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One-Slide Summary

• Artificial intelligence large language models (e.g., 
ChatGPT) can propose or edit program artifacts 
(e.g., source code, invariants, comments). After 
training they are efficient but may be incorrect.

• Neurosymbolic approaches combine AI and PL 
substeps into one integrated technique. They are 
typically more scalable than pure PL techniques and 
more correct than pure AI techniques.

• We consider LLMs for bug finding, program synthesis 
(in detail) and program verification (in detail). You 
can read and understand PL papers.
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Terminology: Artificial Intelligence

• Machine Learning (ML) is an artificial intelligence 
subfield of statistical algorithms that can learn from 
data and generalize to unseen data

• Natural Language Processing (NLP) is a machine 
learning technology that gives computers the ability 
to interpret, manipulate, and comprehend human 
language

• Neural Networks (NN) are an artificial intelligence 
method that teach computers to process data in a 
way that is inspired by the human brain (graphs, 
weighted edges)
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Terminology: Models

• Sequence Models transform input sequences 
(e.g., of words) of one domain (language) into 
sequences of another domain

• Generative AI models create text (not just 
yes/no) in response to prompts
– If that text is a program, this is code synthesis

• Pre-trained models are trained on (learn 
from) a large data set of unlabeled text

• Misleading or false results presented as 
factual by an AI model are hallucinations
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Terminology: Transformers

• Transformers are a neural network sequence model 
architecture using a notion of “attention” to relate 
relevant but far-apart tokens in a sequence

– The wolverine is very fluffy and it is Michigan’s 
mascot.

• Large language models (LLMs) are neural network 
transformer models that can do general-purpose 
language generation and understanding

• Chat G P T is an AI neural network generative pre-
trained transformer large language model
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Terminology: Neurosymbolic

• A symbolic method approaches such as formal logic, 
discrete reasoning, or symbolic manipulation. This 
includes type systems, operational semantics, model 
checking, abstract interpretation, dataflow analysis, 
symbolic execution, theorem proving, etc.

• Neural methods may specifically refer to methods 
based on neural networks (e.g., transformers, graph 
neural networks, recurrent neural networks, etc.) 
but may also generally refer to any AI method.

• A neurosymbolic technique includes both.

– Why would we want to do that? Let's see!
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Motivation #1: “Symbolic”
Is Correct But Doesn't Scale

• Software model checking may not terminate, dependent type 
checking is undecideable in general, abstract interpretation may 
not converge without mythical widening operators, SAT is NP-
Complete, preconditions can't always be computed and VCGen 
needs annotations for invariants, etc., etc.

• “However, this transformation, grounded in program refinement 
calculus, is predominantly performed manually, which is time-
consuming and error-prone. The necessity of manual code writing 
makes the program refinement labor-intensive and challenging to 
automate. Therefore, integrating LLMs’ code generation ability 
into the refinement process is a logical progression.”

– Automated Program Refinement: Guide and Verify Code Large 
Language Model with Refinement Calculus
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Motivation #2: “Neuro” 
Scales But Is Incorrect

• “Large Language Models (LLMs) have brought transformative 
advancements to the fields of language processing and beyond, 
showcasing exceptional abilities in text generation and 
comprehension with wide-ranging applications. However, despite 
their increasing prevalence, LLMs face critical challenges in 
security and privacy aspects, heavily impacting their effectiveness 
and reliability. A particularly notable issue among these is the 
phenomenon of “hallucination”, where LLMs produce coherent but 
factually inaccurate or irrelevant outputs during tasks like 
problem-solving. This tendency to generate misleading information 
not only jeopardizes the safety of LLM applications but also raises 
serious usability concerns.”

– Drowzee: Metamorphic Testing for Fact-Conflicting 
Hallucination Detection in Large Language Models
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General Research Plan

• Take any problem from Grad PL that was 
done symbolically and “add an LLM”
– Direct: just ask ChatGPT to answer it

• Common in prior years when  ChatGPT / Codex / 
CodeBERT / Cursor / etc. had just come out

– Modern: help ChatGPT to answer it by adding 
symbolic information to the LLM input prompt or 
by using symbolic information to analyze or 
transform the LLM's output

– Still Very Rare: train your own LLM model (but 
maybe with DeepSeek, etc.?) 
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Reading and Understanding
PL Papers

• In class activity: we will be taking time during 
the lecture to read papers, discuss them with 
our groups, and answer questions about them

• These are available on the course webpage 
but some few relevant pages are included in 
the guided notes handouts (~1 per pair?) 

• Cai et al.'s Automated Program Refinement: 
Guide and Verify Code Large Language 
Model with Refinement Calculus (POPL 2025)



#14

Question Set #1
Cai et al.'s Automated Program Refinement

• Read Pages 1 and 2, then discuss: 
• What is the key problem they are solving and 

why do they claim it is important?
• What are two LLM weaknesses they identify?
• Which two of these best describe the 

symbolic approach they incorporate?
– Type Systems - Operational Semantics

– Axiomatic Semantics - Abstract Interpretation

– Theorem Proving - Model Checking
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Question Set #2
Cai et al.'s Automated Program Refinement

• Read Section 2.1 and Figure 8, then discuss: 

• Given that postcondition P is “return value >= 0”, is  
A refined by B (A  B), is B refined by A, neither, or ⊑
both? 

def A(x): def B(x):
  return x – 5 return x * x

• Rewrite the seq-1, alter-1, and assign-1 rules into 
standard Hoare triple Axiomatic Semantics rules
– Hint for seq-1 to get you started. Suppose you know 

precondition x > y and you execute x = y + 1 and you want 
postcondition x > 5. What must we prove about y for safety?
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Question Set #3
Wu et al.'s Lemur: Integrating

• Read the Introduction and discuss: 

• Which of these four properties are used in the Introduction to 
describe the desired solution and rule out prior work?

– Automation - Formalized LLM Interaction

– Efficiency - Integration With Verifier

• Consider: “Specifically, LLMs are employed to propose program invariants in the form of sub-goals, 
which are then checked by automated reasoners. This transforms the program verification tasks into a 
series of deductive steps suggested by LLMs and subsequently validated by automated reasoners.”

– Using concepts from the Invariant Detection and Axiomatic 
Semantics (#2) lectures, explain in prose what happens if 
the LLM proposes an invariant that is:

– True and Useful - True but Useless

– False and Too Strong - False and Too Weak
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Question Set #4
Wu et al.'s Lemur: Integrating

• Read Section 2 and 3.0 and discuss:
• Does Stable  Invariant? Invariant  Stable?→ →
• When would the verifier return Unknown?

• Is an LLM used for O
propose

, O
repair

, neither, or 

both?
• In the Propose rule in Figure 1, what do we 

know about V(P,A,q)? What do we suspect?
– Note: q is not a typo.

• How do they prove Theorem 3.1 and 3.2?
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Does It Work? Quality

• “We found that the LLM-based oracles can produce surprisingly 
insightful loop invariants that are difficult for conventional formal 
methods to synthesize. While predicate-abstraction-based 
techniques typically generate predicates that involve only the 
operators and values in the program and follow a particular 
template, LLM is not constrained by these limitations. For 
example, for the program in Fig. 4, GPT-4 can consistently 
generate x%4==0 as the loop invariant although the modulo 
operator is not present in the program.”

– How does this compare to Daikon? DIG? Newton from SLAM?

• “There are also several cases where the LLM generates disjunctive 
invariants that precisely characterize the behavior of the loops.”

– How does this compare to Daikon? DIG? Newton from SLAM?
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Time Permitting

• In-Class HW6 Discussion 
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Homework

• HW6
• Reading for Wednesday
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