

 2

One-Slide Summary

● The template-based program synthesis
problem asks if values can be found for
template parameters such that the
instantiated program passes all tests.

● The program reachability problem asks if
values can be found for a set of program
variables such that program execution reaches
a given label.

● There is a constructive, polytime reduction
between synthesis and reachability.

 3

Program Repair via Synthesis

● Suppose we have a buggy program
● It passes some tests and fails others

● Suppose we have localized the bug
● We know which line is buggy

● Suppose we have a repair template
● Fix is of the form “x = □ + □(y, □);”

● Can we fill in the template holes so that the
program passes all of the tests?

 4

Templated Program Syntax
cmd ::= skip

 | cmd
1
 ; cmd

2

 | v := aexp

 | …

aexp ::= aexp
1
 + aexp

2

 | aexp
1
 – aexp

2

 | c
i

 | …

Called a template parameter

 5

Template Instantation

● Given a templated program with template
parameters c

1
 … c

n
, and given template values

v = v
1
 … v

n
 (expressions or constants), we can

instantiate, yielding a non-templated program.
● inst(skip, v) skip→
● inst(cmd

1
; cmd

2
, v) inst(cmd→

1
, v) ; inst(cmd

2
, v)

● inst(x = aexp, v) x = inst(aexp, → v)

● inst(c
i
 , v) v→

i

 6

Template-Based Program Synthesis

● Given a templated program P with
template parameters c

1
 … c

n
, and a

set T of input-output pairs (tests),

do there exist template values
v = v

1
 … v

n
 such that for all

<input, output> pairs in T,
(inst(P, v))(input) = output ?

 7

Analysis

● How hard is it to solve program synthesis in
general?
● “Can you find values for these template variables

such that this program passes all of its tests?”

 8

Tools Exist: sketch

Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13.

 9

Tools Exist: sketch

Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13.

 10

Program Synthesis as Repair

● A program synthesis algorithm can be used to
solve program repair

● Conceptually: replace the buggy line with
● If you can synthesize XYZ to fill in that hole,

the patch is “delete that line and replace it
with XYZ”

● In practice, template: □ = □ + □*a + □*b + □*c;
● where a, b, c are all in-scope variables
● cf. Linear Regression. cf. Daikon.

 11

Program Repair Example

 12

Program Repair Example

 13

Program Repair Example

c0 = 100c0 = 100
c1 = 0c1 = 0
c2 = 0c2 = 0
c3 = 1c3 = 1
c4 = 0c4 = 0
““bias = up + 100;”bias = up + 100;”

 14

Program Reachability

● Given a program P and a set of program
variables x

1
 … x

n
 and a program label L, do

there exist values c
1
 … c

n
 such that P with x

i

set to c
i
 reaches label L in finite time?

● This is what SLAM and BLAST do (repeatedly).

● L is the error label, c
i
 is the counterexample.

● This is what HW #6 does (repeatedly).

● L is the end of a path, c
i
 is the test input.

 15

Reachability Example

 16

Reachability Example

x = -20x = -20
y = -40y = -40

 17

Reachability Analysis

● How hard is it to solve reachability in general?
● “Can you find values for these variables such that

this program reaches this label?”

● Many tools exist, including some that are quite
mature:
● DART, KLEE, SLAM, BLAST, PEX, CREST, CUTE,

AUSTIN, “tigen”

 18

Comparative Analysis

● Program synthesis and program reachability
are both undecidable in general

● The “heart” of reachability is solving all path
constraints
● Each “if” makes it harder to find a single

consistent set of values

● The “heart” of synthesis is handling all tests
● Each new test makes it harder to find a single

consistent set of values

 19

Reductions

● Problem A is reducible to Problem B if an
efficient algorithm for B could be used as a
subroutine to solve A efficiently.

● A gadget is a subset of a problem instance that
simulates the behavior of one of the
fundamental units of a different problem.
● Gadgets are hard to come up with the first time

(e.g., when you are doing your Algo homework)
● Gadgets often look simple once presented

 20

Reduction Recipe

● Given an instance I of problem X
● Assume an oracle that can solve Y
● Transform I into f(I), verify f is polytime
● Let J = Y(f(I))
● Transform J into g(J), verify g is polytime
● Verify g(J) = X(I)
● Return g(J)

 21

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 22

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 23

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 24

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 25

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 26

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 27

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 28

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 29

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 30

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 31

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 32

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)

 33

Gadget
Example

● Use Graph 3-
Colorability to
solve 3-SAT

● Instance shown:

(x || y || !z) &&

(!x || !y || z)
● X = true
● Y = false
● Z = true

 34

Trivia

● The this-Howard Isomorphism establishes a
direct relationship between computer program
and proofs. It shows a correspondence
between proof calculi and type systems for
models of computation.

