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One-Slide Summary

● The template-based program synthesis 
problem asks if values can be found for 
template parameters such that the 
instantiated program passes all tests.

● The program reachability problem asks if 
values can be found for a set of program 
variables such that program execution reaches 
a given label. 

● There is a constructive, polytime reduction 
between synthesis and reachability. 
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Program Repair via Synthesis

● Suppose we have a buggy program
● It passes some tests and fails others

● Suppose we have localized the bug
● We know which line is buggy

● Suppose we have a repair template
● Fix is of the form “x = □ + □(y, □);”

● Can we fill in the template holes so that the 
program passes all of the tests? 
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Templated Program Syntax
cmd ::=  skip

 | cmd
1
 ; cmd

2

 | v := aexp

 | …

aexp ::= aexp
1
 + aexp

2

 | aexp
1
 – aexp

2

 |   c
i

 | … 

Called a template parameter
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Template Instantation

● Given a templated program with template 
parameters c

1
 … c

n
, and given template values 

v = v
1
 … v

n
 (expressions or constants), we can 

instantiate, yielding a non-templated program.
● inst(skip, v)   skip→
● inst(cmd

1
; cmd

2
, v)  inst(cmd→

1
, v) ; inst(cmd

2
, v)

● inst(x = aexp, v)  x = inst(aexp, → v) 

● inst( c
i
 , v)  v→

i
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Template-Based Program Synthesis

● Given a templated program P with 
template parameters c

1
 … c

n
, and a 

set T of input-output pairs (tests),

do there exist template values           
v = v

1
 … v

n
 such that for all       

<input, output> pairs in T,             
(inst(P, v))(input) = output ? 
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Analysis

● How hard is it to solve program synthesis in 
general?
● “Can you find values for these template variables 

such that this program passes all of its tests?”



 8

Tools Exist: sketch

Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13. 
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Program Synthesis as Repair

● A program synthesis algorithm can be used to 
solve program repair

● Conceptually: replace the buggy line with
● If you can synthesize XYZ to fill in that hole, 

the patch is “delete that line and replace it 
with XYZ”

● In practice, template: □ = □ + □*a + □*b + □*c;
● where a, b, c are all in-scope variables
● cf. Linear Regression. cf. Daikon. 
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Program Repair Example
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Program Repair Example
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Program Repair Example

c0 = 100c0 = 100
c1 = 0c1 = 0
c2 = 0c2 = 0
c3 = 1c3 = 1
c4 = 0c4 = 0
““bias = up + 100;”bias = up + 100;”
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Program Reachability

● Given a program P and a set of program 
variables x

1
 … x

n
 and a program label L, do 

there exist values c
1
 … c

n
 such that P with x

i
 

set to c
i
 reaches label L in finite time?

● This is what SLAM and BLAST do (repeatedly).

● L is the error label, c
i
 is the counterexample.

● This is what HW #6 does (repeatedly). 

● L is the end of a path, c
i
 is the test input. 



 15

Reachability Example
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Reachability Example

x = -20x = -20
y = -40y = -40
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Reachability Analysis

● How hard is it to solve reachability in general?
● “Can you find values for these variables such that 

this program reaches this label?”

● Many tools exist, including some that are quite 
mature:
● DART, KLEE, SLAM, BLAST, PEX, CREST, CUTE, 

AUSTIN, “tigen”
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Comparative Analysis

● Program synthesis and program reachability 
are both undecidable in general

● The “heart” of reachability is solving all path 
constraints
● Each “if” makes it harder to find a single 

consistent set of values

● The “heart” of synthesis is handling all tests
● Each new test makes it harder to find a single 

consistent set of values
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Reductions

● Problem A is reducible to Problem B if an 
efficient algorithm for B could be used as a 
subroutine to solve A efficiently. 

● A gadget is a subset of a problem instance that 
simulates the behavior of one of the 
fundamental units of a different problem.
● Gadgets are hard to come up with the first time 

(e.g., when you are doing your Algo homework)
● Gadgets often look simple once presented
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Reduction Recipe

● Given an instance I of problem X
● Assume an oracle that can solve Y
● Transform I into f(I), verify f is polytime
● Let J = Y(f(I))
● Transform J into g(J), verify g is polytime
● Verify g(J) = X(I)
● Return g(J) 
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Gadget 
Example

● Use Graph 3-
Colorability to 
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)
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Gadget 
Example

● Use Graph 3-
Colorability to 
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)
● X = true
● Y = false
● Z = true
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Trivia

● The this-Howard Isomorphism establishes a 
direct relationship between computer program 
and proofs. It shows a correspondence 
between proof calculi and type systems for 
models of computation. 

