-oriented architectures make it easier to test your
code; they
shorten the distance between the start of the program and your code
and allow elements of
your code to be tested independently (e.g.,
your data structure can be tested as a library or service
without having to
run the whole GUI). Because Tarantula-style fault localization is a
dynamic
analysis and depends critically on the number and quality of
the test cases (e.g., for its
mathematics), having more tests that
reach your code mean that it will be more likely to help
pinpoint
suspicious aspects, all other things being equal.

(c) (4 points) Give an example of a security defect, attack or
exploit for which we would expect Tarantula-style fault localization

to
do a good job of pinpointing the right line to change. Then given
an example of a security defect, attack or exploit for which
we would
expect it to do a poor job. Use at most four sentences total
(e.g., example, explanation, example, explanation).

ANSWER: Consider a null pointer dereference. It is a security vulnerability
if an attacker can crash
your server on deman (sometimes called a
"denial of service attack"). Tarantula is likely to be very
good
at pinpointing the right line to change: the program crashes
directly at the relevant line when
given the buggy (attack) input,
but does not crash on normal test inputs. Lines after the crash
are
not visited on the buggy input, so Tarantula will be able
to make distinctions, etc.

By contrast, consider cross-site scripting, SQL code injection,
or even spam detection. All of those
security issues relate to
the values of strings. Tarantula does not look inside strings
or other data
values at all. Instead, it only looks at lines visited.
However, for those security issues, the lines
visited are all
the same. In SQL code injection, you always execute the line
that places the user
input in the database. The only difference is whether
the user input string contains "DROP TABLE" or

Your answer here.

Your answer here.

Your answer here.

6 return b

7 else if (c > a && c > b):
8 return c

9 return 0
 ...Navigation

Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

the like or not
(see https://xkcd.com/327/ , etc.). So the fault localization
math will give the same
suspiciousness value to all of the lines,
because they are all visited on both good and bad runs, and
thus the fault localization will not be helpful.

Question 5. Design Patterns (17 points total)

Consider the following C++ code that will serialize the value of one particular node in a Binary Search Tree (BST). This code
snippet is only relevant for parts 5a, 5b and 5c. You may assume the following:

parseArgs will correctly parse any given arguments. Arguments may include a pointer to the root node of the tree as
well as the node to find

All nodes may have a unique integer value (i.e., node->val)
Aside from serializeNode, parseArgs, and serializeIntHelper, you may assume there are no other functions and

interfaces
All functions not defined here are implemented correctly

​
string serializeNode(void* args) {

 auto argsPar = parseArgs(args);
 Node* root = argsPar["root"];

 Node* nodeToFind = argsPar["input"];
​

 if (root == nullptr) {
 throw runtime_error("Error");

 }
​

 // Perform Breadth-First Search
 queue<Node*> bfs;

 bool nodeFound = false;
 int nodeVal = -1;

 bfs.push_back(root);
​

 while (!bfs.empty()) {
 Node* curr ;

​
 // Loop invariant is true here

​
 curr = bfs.front();

 bfs.pop_front();
​

 if (curr == nodeToFind) {
 nodeFound = true;

 nodeVal = curr->val;
 goto nodeFound;

 }
​

 if (curr->left != nullptr) {
 bfs.push_back(curr->left);

 }
​

 if (curr->right != nullptr) {
 bfs.push_back(curr->right);

 }
 }

​
nodeFound:

​
 if (!nodeFound) {

 throw runtime_error("Error");
 } else {

 // Serialize the node
 string serializedVal = serializeIntHelper(nodeVal);

 return serializedVal;
 }

}
​

​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

5c. (3 points)
Describe why duplicate code can have a negative impact on software maintenance.
Describe how you might

refactor the original code to improve maintainability. Use at most four sentences total.

5a. (2 points) List one invariant of the function.
The invariant should be true inside the loop at the line
indicated by the

comment. Do not restate any of the assumptions listed above.
Do not list a predicate that is trivial or true for all
programs
(e.g., 1+1=2).

Your answer here.

ANSWER: An invariant is a predicate or formula that is always true on every
execution of a particular line. When the code

reaches
the line specified inside the loop, we know !bfs.empty(), otherwise
we would not enter the loop. However, we also know
that nodeFound == false, because after it is set to true the code
immediately jumps out of the loop (with a goto, sigh).
For

similar reasons, we know nodeVal == -1. Finally,
we also know that root is not null because of the check
at the start of the
function (although this is not necessary
to mention since it, arguably, relates to the input assumptions, since it comes from

parsing the arguments). An example
of an invariant is thus
root != nullptr && !bfs.empty() && !nodeFound &&
nodeVal == -1.