Logic side Programming side

axiom variable

introduction rule constructor

elimination rule destructor

normal deduction normal form

normalisation of deductions weak normalisation

provability type inhabitation problem

intuitionistic tautology inhabited type

 36

Reducing Synthesis To Reachability

● Given an instance of a synthesis (repair)
problem, and assuming we have an oracle that
can solve reachability, let us convert the
synthesis instance into a reachability instance.

● If we can do this efficiently, any existing
reachability tool (e.g., DART, KLEE, SLAM)
could be used to repair programs.

 37

 38

???
???

 39

???
???

“Heart” insights:

Multiple tests make
Synthesis difficult.

Multiple path conditions
make Reachability
difficult.

Your thoughts?

 40

Convert

Convert

 41

Proving Correctness

● We must show that the constructed
reachability instance is solvable (with values
c1 … cn) iff the original synthesis instance is
solvable (with values c1 … cn).

● The reachability instance is solved if those
values cause execution to reach L.

● The synthesis instance is solved if those values
cause every test to pass.

 42

High-Level Proof Structure
● Lemma 1. The reachability instance method

and the synthesis instance method agree on all
(non-template) variables.

● Lemma 2. If the reachability instance reaches
L from a state S (with values c1 … cn), then
that state and values model the weakest
precondition of the synthesis instance method
passing each test.

● Theorem 1. The synthesis instance is solvable
iff the reachability instance is solvable (with
the same values).

 43

Lem
m

a 1:

Lem
m

a 1:

““Method Executions

Method Executions

Agree On Variables”

Agree On Variables”

Lem
m

a 2:

Lem
m

a 2:

““Reaching L Corresponds

Reaching L Corresponds

To Passing All Tests”

To Passing All Tests”

 44

Lemma 1 (Agree on Vars)

● Let Q be the input synthesis instance method
with template variables v

1
 … v

n
.

● Let P = Gadget(Q) be the reachability instance
corresponding to method P.

● For all states σ
1
, σ

2
, σ

3
, all values c

1
 ...c

n
, all

inputs values x, it holds that

● If σ
1
(v

i
) = c

i
, then <P(x), σ

1
> ↓ σ

2
 iff

 <inst(Q,c), σ
1
> ↓ σ

3

 and for all y ≠ v
i
, σ

2
(y) = σ

3
(y).

 45

Lemma 1 Proof

● If σ
1
(v

i
) = c

i
, then <P(x), σ

1
> ↓ σ

2
 iff

 <inst(Q,c), σ
1
> ↓ σ

3

 and for all y ≠ v
i
, σ

2
(y) = σ

3
(y).

● How shall we prove it? What proof technique
should we use?

 46

Lemma 1 Proof

● If σ
1
(v

i
) = c

i
, then D

1
 :: <P(x), σ

1
> ↓ σ

2
 iff

 D
2
 :: <inst(Q,c), σ

1
> ↓ σ

3

 and for all y ≠ v
i
, σ

2
(y) = σ

3
(y).

● The proof proceeds by induction on the
structure of the operational semantics
derivation D

1
. By inversion, the structure of D

1

corresponds exactly to the structure of D
2

except for template variables.

 47

Lemma 1 Case: Template Variable

● Case. Suppose D
1
 (reachability instance) is:

 σ
2
 = σ

1
 [a →σ

1
(v

i
)]

 < a := v
i
, σ

1
 > ↓ σ

2

● By inversion and the construction of P, D
2
 is:

 σ
3
 = σ

1
 [a c→

i
]

 < a := exp, σ
1
 > ↓ σ

3

● where exp = inst(c
i
 , c) = c

i

 48

Lemma 1 Case: Template Variable

● Have: σ
2
 = σ

1
 [a →σ

1
(v

i
)]

● Have: σ
3
 = σ

1
 [a c→

i
]

● To show: “for all y ≠ v
i
, σ

2
(y) = σ

3
(y)”

● Sub-Case 1. y ≠ a. Then σ
2
(y) = σ

3
(y).

● Sub-Case 2. y = a. To show: σ
1
(v

i
) = c

i
. This was

actually one of the assumptions in the
statement of the lemma. (Intuitively, it means the
reachability analysis assigned c

i
 to each variable v

i
 to reach the label L.)

 49

Lemma 1 (Agree on Vars)

● Let Q be the input synthesis instance method
with template variables v

1
 … v

n
.

● Let P = