
Symstra: A Framework for Generating Object-Oriented
Unit Tests Using Symbolic Execution

Tao Xie1, Darko Marinov2, Wolfram Schulte3, and David Notkin1

1 Dept. of Computer Science & Engineering, Univ. of Washington, Seattle, WA 98195, USA
2 Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801, USA

3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{taoxie, notkin}@cs.washington.edu, marinov@cs.uiuc.edu,

schulte@microsoft.com

Abstract. Object-oriented unit tests consist of sequences of method invocations.
Behavior of an invocation depends on the method’s arguments and the state of
the receiver at the beginning of the invocation. Correspondingly, generating unit
tests involves two tasks: generating method sequences that build relevant receiver-
object states and generating relevant method arguments. This paper proposes Sym-
stra, a framework that achieves both test generation tasks using symbolic execution
of method sequences with symbolic arguments. The paper defines symbolic states
of object-oriented programs and novel comparisons of states. Given a set of meth-
ods from the class under test and a bound on the length of sequences, Symstra
systematically explores the object-state space of the class and prunes this explo-
ration based on the state comparisons. Experimental results show that Symstra
generates unit tests that achieve higher branch coverage faster than the existing
test-generation techniques based on concrete method arguments.

1 Introduction

Object-oriented unit tests are programs that test classes. Each test case consists of a fixed
sequence of method invocations with fixed arguments that explores a particular aspect of
the behavior of the class under test. Unit tests are becoming an important component of
software development. The Extreme Programming discipline [5], for instance, leverages
unit tests to permit continuous and controlled code changes. Unlike in traditional testing,
it is developers (not testers) who write tests for every aspect of the classes they develop.
However, manual test generation is time consuming, and so typical unit test suites cover
only some aspects of the class.

Since unit tests are gaining importance, many companies now provide tools, frame-
works, and services around unit tests. Tools range from specialized test frameworks, such
as JUnit [18] or Visual Studio’s new team server [25], to automatic unit-test generation,
such as Parasoft’s Jtest [27]. However, existing test-generation tools typically do not
provide guarantees about the generated unit-test suites. In particular, the suites rarely
satisfy the branch-coverage test criterion [6], let alone a stronger criterion, such as the
bounded intra-method path coverage [3] of the class under test. We present an approach
that uses symbolic execution to exhaustively explore bounded method sequences of the

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 365–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



366 T. Xie et al.

class under test and to generate tests that achieve high branch and intra-method path
coverage for complex data structures such as container implementations.

1.1 Background

Generating test sequences involves two tasks: generating method sequences that build rel-
evant receiver-object state and generating relevant method arguments. Researchers have
addressed this problem several times. Most tools generate test sequences using concrete
representations. A popular approach is to use (smart) random generation; this approach
is embodied in tools such as Jtest [27] (a commercial tool for Java) or JCrasher [13] and
Eclat [26] (two research prototypes for Java). Random tests generated by these tools often
execute the same sequences [34] and are not covering (do not cover all sequences). The
AsmLT model-based testing tool [16, 15] uses concrete-state space-exploration tech-
niques [12] to generate covering method sequences. But AsmLT requires the user to
carefully choose sufficiently large concrete domains for method arguments and the right
abstraction functions to guarantee the covering. Tools such as Korat [8] are able to gen-
erate non-isomorphic object graphs that can be used for testing, but they do not generate
covering test sequences.

King proposed in the 70’s to use symbolic execution for testing and verification [20].
Because of the advances in constraint solvers, this technique recently regained the atten-
tion for test generation. For example, the BZ-TT tool uses constraint solving to derive
method sequences from B specifications [22]. However, the B specifications are not
object-oriented. Khurshid et al. [19, 33] proposed an approach for generating tests for
Java classes based on symbolic execution. They show that their generation based on sym-
bolic execution generates tests faster than their model checking of method sequences
with concrete arguments. This is expected: symbolic representations describe not only
single states, but sets of states, and when applicable, symbolic representations can yield
large improvements, witnessed for example by symbolic model checking [24]. The ap-
proach of Khurshid et al. [19,33], however, generates the receiver-object states, similar
to Korat [8], only as object graphs, not through method sequences. Moreover, it requires
the user to provide specially constructed class invariants [23], which effectively describe
an over-approximation of the set of reachable object graphs.

Symbolic execution is the foundation of static code analysis tools. These tools typi-
cally do not generate test data, but automatically verify simple properties of programs.
These properties often allow merging symbolic states that stem from different execution
paths. However, for test generation, states have to be kept separate, since different tests
should be used for different paths. Recently, tools such as SLAM [4,2] and Blast [17,7]
were adapted for test generation. However, neither of them can deal with complex data
structures, which are the focus of this paper.

1.2 Contributions

This paper makes the following contributions.

Symbolic Sequence Exploration: We propose Symstra, a framework that uses symbolic
execution to generate method sequences. When applicable, Symstra uses an exhaustive
exploration of method sequences with symbolic variables for primitive-type arguments.



Symstra: A Framework for Generating Object-Oriented Unit Tests 367

(We also discuss how Symstra can handle reference-type arguments.) Each symbolic
argument represents a set of all possible concrete values for the argument. Symstra uses
symbolic execution to operate on symbolic states that include symbolic variables.

Symbolic State Comparison: We present novel techniques for comparison of sym-
bolic states of object-oriented programs. Our techniques allow Symstra to prune the
exploration of the object state and thus generate tests faster, without compromising the
exhaustiveness of the exploration. In particular, the pruning preserves the intra-method
path coverage of the generated test suites.

Implementation: We describe an implementation of a test-generation tool for Sym-
stra. Our implementation handles dynamically allocated structures, method pre- and
post-conditions, and symbolic data. Our current implementation does not support con-
currency, but such support can be added by reimplementing Symstra in a Java model
checker, such as Java Pathfinder [32] or Bogor [29].

Evaluation: We evaluate Symstra on seven subjects, most of which are complex data
structures. The experimental results show that Symstra generates tests faster than the
existing test-generation techniques based on exhaustive exploration of sequences with
concrete method arguments [33,16,15,34]. Further, given the same time for generation,
Symstra can generate tests that achieve better branch coverage than the existing tech-
niques. Finally, Symstra works on ordinary Java implementations and does not require
the user to provide the additional methods required by some other approaches [33, 8].

2 Example

This section illustrates how Symstra explores method sequences and generates tests.
Figure 1 shows a binary search tree class BST that implements a set of integers. Each
tree has a pointer to the root node. Each node has an element and pointers to the left
and right children. The class also implements the standard set operations: insert adds
an element, if not already in the tree, to a leaf; remove deletes an element, if in the
tree, replacing it with the smallest larger child if necessary; and contains checks if an
element is in the tree. The class also has a default constructor that creates an empty tree.

Some tools such as Jtest [27] or JCrasher [13] test a class by generating random
sequences of methods; for BST, they could for example generate the following tests:

Test 1: Test 2:
BST t1 = new BST(); BST t2 = new BST();
t1.insert(0); t2.insert(2147483647);
t1.insert(-1); t2.remove(2147483647);
t1.remove(0); t2.insert(-2147483648);

Each test has a method sequence on the objects of the class, e.g., Test 1 creates a tree
t1, invokes two insert methods on it, and then one remove. Typically, checking the
correctness (of outputs) for such tests relies on design-by-contract annotations translated
into run-time assertions [27, 10] or on model-based testing [16]. If there are no annota-
tions or models, the tools check only the code robustness: execute the tests and check
for uncaught exceptions [13].



368 T. Xie et al.

class BST implements Set {
Node root;
static class Node {

int value;
Node left;
Node right;

}
void insert(int value) { ... }
void remove(int value) { ... }
bool contains(int value) { ... }

}
Fig. 1. A set implemented as a binary search tree

Some other tools [33, 16, 15, 34] can exhaustively explore all method sequences up
to a given length. Such exploration raises two questions: (1) what arguments to use for
method calls, and (2) how to determine equivalent tests? These tools typically require
the user to provide a sufficiently good set of concrete values for each argument, or based
on the argument type, use a set of default values that may miss relevant behaviors. These
tools check equivalence of test sequences by comparing the states that the sequences
build; the comparison uses either user-provided functions or defaults, such as identity
or isomorphism. This generation is similar to explicit-state model checking [12].

Symstra also explores all sequences, but using symbolic values for primitive-type
arguments in method calls. Such exploration relieves Symstra users from the burden of
providing concrete values: Symstra determines the relevant values during the execution.
Having symbolic arguments necessitates symbolic execution [20]. It operates on a sym-
bolic state that consists of two parts: (1) a constraint, known as the path condition, that
must hold for the execution to reach a certain point and (2) a heap that contains symbolic
variables. When the symbolic execution encounters a branch, it explores both outcomes,
appropriately adding the branch condition or its negation to the constraint. Symbolic
state exploration in Symstra is conceptually similar to symbolic model checking [24].

Let us consider the symbolic execution of the following sequence:

BST t = new BST();
t.insert(x1);
t.insert(x2);
t.insert(x3);
t.remove(x4);

This sequence has four method calls whose arguments are symbolic variables x1, x2,
x3, and x4. While an execution of a sequence with concrete arguments produces one
state, symbolic execution of a sequence with symbolic arguments can produce several
states, thus resulting in an execution tree. Figure 2 shows a part of the execution tree
for this example. Each state has a heap and a constraint that must hold for that heap to
be created. The constructor first creates an empty tree. The first insert then adds the
element x1 to the tree.

The second insert produces states s3, s4, and s5: if x1 = x2, the tree does not
change, and if x2 > x1 (or x2 < x1), x2 is added in the right (or left) subtree. Note
that the symbolic states s2 and s4 are syntactically different: s2 has the constraint true,
while s4 has x1 = x2. However, these two symbolic states are semantically equivalent:
they can be instantiated into the same set of concrete heaps by giving to x1 and x2



Symstra: A Framework for Generating Object-Oriented Unit Tests 369

x1

s2 trues1 true

x1>x2∧
x1<x3∧
x1=x4

s8

x2

x3

x1=x2s4
x1

x2

x1>x2s3
x1

x2

x1<x2s5
x1

x1

x2 x3

x1>x2∧
x1<x3

s6

x1

x3 x2

x1<x2∧
x1>x3

s7

in
se
rt
(x

1
)

ne
w
BS
T(
)

in
se
rt
(x

2
)

Fig. 2. A part of the symbolic execution tree

concrete values that satisfy the constraints; since x2 does not appear in the heap in s4,
the constraint in s4 is “irrelevant”. Instead of state equivalence, it suffices to check state
subsumption: we say that s2 subsumes s4 because the set of concrete heaps of s4 is a
subset of the set of concrete heaps of s2. Hence, Symstra does not need to explore s4
after it has already explored s2. Symstra detects this by checking that the implication
of constraints x1 = x2 ⇒ true holds. Our current Symstra implementation uses the
Omega library [28] and CVC Lite [11] to check the validity of the implication.

The third insert again produces several symbolic states. Symstra applies insert
only on s3 and s5 (and not on s4). In particular, we focus on s6 and s7, two of the
symbolic states that these executions produce. These two states are syntactically dif-
ferent, but semantically equivalent: we can exchange the variables x2 and x3 to obtain
the same symbolic state. Symstra detects this by checking that s6 and s7 are isomorphic
(Section 3.2). Symstra finally applies remove. Note again that one of the symbolic states
produced, s8, is subsumed by a previously explored state, s3.

This example has illustrated how Symstra would explore symbolic execution for one
particular sequence. Symstra actually exhaustively explores the symbolic execution tree
for all sequences up to a given length, pruning the exploration based on subsumption.
These sequences consists of all specified methods of the class under test, i.e., insert,
remove, and contains for BST.

After producing a symbolic state s, Symstra can generate a specific test with concrete
arguments to produce a concrete heap of s. Symstra generates the test by traversing the
shortest path from the root of the symbolic execution tree to s and outputting the method
calls that it encounters. To generate concrete arguments for these calls, Symstra uses a
constraint solver. Our current implementation uses the POOC solver [31]. For example,
the tests that it generates for s3 and s5 are:



370 T. Xie et al.

Test for s3: Test for s5:
BST t3 = new BST(); BST t5 = new BST();
t3.insert(-999999); t5.insert(-1000000);
t3.insert(-1000000); t5.insert(-999999);

A realistic suite of unit tests contains more sequences that test the interplay between
insert, remove, and contains methods. Section 4 summarizes such suites.

3 Framework and Implementation

We next formalize the notions introduced informally in the previous section. We first de-
scribe how Symstra represents symbolic states. Symstra uses them for two purposes: (1)
during the symbolic execution of method invocations and (2) for representing the states
between method invocations in method sequences. We then present how Symstra com-
pares states based on the isomorphism of heaps and implication of constraints. We next
present the symbolic execution of method invocations. We finally present the systematic
exploration of method sequences and how Symstra uses symbolic state comparison to
prune this exploration. We present the Symstra technique itself as well as our current
implementation.

3.1 Symbolic State

Symbolic states differ from concrete states, on which the usual program executions
operate, in that symbolic states contain symbolic expressions with symbolic variables and
also constraints on these variables [20]. Symstra uses the following symbolic expressions
and constraints:

• A symbolic variable is a symbolic expression. Each symbolic variable has a type,
which is one of the Java types. For example, x1 and x2 may be each a symbolic
variable (and thus also a symbolic expression) of type int.

• A Java constant of some type is a symbolic expression of that type.
• For each Java operator � with n operands, n symbolic expressions of the appropri-

ate operand types connected with � are a symbolic expression of the result type.
For example, x1 + x2 and x1 > x2 are expressions of type int and boolean,
respectively.

• Symbolic expressions of type boolean are constraints.

Let P be the set of all primitive values, including integers, true, false, etc. Let V
be a set of infinite number of symbolic variables of each type and U a set of all possible
expressions formed from V and P . Given a valuation for the variables, η : V → P , we
extend it to evaluate all expressions η : U → P as follows: η(p) = p for all p ∈ P , and
η(�u1, . . . , un) = eval(�, η(u1), . . . , η(un)) for all u1, . . . , un ∈ U and operations
�, where eval evaluates operations on primitive values according to the Java semantics.

In object-oriented programs, a concrete state consists of a global heap and a stack (in
general one stack for each thread, but we consider here only single-threaded programs), as
well as several other parts, such as metadata for classes and program counters. Symbolic
states in Symstra have the same parts as concrete states, but the heaps and stacks in



Symstra: A Framework for Generating Object-Oriented Unit Tests 371

symbolic states can contain symbolic expressions; additionally, each symbolic state has
a constraint. We focus on the symbolic state between method sequences.

Definition 1. A symbolic state 〈C, H〉 is a pair of a constraint and a symbolic heap.

We view each heap as a graph: nodes represent objects (as well as primitive values
and symbolic expressions) and edges represent object fields. Let O be some set of objects
whose fields form a set F . Each object has a field that represents its class. We consider
arrays as objects whose fields are labelled with (integer) array indexes and point to the
array elements.

Definition 2. A symbolic heap is an edge-labelled graph 〈O, E〉, where E ⊆ O × F ×
(O ∪ {null} ∪ U) such that for each field f of each o ∈ O exactly one 〈o, f, o′〉 ∈ E.
A concrete heap has only concrete values: o′ ∈ O ∪ {null} ∪ P .

3.2 Heap Isomorphism

We define heap isomorphism as graph isomorphism based on node bijection [8]. We
are interested in detecting isomorphic heaps because they lead to equivalent method
behaviors; hence, it suffices to explore only one representative from each isomorphism
partition. Nodes in symbolic heaps contain symbolic variables, so we first define a
renaming of symbolic variables. Given a bijection τ : V → V , we extend it to the
whole τ : U → U as follows: τ(p) = p for all p ∈ P , and τ(�u1, . . . , un) =
�τ(u1), . . . , τ(un) for all u1, . . . , un ∈ U and operations �. We further extend τ to
substitute free variables in formulas with bound variables, avoiding capture as usual.

Definition 3. Two heaps 〈O1, E1〉 and 〈O2, E2〉 are isomorphic iff there are bijections
ρ : O1 → O2 and τ : V → V such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈E1, o
′ ∈O1}∪{〈ρ(o), f, null〉|〈o, f, null〉 ∈E1}∪

{〈ρ(o), f, τ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ U}.

Note that the definition allows only object identities and symbolic variables to vary:
two isomorphic heaps have the same fields for all objects and equal (up to renaming)
symbolic expressions for all primitive fields.

The state exploration in Symstra focuses on the state of several objects and does
not consider the entire heap; in this context, the state of an object o consists of the
values of the fields of o and fields of all objects reachable from o. From a program
heap 〈O, E〉 and a tuple 〈v0, . . . , vn〉 of pointers and symbolic expressions vi ∈ O∪U ,
where 0 ≤ i ≤ n, Symstra constructs a rooted heap [34] 〈Oh, Eh〉 that has a unique root
object r ∈ Oh: Symstra first creates the heap 〈O′, E′〉, where O′ = O ∪ {r}, r �∈ O,
and E′ = E ∪ {〈r, i, vi〉|0 ≤ i ≤ n}, and then creates 〈Oh, Eh〉 as the subgraph of
〈O′, E′〉 such that Oh ⊆ O′ is the set of all objects reachable from r within E′ and
Eh = {〈o, f, o′〉 ∈ E′|o ∈ Oh}.

We can efficiently check isomorphism of rooted heaps, even though for general
graphs it is unknown whether checking isomorphism can be done in polynomial time.
Symstra linearizes heaps into integer sequences such that checking heap isomorphism
corresponds to checking sequence equality. Figure 3 shows the linearization algorithm.



372 T. Xie et al.

Map<Object,int> objs; // maps objects to unique ids
Map<SymVar,int> vars; // maps symbolic variables to unique ids

int[] linearize(Object root, Heap <O,E>) {
objs = new Map(); vars = new Map();
return lin(root, <O,E>>;

}

int[] lin(Object root, Heap <O,E>) {
if (objs.containsKey(root))
return singletonSequence(objs.get(root));

int id = objs.size() + 1; objs.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {
if (isSymbolicExpression(o)) seq.append(linSymExp(o));
elseif (o == null) seq.append(0);
else seq.append(lin(o, <O,E>)); // pointer to an object

}
return seq;

}

int[] linSymExp(SymExp e) {
if (isSymVar(e)) {
if (!vars.containsKey(e))
vars.put(e, vars.size() + 1);

return singletonSequence(vars.get(e));
} elseif (isPrimitive(e)) return uniqueRepresentation(e);
else { // operation with operands
int[] seq = singletonSequence(uniqueRepresentation(e.getOperation()));
foreach (SymExp e’ in e.getOperands())
seq.append(linSymExp(e’));

return seq;
}

}

Fig. 3. Pseudo-code of linearization for a symbolic rooted heap

It starts from the root and traverses the heap depth first. It assigns a unique identifier to
each object, keeps this mapping in objs and reuses it for objects that appear in cycles.
It also assigns a unique identifier to each symbolic variable, keeps this mapping in vars
and reuses it for variables that appear several times in the heap.

A similar linearization is used to represent concrete heaps in model checking [1,30,
32]. This paper extends the linearization from our previous work [34] with linSymExp

that handles symbolic expressions; this improves on the approach of Khurshid et al. [19,
33] that does not use any comparison for symbolic expressions. It is easy to show that
our linearization normalizes rooted heaps.

Theorem 1. Two rooted heaps 〈O1, E1〉 (with root r1) and 〈O2, E2〉 (with root r2) are
isomorphic iff linearize(r1, 〈O1, E1〉)=linearize(r2, 〈O2, E2〉).

3.3 State Subsumption

We define symbolic state subsumption based on the concrete heaps that each symbolic
state represents. Symstra uses state subsumption to prune the exploration. To instantiate



Symstra: A Framework for Generating Object-Oriented Unit Tests 373

boolean checkSubsumes(Constraint C1, Heap H1,
Constraint C2, Heap H2) {

int[] i1 = linearize(root(H1), H1);
Map<SymVar,int> v1 = vars; // at the end of previous linearization
Set<SymVar> n1 = variables(C1) - v1.keys(); // variables not in the heap
int[] i2 = linearize(root(H2), H2);
Map<SymVar,int> v2 = vars; // at the end of previous linearization
Set<SymVar> n2 = variables(C2) - v2.keys(); // variables not in the heap
if (i1 <> i2) return false;
Renaming τ = v2 ◦ v1−1 // compose v2 and the inverse of v1
return checkValidity(τ(∃n2. C2) ⇒ ∃n1. C1);

}

Fig. 4. Pseudo-code of subsumption checking for symbolic states

a symbolic heap into a concrete heap, we replace the symbolic variables in the heap with
primitive values that satisfy the constraint in the symbolic state.

Definition 4. An instantiation I(〈C, H〉) of a symbolic state 〈C, H〉 is a set of concrete
heaps H ′ such that there exists a valuation η : V → P for which η(C) is true and H ′

is the evaluation η(H) of all expressions in H according to η.

Definition 5. A symbolic state 〈C1, H1〉 subsumes another symbolic state 〈C2, H2〉, in
notation 〈C1, H1〉 ⊇ 〈C2, H2〉, iff for each concrete heap H ′

2 ∈ I(〈C2, H2〉), there
exists a concrete heap H ′

1 ∈ I(〈C1, H1〉) such that H ′
1 and H ′

2 are isomorphic.

Symstra uses the algorithm in Figure 4 to check if the constraint of 〈C1, H1〉, af-
ter suitable renaming, implies the constraint of 〈C2, H2〉. Note that the implication is
universally quantified over the (renamed) symbolic variables that appear in the heaps
and existentially quantified over the symbolic variables that do not appear in the heaps
(more precisely only in H1, because the existential quantifier for n2 in the premise of
the implication becomes a universal quantifier for the whole implication). We can show
that this algorithm is a conservative approximation of subsumption.

Theorem 2. IfcheckSubsumes(〈C1, H1〉, 〈C2, H2〉) then 〈C1, H1〉 subsumes 〈C2, H2〉.
Symstra gains the power and inherits the limitations from the technique used to

check the implication on the (renamed) constraints. The current Symstra prototype uses
the Omega library [28], which provides a complete decision procedure for Presburger
arithmetic, and CVC Lite [11], an automatic theorem prover, which has decision pro-
cedures for several types of constraints, including real linear arithmetic, uninterpreted
functions, arrays, etc. Since these checks can consume a lot of time, Symstra further uses
the following conservative approximation: if free-variables(∃n1. C1) are not a subset of
free-variables(τ(∃n2. C2)), return false without checking the implication.

3.4 Symbolic Execution

We next discuss the symbolic execution of one method in a method sequence. Each
method execution starts with one symbolic state and produces several symbolic states.
We use the notation σm(〈C, H〉) to denote the set {〈C1, H1〉, . . . , 〈Cn, Hn〉} of states
that the symbolic execution, σ, of the method m produces starting from the state 〈C, H〉.



374 T. Xie et al.

Following the typical symbolic executions [20, 33], Symstra symbolically explores
both branches of if statements, modifying the constraint with a conjunct that needs
to hold for the execution to take a certain branch. In this context, the constraint is
called path condition, because it is a conjunction of conditions that need to hold for the
execution to take a certain path and reach the current address. This symbolic execution
directly explores every path of the method under consideration. The common issue in the
symbolic execution is that the number of paths may be infinite (or too large as it grows
exponentially with the number of branches) and thus σm(〈C, H〉) may be (practically)
unbounded. In such cases, Symstra can use the standard set of heuristics to explore only
some of the paths [33, 9].

The current Symstra prototype implements the execution steps on symbolic state
by rewriting the code to operate on symbolic expressions. Further, Symstra implements
the exploration of different branches by re-executing the method from the beginning
for each path, without storing any intermediate states. Note that Symstra re-executes
only one method (for different paths), not the whole method sequence. (This effectively
produces a depth-first exploration of paths within one method, while the exploration of
states between methods is breadth-first as explained in the next section.)

Our Symstra prototype also implements the standard optimizations for symbolic
execution. First, Symstra simplifies the constraints that it builds at branches; specifically,
before conjoining the path condition so far C and the current branch condition C ′ (where
C ′ is a condition from an if or its negation), Symstra checks if some of the conjuncts
in C implies C ′; if so, Symstra does not conjoin C ′. Second, Symstra checks if the
constraint C&&C ′ is unsatisfiable; if so, Symstra stops the current path of symbolic
execution, because it is an infeasible path. The current Symstra prototype can use the
Simplify [14] theorem prover or the Omega library [28] to check unsatisfiability. We
have found that Omega is faster, but it handles only linear arithmetic constraints.

Given a symbolic state at the entry of a method execution, Symstra uses symbolic
execution to achieve structural coverage within the method, because symbolic execution
systematically explores all feasible paths within the method. If the user of Symstra is
interested in only the tests that achieve new branch coverage, our Symstra prototype
monitors the branch coverage during symbolic execution and selects a symbolic execu-
tion for concrete test generation (Section 3.6) when the symbolic execution covers a new
branch. The Symstra prototype can also be extended for selecting symbolic executions
that achieve new bounded intra-method path coverage [3].

3.5 Symbolic State Exploration

We next present the symbolic state space for method sequences and how Symstra sys-
tematically explores this state space. The state space consists of all states that are reach-
able with the symbolic execution of all possible method sequences for the class under
test. Let C and M be a set of the constructor and non-constructor methods of this class.
Each method sequence starts with a constructor from C followed by several methods
from M. We denote with ΣC,M the state space for these sequences. The initial sym-
bolic state is s0 = 〈true, {}〉: the constraint is true, and the heap is empty. The state
space includes the states that the symbolic execution produces for the constructors and



Symstra: A Framework for Generating Object-Oriented Unit Tests 375

methods:
⋃

c∈C σc(s0)⊂ΣC,M and ∀s∈ΣC,M.
⋃

m∈M σm(s)⊂ΣC,M. As usual [12],
ΣC,M is the least fixed point of these equations. The state space is typically infinite.

The current Symstra prototype exhaustively explores a bounded part of the symbolic
state space using a breadth-first search. The inputs to Symstra are a set of constructor
C and non-constructor methods M of the class under test and a bound on the length of
sequences. Symstra maintains a set of explored states and a processing queue of states.
Symstra processes the queue in a breadth-first manner: it takes one state and symbolically
executes each method under test (constructor at the beginning of the sequence and a
non-constructor after that) for each path on this state. Every such execution yields a new
symbolic state. Symstra adds the new state to the queue for further exploration only if it
is not subsumed by an already explored state from the set. Otherwise, Symstra prunes
the exploration: the new symbolic state represents only a subset of the concrete heaps
that some explored symbolic state represents; it is thus unnecessary to explore the new
state further. Pruning based on subsumption plays the key role in enabling Symstra to
explore large state spaces.

3.6 Concrete Test Generation

During the symbolic state exploration, Symstra also builds specific concrete tests that
lead to the explored states. Whenever Symstra finishes a symbolic execution of a method
that generates a new symbolic state 〈C, H〉, it also generates a symbolic test. This test
consists of the constraint C and the shortest method sequence that reaches 〈C, H〉.
(Symstra associates such a method sequence with each symbolic state and dynamically
updates it during execution). Symstra then instantiates a symbolic test using the POOC
constraint solver [31] to solve the constraint C over the symbolic arguments for methods
in the sequence. Based on the produced solution, Symstra obtains concrete arguments
for the sequence leading to 〈C, H〉. Symstra exports such concrete test sequences into a
JUnit test class [18]. It also exports the constraint C associated with the test as a comment
for the test in the JUnit test class.

At the class-loading time, Symstra instruments each branching point of the class
under test for measuring branch coverage at the bytecode level. It also instruments each
method of the class to capture uncaught exceptions at runtime. The user can configure
Symstra to select only those generated tests that increase branch coverage or throw new
uncaught exceptions.

4 Evaluation

This section presents our evaluation of Symstra for exploring method sequences and
generating tests. We compare Symstra with Rostra [34], our previous framework that
generates tests using bounded-exhaustive exploration of sequences with concrete argu-
ments. We have developed Symstra on top of Rostra, so that the comparison does not
give an unfair advantage to Symstra because of unrelated improvements. In these ex-
periments, we have used the Simplify [14] theorem prover to check unsatisfiability of
path conditions, the Omega library [28] to check implications, and the POOC constraint
solver [31] to solve constraints. We have performed the experiments on a Linux machine



376 T. Xie et al.

Table 1. Experimental subjects

class methods under test some private methods #ncnb #
lines branches

IntStack push,pop – 30 9
UBStack push,pop – 59 13
BinSearchTree insert,remove removeNode 91 34
BinomialHeap insert,extractMin findMin,merge 309 70

delete unionNodes,decrease
LinkedList add,remove,removeLast addBefore 253 12
TreeMap put,remove fixAfterIns 370 170

fixAfterDel,delEntry
HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

with a Pentium IV 2.8 GHz processor using Sun’s Java 2 SDK 1.4.2 JVM with 512 MB
allocated memory.

Table 1 lists the seven Java classes that we use in the experiments. The first six classes
were previously used in evaluating Rostra [34], and the last five classes were used in
evaluating Korat [8]. The columns of the table show the class name, the public methods
under test (that the generated sequences consist of), some private methods invoked by
the public methods, the number of non-comment, non-blank lines of code in all those
methods, and the number of branches for each subject.

We use Symstra and Rostra to generate test sequences with up to N methods. Rostra
also requires concrete values for arguments, so we set it to use N different arguments
(the integers from 0 to N − 1) for methods under test. Table 2 shows the comparison
between Symstra and Rostra. We range N from five to eight. (For N < 5, both Symstra
and Rostra generate tests really fast, usually within a couple of seconds, but those tests do
not have good quality.) We tabulate the time to generate the tests (measured in seconds,
Columns 3 and 7), the number of explored symbolic and concrete object states (Columns
4 and 8), the number of generated tests (Columns 5 and 9), and the branch coverage1

achieved by the generated tests (Columns 6 and 10). In Columns 5 and 9, we report the
total number of generated tests and, in the parentheses, the cumulative number of tests
that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration of the breadth-
first exploration: when an iteration exceeds three minutes, the exhaustive exploration of
Symstra or Rostra is stopped and the system proceeds with the next iteration. We use a
“*” mark for each entry where the test-generation process timed out; the state exploration
of these entries is no longer exhaustive. We use a “–” mark for each entry where Symstra
or Rostra exceeded the memory limit.

The results indicate that Symstra generates method sequences of the same length
N often much faster than Rostra, thus enabling Symstra to generate longer method
sequences within a given time limit. Both Symstra and Rostra achieve the same branch

1 We measure the branch coverage at the bytecode level during the state exploration of both
Symstra and Rostra, and calculate the total number of branches also at the bytecode level.



Symstra: A Framework for Generating Object-Oriented Unit Tests 377

Table 2. Experimental results of test generation using Symstra and Rostra

Symstra Rostra
class N time states tests %cov time states tests %cov

UBStack 5 0.95 22 43(5) 92.3 4.98 656 1950(6) 92.3
6 4.38 30 67(6) 100.0 31.83 3235 13734(7) 100.0
7 7.20 41 91(6) 100.0 *269.68 *10735 *54176(7) *100.0
8 10.64 55 124(6) 100.0 - - - -

IntStack 5 0.23 12 18(3) 55.6 12.76 4836 5766(4) 55.6
6 0.42 16 24(4) 66.7 - - - -
7 0.50 20 32(5) 88.9 *689.02 *30080 *52480(5) *66.7
8 0.62 24 40(6) 100.0 - - - -

BinSearchTree 5 7.06 65 350(15) 97.1 4.80 188 1460(16) 97.1
6 28.53 197 1274(16) 100.0 23.05 731 7188(17) 100.0
7 136.82 626 4706(16) 100.0 - - - -
8 *317.76 *1458 *8696(16) *100.0 - - - -