5b. (2 points) List one post-condition of the function.
The post-condition should be true
as the function terminates (either via a
return or
an uncaught exception). Do not restate any of the assumptions listed above.
Do not list a predicate that is trivial or

true for all
programs (e.g., 1+1=2).

Your answer here.

ANSWER: A post-condition is a predicate that is true after a function returns. The complicating factor here is that this function
can return multiple
ways. Sometimes a variable like "retval" is used to refer to the return
value, as on Slide #44 of the Test

Inputs, Oracles and Generation lecture. This procedure can return one of two: either it throws a runtime
error or it returns
serializedVal, which is a string holding
the serialized representation of the requested node's value. First, a full
credit answer

must indicate that both outcomes are possible, either
textually or by using a logical or. Second, a full credit answer should
mention or link the success-case
return value to nodeToFind (since that is the key correctness condition of
the method). For

example: (retval == runtime_error("Error")) || (retval == serializeIntHelper(nodeToFind->val))

ANSWER: Duplicate code (sometimes called "code clones") can have multiple negative
impacts on software maintenance. First,

duplicate code takes up more
lines. Students might mention that Code Inspection and similar maintenance
activities can only
cover so many lines of code per hour. Alternately,
students might mention that Readability (or Complexity metrics) would be

negatively impacted, since readability metrics (and Complexity ones) tend
to correlate with code size. Alternately, students
might mention that
fault localization would be complicated, since there are now multiple lines that are really "the same" but

might get different suspiciousness
values or even simply add to the list of suspiciousness values (and
the "Are Automated
Debugging Techniques Actually Helping Programmers?"
reading notes that human developers stop reading those lists if
they

are too long). Alternately, students might mention that a bug
found in one place now also has to be fixed in all of the duplicate
places.

We would refactor the code to improve maintainability by turning the duplicate code into a procedure that is defined once and
called multiple times. One example of this is duplicated code
related to decisions about object creation. This scenario
is

explicitly described starting on Slide #19 of the Patterns and Anti-Patterns lecture. A full credit answer
could either describe
this in words (e.g., abstracting
the duplicated code into a procedure) or could mention
the use of a relevant design pattern.

Your answer here.

5d. (6 points) Consider Singleton, Template Method, and Strategy design patterns. For each design pattern,
provide two
specific examples of programs that may
utilize the design pattern and explain why such a program
benefits from this design

pattern. Use at most four sentences
per design pattern (context, benefit, context, benefit).

ANSWER: Student received different random combinations of prompts for this question. The answer key gives some high level

points about each one.

Observer: The observer (or publish-subscribe) pattern helps in any
situations where multiple objects might care about changes

to
another object. For example, many components of system might
want to observe the "battery" module for "suspend" or
"shutdown" events to save critical data. In a word processor
like Google Docs, the spell-checker, scroll-bar size calculator,

page-number calculator and the like may all want to observe
when new characters are entered. The benefit is that all
of the
listeners get updated when the state of the subject changes.

Singleton: The singleton pattern helps guard access when there
is conceptually only one logical instance of a resource. For
example,
in a cellphone there may only be one GPS module, or in a three-tier
web application, there may only be one database

connection. The
pattern is helpful when you want more control than a "naked"
global variable. For example, you may want
many places in
the code to be able to read from the database connection, but
not shut it down.

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Template Method: The template method helps when you want to
follow the same high-level plan but
select lower-level

implementations for sub-steps at run-time. A sales app that always receives money, keeps an internal
tally, and delivers an
item might use the template method
pattern if there are multiple ways to "receive money"
(e.g., via credit card, via direct

deposit, etc.). Part
of the advantage is the inversion of control: the subclasses redefine certain steps of the algorithm.
(This can
also make it tricky to understand!)

Factory: The factory method pattern provides a way to
create objects while hiding the exact subclass created. This is a good fit
almost anywhere you have subclasses of a superclass and
you might add more subclasses as time goes by. For example,
an

image viewer might want to use an abstract Image class
and add support for JPG, PNG, TIFF, etc., over time, without requiring
client code to know the names of those subclasses. Factory patterns can also encapsulate dynamic logic around
object

creation and can help control access to the state of
created objects (but not revealing types or fields).
Strategy: The strategy pattern allows an algorithm
to be selected at run-time without code duplication. For example, a sales

application might have an algorithm for state sales
tax, an algorithm for states with no sales tax, an algorithm
for
international taxes, and so on. The purchase location
is not known until runtime, at which point the sub-algorithm
is selected.

Strategy patterns also all algorithms to be
separated from data, admitting reuse (as in the sorting algorithm example, where
you pass a comparison
function in to "sort").