Logic side Programming side

axiom variable

introduction rule constructor

elimination rule destructor

normal deduction normal form

normalisation of deductions weak normalisation

provability type inhabitation problem

intuitionistic tautology inhabited type
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Reducing Synthesis To Reachability

● Given an instance of a synthesis (repair) 
problem, and assuming we have an oracle that 
can solve reachability, let us convert the 
synthesis instance into a reachability instance.

● If we can do this efficiently, any existing 
reachability tool (e.g., DART, KLEE, SLAM) 
could be used to repair programs. 
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???
???
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???
???

“Heart” insights:

Multiple tests make
Synthesis difficult.

Multiple path conditions
make Reachability 
difficult.

Your thoughts?
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Convert

Convert



 41

Proving Correctness

● We must show that the constructed 
reachability instance is solvable (with values 
c1 … cn) iff the original synthesis instance is 
solvable (with values c1 … cn). 

● The reachability instance is solved if those 
values cause execution to reach L. 

● The synthesis instance is solved if those values 
cause every test to pass.
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High-Level Proof Structure
● Lemma 1. The reachability instance method 

and the synthesis instance method agree on all 
(non-template) variables. 

● Lemma 2. If the reachability instance reaches 
L from a state S (with values c1 … cn), then 
that state and values model the weakest 
precondition of the synthesis instance method 
passing each test.

● Theorem 1. The synthesis instance is solvable 
iff the reachability instance is solvable (with 
the same values). 
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Lem
m

a 1:

Lem
m

a 1:

““Method Executions 

Method Executions 

Agree On Variables”

Agree On Variables”

Lem
m

a 2:

Lem
m

a 2:

““Reaching L Corresponds

Reaching L Corresponds

To Passing All Tests”

To Passing All Tests”
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Lemma 1 (Agree on Vars)

● Let Q be the input synthesis instance method 
with template variables v

1
 … v

n
.

● Let P = Gadget(Q) be the reachability instance 
corresponding to method P.

● For all states σ
1
, σ

2
, σ

3
, all values c

1
 ...c

n
, all 

inputs values x, it holds that

● If σ
1
(v

i
) = c

i
, then <P(x), σ

1
> ↓ σ

2
 iff                   

            <inst(Q,c), σ
1
> ↓ σ

3
                               

            and for all y ≠ v
i
, σ

2
(y) = σ

3
(y). 
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Lemma 1 Proof

● If σ
1
(v

i
) = c

i
, then <P(x), σ

1
> ↓ σ

2
 iff                   

            <inst(Q,c), σ
1
> ↓ σ

3
                               

            and for all y ≠ v
i
, σ

2
(y) = σ

3
(y). 

● How shall we prove it? What proof technique 
should we use?
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Lemma 1 Proof

● If σ
1
(v

i
) = c

i
, then D

1
 :: <P(x), σ

1
> ↓ σ

2
 iff            

                   D
2
 :: <inst(Q,c), σ

1
> ↓ σ

3
                 

                   and for all y ≠ v
i
, σ

2
(y) = σ

3
(y). 

● The proof proceeds by induction on the 
structure of the operational semantics 
derivation D

1
. By inversion, the structure of D

1
 

corresponds exactly to the structure of D
2
 

except for template variables. 
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Lemma 1 Case: Template Variable

● Case. Suppose D
1
 (reachability instance) is:

 σ
2
 = σ

1
 [ a  →σ

1
(v

i
) ]

 < a := v
i
, σ

1
 > ↓ σ

2

● By inversion and the construction of P, D
2
 is:

 σ
3
 = σ

1
 [ a  c→

i
 ]

 < a := exp, σ
1
 > ↓ σ

3

● where exp = inst( c
i
 , c) = c

i
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Lemma 1 Case: Template Variable

● Have:  σ
2
 = σ

1
 [ a  →σ

1
(v

i
) ]

● Have:  σ
3
 = σ

1
 [ a  c→

i
 ]

● To show: “for all y ≠ v
i
, σ

2
(y) = σ

3
(y)” 

● Sub-Case 1. y ≠ a. Then σ
2
(y) = σ

3
(y). 

● Sub-Case 2. y = a. To show: σ
1
(v

i
) = c

i
. This was 

actually one of the assumptions in the 
statement of the lemma. (Intuitively, it means the 
reachability analysis assigned c

i
 to each variable v

i
 to reach the label L.)
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Lemma 1 (Agree on Vars)

● Let Q be the input synthesis instance method 
with template variables v

1
 … v

n
.

● Let P = Gadget(Q) be the reachability instance 
corresponding to method P.

● For all states σ
1
, σ

2
, σ

3
, all values c

1
 ...c

n
, all 

inputs values x, it holds that

● If σ
1
(v

i
) = c

i
, then <P(x), σ

1
> ↓ σ

2
 iff                   

            <inst(Q,c), σ
1
> ↓ σ

3
                               

            and for all y ≠ v
i
, σ

2
(y) = σ

3
(y). 
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Lemma 2 (Reach L = Pass Tests)

● Let Q be the input synthesis instance method with 
template variables v

1
 … v

n
 and tests <input

1
, output

n
>. 

● Let P = Gadget(Q) be the reachability instance 
method main.

● The execution of P reaches L starting from state σ
1
 iff 

σ
1
 |= wp(result = inst(Q,c)(input

1
), result = output

1
) 

&& … wp(result = inst(Q,c)(input
n
), result = output

n
) 

where σ
1
(v

i
) = c

i
.
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Lemma 2 Proof

● By gadget construction there is only one label 
L in P, “if e then [L]” where e is of the form 
f(input

1
) = output

1
 && … f(intput

n
) = output

n
.

● By standard weakest precondition definitions 
for if, conjunction, equality and function calls, 
we have that L is reachable iff σ

1
 |= wp(result = 

f(input
1
), result = output

1
) && … wp(result = f(input

n
), 

result = output
n
). 
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Lemma 2 Proof

● Have: L is reachable iff σ
1
 |= wp(result = f(input

1
), 

result = output
1
) && … wp(result = f(input

n
), result = 

output
n
). 

● Want: L is reachable iff σ
1
 |= wp(result = inst(Q, 

c)(input
1
), result = output

1
) && … wp(result = inst(Q, 

c)(input
n
), result = output

n
)

● To show: σ
1
 |= wp(result = f(input

i
), result = output

i
) 

iff σ
1
|= wp(result = inst(Q, c)(input

i
), result = output

i
)
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Lemma 2 Proof

● To show: σ
1
 |= wp(result = f(input

i
), result = output

i
) 

iff σ
1
|= wp(result = inst(Q, c)(input

i
), result = output

i
)

… where f is the method from Gadget(Q) 

● By the soundness and completeness of weakest 
preconditions with respect to operational semantics, 
we have < result = f(input

i
) , σ

1
 > ↓ σ

2
 iff σ

2
 |= result = 

output
i
. 
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Lemma 2 Proof

● Have: < result = f(input
i
) , σ

1
 > ↓ σ

2
 iff σ

2
 |= result = 

output
i
. 

● By Lemma 1, we have < result = inst(Q, c)(input
i
) , σ

1
 

> ↓ σ
3
 iff σ

1
(y) = σ

3
(y) for all y ≠ v

i
. 

● Since “result” ≠ v
i
, σ

1
(result) = σ

3
(result) (“Lemma1”) 

and σ
3
(result) = output

i
 (“Have”). Transitively … 

● So running the template program Q instantiated with 
c

i
 = v

i
 on a test input produces the required output.
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Correctness Theorem

● Let Q be the input synthesis instance method with 
template variables v

1
 … v

n
 and tests <input

1
, output

n
>. 

● Let P = Gadget(Q) be the reachability instance 
method main.

● There exist parameter values c
i
 such that for all 

<input,output>, inst(Q,c)(input) = output iff there 
exist input values t

i
 such that the execution of P with 

v
i
  t→

i
 reaches L. 

● Proof: From Lemma 2 with t
i
 = c

i
. 
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Reducing Reachability To Synthesis

● We can also carry out a constructive reduction 
going the other direction.

● Suppose we are given an instance of program 
reachability. Can we convert it into a program 
synthesis instance to solve it?
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Reachability to Synthesis Example

???
???
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Reachability to Synthesis Example

Convert

Convert
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Implications

● Program reachability tools are much more 
mature than program repair tools.

● CETI Program Repair Algorithm
● For each buggy line, in ranked order

– For every repair template, in ranked order
● Convert repair instance to reachability instance
● Call off-the-shelf reachability tool (e.g., SMT solver / KLEE)
● If reachable, return parameters as patch
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Prototype CETI Evaluation
● Considered 41 bugs and 

simple one-line templates

● Fixed 100% of bugs 
admitting one-line fixes

● 22 seconds each, average

● Debroy & Wong (random 
mutation): 9 repairs

● GenProg: 11 repairs

● Forensic (concolic 
execution): 23 repairs

● CETI: 26 repairs
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Concluding Thoughts
● PL Theory almost always translates into useful PL 

Practice (just with an X year lag time)

● There is plenty of scope for insight and creativity 
(e.g., whence these gadgets?)

● Techniques like structural induction, SMT solving, 
fault localization, substitution, axiomatic semantics, 
etc., remain relevant!

● HW0 (BLAST), HW6 (tigen), Axiomatic Semantics and 
GenProg (last lecture) are all “secretly the same 
thing”

= “statically reason about dynamic execution”
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