BinomialHeap 5 1.39 6 40(13) 84.3 4.97 380 1320(12) 84.3
6 2.55 7 66(13) 84.3 50.92 3036 12168(12) 84.3
7 3.80 8 86(15) 90.0 - - - -
8 8.85 9 157(16) 91.4 - - - -

LinkedList 5 0.56 6 25(5) 100.0 32.61 3906 8591(6) 100.0
6 0.66 7 33(5) 100.0 *412.00 *9331 *20215(6) *100.0
7 0.78 8 42(5) 100.0 - - - -
8 0.95 9 52(5) 100.0 - - - -

TreeMap 5 3.20 16 114(29) 76.5 3.52 72 560(31) 76.5
6 7.78 28 260(35) 82.9 12.42 185 2076(37) 82.9
7 19.45 59 572(37) 84.1 41.89 537 6580(39) 84.1
8 63.21 111 1486(37) 84.1 - - - -

HeapArray 5 1.36 14 36(9) 75.9 3.75 664 1296(10) 75.9
6 2.59 20 65(11) 89.7 - - - -
7 4.78 35 109(13) 100.0 - - - -
8 11.20 54 220(13) 100.0 - - - -

coverage for method sequences of the same length N . However, Symstra achieves higher
coverage faster. It also takes less memory and can finish generation in more cases than
Rostra. These results are due to the fact that each symbolic state, which Symstra explores
at once, actually describes a set of concrete states, which Rostra must explore one by
one. Rostra often exceeds the memory limit when N = 7 or N = 8, which is often not
enough to guarantee full branch coverage.

5 Discussion and Future Work

Specifications. Symstra uses specifications, i.e., method pre- and post-conditions and
class invariants, written in the Java Modelling Language (JML) [21]. The JML tool-set
transforms these constructs into run-time assertions that throw JML-specific excep-
tions when violated. Generating method sequences for methods with JML specifications



378 T. Xie et al.

amounts to generating legal method sequences that satisfy pre-conditions and class in-
variants, i.e., do not throw exceptions for these constructs. If during the exploration
Symstra finds a method sequence that violates a post-condition or invariant, Symstra
has discovered a bug; Symstra can be configured to generate such tests and continue or
stop test generation. If a class implementation is correct with respect to its specification,
paths that throw post-condition or invariant exceptions should be infeasible.

Symstra operates on the bytecode level. It can perform testing of the specifications
woven into method bytecode by the JML tool-set or by similar tools. Note that in this set-
ting Symstra essentially uses black-box testing [33] to explore only those symbolic states
that are produced by method executions that satisfy pre-conditions and class invariants;
conditions that appear in specifications simply propagate into the constraints associated
with a symbolic state explored by Symstra. Using symbolic execution, Symstra thus
obtains the generation of legal test sequences “for free”.

Performance. Based on state subsumption, our current Symstra prototype explores one
or more symbolic states that have the isomorphic heap. We plan to evaluate an approach
that explores exactly one union symbolic state for each isomorphic heap. We can create
a union state using a disjunction of the constraints for all symbolic states with the
isomorphic heap. Each union state subsumes all the symbolic states with the isomorphic
heap, and thus exploring only union states can further reduce the number of explored
states without compromising the exhaustiveness of the exploration. (Subsumption is a
special case of union; if C2 ⇒ C1, then C1 ∨ C2 simplifies to C1.)

Symstra enables exploring longer method sequences than the techniques based on
concrete arguments. However, users may want to have an exploration of even longer
sequences to achieve some test purpose. In such cases, the users can apply several tech-
niques that trade the guarantee of the intra-method path coverage for longer sequences.
For example, the user may provide abstraction functions for states [23], as used for in-
stance in the AsmLT generation tool [15], or binary methods for comparing states (e.g.
equals), as used for instance in Rostra. Symstra can then generate tests that instead
of subsumption use these user-provided functions for comparing state. This leads to a
potential loss of intra-method path coverage but enables faster, user-controlled explo-
ration. To explore longer sequences, Symstra can also use standard heuristics [33,9] for
selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. For example, it
cannot precisely handle array indexes that are symbolic variables. This situation occurs in
some classes, such as DisjSet and HashMap used previously in evaluating Rostra [34].
One solution is to combine symbolic execution with (exhaustive or random) exploration
based on concrete arguments: a static analysis would determine which arguments can
be symbolically executed, and for the rest, the user would provide a set of concrete
values [15].

So far we have discussed only methods that take primitive arguments. We cannot
directly transform non-primitive arguments into symbolic variables of primitive type.
However, we can use the standard approach for generating non-primitive arguments:
generate them also as sequences of method calls that may recursively require more
sequences of method calls, but eventually boil down to methods that have only primitive



Symstra: A Framework for Generating Object-Oriented Unit Tests 379

values (or null). (Note that this also handles mutually recursive classes.) JCrasher [13]
and Eclat [26] take a similar approach. Another solution is to transform these arguments
into reference-type symbolic variables and enhance the symbolic execution to support
heap operations on symbolic references. Concrete objects representing these variables
can be generated by solving the constraints and setting the instance fields using reflection.
However, the collected constraints are often not sufficient to generate legal instances, in
which case an additional object invariant is required.