Creational: Creational design patterns include the
named constructor pattern, the factory pattern, the singleton pattern,
and
so on. Without duplicating an answer above, a student
receiving this prompt had more free choice. Suppose the named

constructor pattern is chosen. It allows object creation to
be guarded by program logic. A normal constructor can be invokved
at any
point, but a named constructor may apply other logic (e.g., checking
available resources, permissions, etc.) before

invoking the "real"
constructor.

5e. (2 points) Suppose that a particular software
engineering project spends 39% of its lifetime
effort on implementation, 39%
of its lifetime
effort on testing, and 22% of its lifetime effort
on other non-testing maintenance. You are considering a
design

that would (a) increase the effort required for
implementation by 14% (for example, if implementation
previously took 10
hours, but that effort is increased by 35%, it
would now take 13.5 hours); but that would also (b) reduce the effort
required for

testing by 14%. Assume the project
originally required 100 effort units to complete over its
lifetime: calculate the new lifetime
effort units required by
the project with your new proposed design.

ANSWER: 100.0

Your answer here.

5f. (2 points) In four sentences or fewer, reference the paper
The art of software systems development: Reliability, Availability,
Maintainability, Performance (RAMP) and other knowledge to support or refute the following claim:
We always want to spend
more on design to reduce maintenance costs.
You should include at least two pieces of evidence or argument, at least one of

which
should be associated with the paper. Use at most four sentences.

ANSWER: The answer here will depend on the variant of the question: exams might
have used "always", "sometimes", or

"never". The typical answer
is support in the positive direction: a recurring
theme in software engineering is that we can spend
more up-front
effort on design to reduce maintenance costs. This is explicitly
covered starting on Slide #3 of the Design for

Maintainability
lecture. However, students might bring up other evidence, such
as the chart, first introduced on Slide #18 of
the Process, Risk and Scheduling lecture, that mentions how defects cost more
to fix as the time increases between when they

are introduced
and when they are found.
Although many examples from the RAMP paper can be used, this
is an example of a question that focuses on critical reading

comprehension
and retention: much of the RAMP paper does not directly address this issue
per se, and thus students who did
not recall the paper or the concepts may
have struggled to find something relevant in time while taking the exam. One

potential answer would be to take the paper at a very high level: the authors argue strongly in favor of a particular framework
("In order for this art to be more effective and controllable, a
peformability framework, which combines the four non-functional

requirements (performance, reliability, availability, and maintainability), is proposed")
and say that it directly includes
maintainability. However, students could also have pointed to particular pieces of
evidence from the case studies. For example,

near "The example of InterMod60 is a clear example where
the restructuring of the intermodulation algorithms", the
restructuring (or not) is a design-related decision (i.e., how
should we design the software? what structure should it use?). Ditto

for "The use of time-synchronized processes would have been the
preferred choice for achieving higher throughput", in which
the use of a certain process type is a design decision. Those specific
examples require a bit more finesse (since they speak more

directly
about availability or throughput or performability, and so the
student would have to link that to maintainability), but
can be made full credit.

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Question 6. Interviews (14 points total)

A candidate at a technical interview is given the following prompt:

Write isAnagram(), a function that returns whether two
strings are anagrams or not. String A and string B are anagrams if

A's characters can be rearranged to form string B.

Below, the candidate provides an implementation for isAnagram():

6a. (1 points) Identify a test input that would return true for the above implementation.

6b. (1 points) Identify a test input that would return false
for the above implementation.

6c. (4 points) The interviewer runs the implementation on a set of test cases. 6 test cases pass, while 4 fail. The interviewer

suggests that perhaps the candidate made some assumptions
that resulted in an erroneous implementation. List two
questions that this candidate could have asked such that each question would have revealed a separate mistaken assumption.

(For example, candidates implementing integer division might avoid a divide-by-zero error by asking "can the denominator be
zero?".)

ANSWER: An input such as "abc", "cba" would return true.

Some students were tempted to suggest that the code does not run at all
and thus no tests return true. However, part (c)
below implies that
the code is meant to run, many students asked the course staff on the forum and received guidance,

interviews are interactive, and the exact
language used is not specified. Limiting your answer to a statement
that the code
does not run at all typically merits partial credit
but does not give you a chance to demonstrate your mastery of the
material

for full credit.

Your answer here.

ANSWER: An input such as "abc", "def" would return false.

Your answer here.

bool isAnagram(string A, string B) {
 // creates a size 26 array filled with zeroes

 int charCounter[26];
​

 for (char letter : A) {
 charCounter[letter - 'a']++;

 }
​

 for (char letter : B) {
 --charCounter[letter - 'a'];

 if (charCounter[letter - 'a'] < 0) {
 return false;

 }
 }

​
 for (int count : charCounter) {

 if (count != 0) {
 return false;

 }
 }

​
 return true;

}

​
​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

6d. (4 points) Assume that the company makes hiring decisions
solely based on this programming interview task:
candidates

are evaluated based on the questions they ask during the interview and the performance of their
submitted code on test cases.
Identify and explain two flaws in this hiring process with respect to the
most common company hiring goals (e.g., not hiring

people who are likely to do a poor job, hiring people
who are likely to do a good job, etc.).

