

#2

One-Slide Summary

• Artificial intelligence large language models (e.g.,
ChatGPT) can propose or edit program artifacts
(e.g., source code, invariants, comments). After
training they are efficient but may be incorrect.

• Neurosymbolic approaches combine AI and PL
substeps into one integrated technique. They are
typically more scalable than pure PL techniques and
more correct than pure AI techniques.

• We consider LLMs for bug finding, program synthesis
(in detail) and program verification (in detail). You
can read and understand PL papers.

#3

Terminology: Artificial Intelligence

• Machine Learning (ML) is an artificial intelligence
subfield of statistical algorithms that can learn from
data and generalize to unseen data

• Natural Language Processing (NLP) is a machine
learning technology that gives computers the ability
to interpret, manipulate, and comprehend human
language

• Neural Networks (NN) are an artificial intelligence
method that teach computers to process data in a
way that is inspired by the human brain (graphs,
weighted edges)

#4

Terminology: Models

• Sequence Models transform input sequences
(e.g., of words) of one domain (language) into
sequences of another domain

• Generative AI models create text (not just
yes/no) in response to prompts
– If that text is a program, this is code synthesis

• Pre-trained models are trained on (learn
from) a large data set of unlabeled text

• Misleading or false results presented as
factual by an AI model are hallucinations

#5

Terminology: Transformers

• Transformers are a neural network sequence model
architecture using a notion of “attention” to relate
relevant but far-apart tokens in a sequence

– The wolverine is very fluffy and it is Michigan’s
mascot.

• Large language models (LLMs) are neural network
transformer models that can do general-purpose
language generation and understanding

• Chat G P T is an AI neural network generative pre-
trained transformer large language model

#6

Terminology: Neurosymbolic

• A symbolic method approaches such as formal logic,
discrete reasoning, or symbolic manipulation. This
includes type systems, operational semantics, model
checking, abstract interpretation, dataflow analysis,
symbolic execution, theorem proving, etc.

• Neural methods may specifically refer to methods
based on neural networks (e.g., transformers, graph
neural networks, recurrent neural networks, etc.)
but may also generally refer to any AI method.

• A neurosymbolic technique includes both.

– Why would we want to do that? Let's see!

#7

Motivation #1: “Symbolic”
Is Correct But Doesn't Scale

• Software model checking may not terminate, dependent type
checking is undecideable in general, abstract interpretation may
not converge without mythical widening operators, SAT is NP-
Complete, preconditions can't always be computed and VCGen
needs annotations for invariants, etc., etc.

• “However, this transformation, grounded in program refinement
calculus, is predominantly performed manually, which is time-
consuming and error-prone. The necessity of manual code writing
makes the program refinement labor-intensive and challenging to
automate. Therefore, integrating LLMs’ code generation ability
into the refinement process is a logical progression.”

– Automated Program Refinement: Guide and Verify Code Large
Language Model with Refinement Calculus

#8

Motivation #2: “Neuro”
Scales But Is Incorrect

• “Large Language Models (LLMs) have brought transformative
advancements to the fields of language processing and beyond,
showcasing exceptional abilities in text generation and
comprehension with wide-ranging applications. However, despite
their increasing prevalence, LLMs face critical challenges in
security and privacy aspects, heavily impacting their effectiveness
and reliability. A particularly notable issue among these is the
phenomenon of “hallucination”, where LLMs produce coherent but
factually inaccurate or irrelevant outputs during tasks like
problem-solving. This tendency to generate misleading information
not only jeopardizes the safety of LLM applications but also raises
serious usability concerns.”

– Drowzee: Metamorphic Testing for Fact-Conflicting
Hallucination Detection in Large Language Models

#10

General Research Plan

• Take any problem from Grad PL that was
done symbolically and “add an LLM”
– Direct: just ask ChatGPT to answer it

• Common in prior years when ChatGPT / Codex /
CodeBERT / Cursor / etc. had just come out

– Modern: help ChatGPT to answer it by adding
symbolic information to the LLM input prompt or
by using symbolic information to analyze or
transform the LLM's output

– Still Very Rare: train your own LLM model (but
maybe with DeepSeek, etc.?)

#13

Reading and Understanding
PL Papers

• In class activity: we will be taking time during
the lecture to read papers, discuss them with
our groups, and answer questions about them

• These are available on the course webpage
but some few relevant pages are included in
the guided notes handouts (~1 per pair?)

• Cai et al.'s Automated Program Refinement:
Guide and Verify Code Large Language
Model with Refinement Calculus (POPL 2025)

#14

Question Set #1
Cai et al.'s Automated Program Refinement

• Read Pages 1 and 2, then discuss:
• What is the key problem they are solving and

why do they claim it is important?
• What are two LLM weaknesses they identify?
• Which two of these best describe the

symbolic approach they incorporate?
– Type Systems - Operational Semantics

– Axiomatic Semantics - Abstract Interpretation

– Theorem Proving - Model Checking

#15

Question Set #2
Cai et al.'s Automated Program Refinement

• Read Section 2.1 and Figure 8, then discuss:

• Given that postcondition P is “return value >= 0”, is
A refined by B (A B), is B refined by A, neither, or ⊑
both?

def A(x): def B(x):
 return x – 5 return x * x

• Rewrite the seq-1, alter-1, and assign-1 rules into
standard Hoare triple Axiomatic Semantics rules
– Hint for seq-1 to get you started. Suppose you know

precondition x > y and you execute x = y + 1 and you want
postcondition x > 5. What must we prove about y for safety?

#22

Question Set #3
Wu et al.'s Lemur: Integrating

• Read the Introduction and discuss:

• Which of these four properties are used in the Introduction to
describe the desired solution and rule out prior work?

– Automation - Formalized LLM Interaction

– Efficiency - Integration With Verifier

• Consider: “Specifically, LLMs are employed to propose program invariants in the form of sub-goals,
which are then checked by automated reasoners. This transforms the program verification tasks into a
series of deductive steps suggested by LLMs and subsequently validated by automated reasoners.”

– Using concepts from the Invariant Detection and Axiomatic
Semantics (#2) lectures, explain in prose what happens if
the LLM proposes an invariant that is:

– True and Useful - True but Useless

– False and Too Strong - False and Too Weak

#23

Question Set #4
Wu et al.'s Lemur: Integrating

• Read Section 2 and 3.0 and discuss:
• Does Stable Invariant? Invariant Stable?→ →
• When would the verifier return Unknown?

• Is an LLM used for O
propose

, O
repair

, neither, or

both?
• In the Propose rule in Figure 1, what do we

know about V(P,A,q)? What do we suspect?
– Note: q is not a typo.

• How do they prove Theorem 3.1 and 3.2?

#24

Does It Work? Quality

• “We found that the LLM-based oracles can produce surprisingly
insightful loop invariants that are difficult for conventional formal
methods to synthesize. While predicate-abstraction-based
techniques typically generate predicates that involve only the
operators and values in the program and follow a particular
template, LLM is not constrained by these limitations. For
example, for the program in Fig. 4, GPT-4 can consistently
generate x%4==0 as the loop invariant although the modulo
operator is not present in the program.”

– How does this compare to Daikon? DIG? Newton from SLAM?

• “There are also several cases where the LLM generates disjunctive
invariants that precisely characterize the behavior of the loops.”

– How does this compare to Daikon? DIG? Newton from SLAM?

#26

Time Permitting

• In-Class HW6 Discussion

#27

Homework

• HW6
• Reading for Wednesday

	Proof Techniques for Operational Semantics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