6 Conclusion

We have proposed Symstra, a novel framework that uses symbolic execution to generate
a small number of method sequences that reach high branch and intra-method path cov-
erage for complex data structures. Symstra exhaustively explores method sequences with
symbolic arguments up to a given length. It prunes the exploration based on state sub-
sumption; this pruning speeds up the exploration, without compromising its exhaustive-
ness. We have implemented a test-generation tool for Symstra and evaluated it on seven
subjects, most of which are complex data structures. The results show that Symstra gen-
erates tests faster than the existing test-generation techniques based on exhaustive explo-
ration of sequences with concrete method arguments, and given the same time limit, Sym-
stra can generate tests that achieve better branch coverage than these existing techniques.

Acknowledgments

We thank Corina Pasareanu and WillemVisser for their comments on our implementation
of subsumption checking, help in using symbolic execution, and valuable feedback on
an earlier version of this paper. We also thank Wolfgang Grieskamp, Sarfraz Khurshid,
Viktor Kuncak, and Nikolai Tillmann for useful discussions on this work and anonymous
reviewers for the comments on a previous version of this paper. Darko Marinov would
like to thank his advisor, Martin Rinard, for supporting part of this work done at MIT. This
work was funded in part by NSF grant CCR00-86154. We also acknowledge support
through the High Dependability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model checker for
concurrent software. In Proc. 6th International Conference on Computer Aided Verification,
pages 484–487, 2004.

2. T. Ball. A theory of predicate-complete test coverage and generation. Technical Report
MSR-TR-2004-28, Microsoft Research, Redmond, WA, April 2004.

3. T. Ball and J. R. Larus. Using paths to measure, explain, and enhance program behavior.
IEEE Computer, 33(7):57–65, 2000.

4. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C
programs. In Proc. the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation, pages 203–213, 2001.



380 T. Xie et al.

5. K. Beck. Extreme programming explained. Addison-Wesley, 2000.
6. B. Beizer. Software Testing Techniques. International Thomson Computer Press, 1990.
7. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating tests from

counterexamples. In Proc. 26th International Conference on Software Engineering, pages
326–335, 2004.

8. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java predicates.
In Proc. International Symposium on Software Testing and Analysis, pages 123–133, 2002.

9. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic programming
errors. Softw. Pract. Exper., 30(7):775–802, 2000.

10. Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML
and JUnit way. In Proc. 16th European Conference Object-Oriented Programming, pages
231–255, June 2002.

11. S. B. Clark W. Barrett. CVC Lite: A new implementation of the cooperating validity checker.
In Proc. 16th International Conference on Computer Aided Verification, pages 515–518, July
2004.

12. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
MA, 1999.

13. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software:
Practice and Experience, 34:1025–1050, 2004.

14. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking.
Technical Report HPL-2003-148, HP Laboratories, Palo Alto, CA, 2003.

15. Foundations of Software Engineering, Microsoft Research. The AsmL test generator tool.
http://research.microsoft.com/fse/asml/doc/AsmLTester.html.

16. W. Grieskamp,Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines from
abstract state machines. In Proc. International Symposium on Software Testing and Analysis,
pages 112–122, 2002.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with BLAST. In
Proc. 10th SPIN Workshop on Software Model Checking, pages 235–239, 2003.

18. JUnit, 2003. http://www.junit.org.
19. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for model

checking and testing. In Proc. 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 553–568, April 2003.

20. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
21. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral inter-

face specification language for Java. Technical Report TR 98-06i, Department of Computer
Science, Iowa State University, June 1998.

22. B. Legeard, F. Peureux, and M. Utting. A comparison of the LIFC/B and TTF/Z test-generation
methods. In Proc. 2nd International Z and B Conference, pages 309–329, January 2002.

23. B. Liskov and J. Guttag. Program Development in Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley, 2000.

24. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
25. Microsoft Visual Studio Developer Center, 2004. http://msdn.microsoft.com/

vstudio/.
26. C. Pacheco and M. D. Ernst. Eclat documents. Online manual, Oct. 2004. http://

people.csail.mit.edu/people/cpacheco/eclat/.
27. Parasoft. Jtest manuals version 5.1. Online manual, July 2004. http://www.parasoft.

com/.
28. W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM,

35(8):102–114, 1992.
29. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular software

model checking framework. In Proc. 9th ESEC/FSE, pages 267–276, 2003.

http://research.microsoft.com/fse/asml/doc/AsmLTester.html
http://www.junit.org
http://msdn.microsoft.com/
vstudio/
http://
people.csail.mit.edu/people/cpacheco/eclat/
http://www.parasoft.
com/


Symstra: A Framework for Generating Object-Oriented Unit Tests 381

30. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model checking
dynamic systems. In Proc. 2003 Workshop on Software Model Checking, July 2003.

31. H. Schlenker and G. Ringwelski. POOC: A platform for object-oriented constraint program-
ming. In Proc. 2002 International Workshop on Constraint Solving and Constraint Logic
Programming, pages 159–170, June 2002.

32. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc. 15th IEEE
International Conference on Automated Software Engineering, pages 3–12, 2000.

33. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java PathFinder. In
Proc. 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
97–107, 2004.

34. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant object-
oriented unit tests. In Proc. 19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.


	Introduction
	Background
	Contributions

	Example
	Framework and Implementation
	Symbolic State
	Heap Isomorphism
	State Subsumption
	Symbolic Execution
	Symbolic State Exploration
	Concrete Test Generation

	Evaluation
	Discussion and Future Work
	Conclusion