6e. (4 points) Support or refute the claim that automated
program repair would likely repair the defect(s) in the
code listed
above, assuming a test suite with 100% line coverage
that contains at least one test the code currently passes and
one test

the code currently fails.

ANSWER: A key issue with the provided implementation is that it only handles
lower-case letters. It also does not handle any

non-letter characters.
Questions such as "can the strings contain spaces?" or "can the strings
contain uppercase letters?" or "is
internationalization a concern?"
would all reveal these issues. Depending on the string type in this
language, the provided

implementation may also assume that the
inputs are not null: it does not check for, or handle null inputs,
gracefully. A
question such as "could the strings be null?" would address this concern (note that null and empty are not the same in
this

context).

Your answer here.

ANSWER: One issue is that the process does not assess many relevant software
engineering job tasks, such as a writing

comments, comprehending code, or
maintaining code. (For example, no mention is made of assessing the
readability of
candidate's source code. Similarly, the candidate is
not given code written by someone else and asked to fix it.)

Another issues is that the process does not include any
behavioral aspects. Candidates who do not fit with the corporate
culture or are not pleasant to talk to are unlikely to do a good
job at the collaborative aspects of software engineering.
(For

example, no mention is made of asking the candidate to describe
a situation with a communication failure and how it was
resolved.)

It may be tempting to answer that the process would miss good candidates,
but care must be taken with such an answer:
modern companies are
much more interested in ruling out poor candidates (by their estimation)
than in making sure that all

good candidates are hired, and student
answers that mention failing to hire good candidates without mentioning
this
asymmetry would not receive full credit.

Your answer here.

ANSWER: Automated program repair is unlikely to repair the
defects in the code listed above. There are at least two critical

aspects to automated program repair here: fault localization (can it determine
where to make the change?) and mutation
(what sort of edits will it
try to make the change?). Suppose the bug is that the code should handle
all 256 character values

and a buggy input shows that by using
uppercase letters in string A. Fault localization for this problem is
arguable. Students
could suggest that as soon as the uppercase
letter is encountered, the program will crash immediately in the first for loop,

implicating the key line. However, charCounter is a stack-allocated array, and in practice
walking off the end of a stack-
allocated array typically
does not immediately crash the problem and instead insidiously
corrupts memory (indeed, this is how

most buffer overruns work!).
So students could argue that either way. However, the mutation operator (or edit operator) aspect
is
much more significant. Current automated program repair approaches
insert, delete or swap statements or expressions. In

some cases,
like Facebook's SapFix, they may also use particular templates
(e.g., inserting null checks to deal with null pointer
exceptions).
The automated program repair techniques discussed in class or
in the readings or commonly deployed do not

support changing or making new data structures (or new function etc.). As a result,
no mutation considered will fix the bug
(since fixing
the bug either requires allocating more memory for the charCounter array or using a different data structure or

algorithm). Even an APR algorithm that swaps constant numerical expressions
would be unlikely to succeed, since 256 (or
larger) is not
present in the program text to be used to replace the 26. An answer specifically suggesting that fault localization

would
work and also that APR might have a mutation or edit operator
that changes numbers randomly (e.g., picking entirely
new numbers) could potentially receive full credit, but otherwise students should argue that APR will not succeed here.

Your answer here.

Question 7. Extra Credit (1 point each)

(Feedback) What was your favorite topic covered during the course?

What is one thing you like about this class?

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

(Feedback) What was your least favorite course topic (or the thing you would most recommend that we
change for
future

semesters)?

What is one thing you dislike about this class?

(Guest Lecture)
List one thing you learned from guest speaker Dr. Ciera Jaspan of Google or otherwise convince us that you

paid
careful
attention during that lecture.

Jaspan guest lecture.

(Optional Reading 1) Identify a single optional reading that was assigned after Exam 1. Write a
sentence about
it that convinces

us you read it critically.

Optional Reading 1

(Optional Reading 2) Identify a different single optional reading that was assigned after Exam 1 or a
"long
instructor post" that

was posted after Exam 1. Write a sentence about it that convinces us you read it
critically.

Optional Reading 2

(Guest Lecture) List one thing you learned from guest speaker Dr. Kevin Leach that was not listed on an
introductory summary

slide or otherwise convince us that you paid careful attention during that lecture.

Leach guest lecture

(Optional Lectures) List one thing you learned from a "Game Theory",
"World Building", and/or
"Quantum Computing and

Romance Novels" lecture that
was not listed on an introductory summary slide.

Optional bonus lectures

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

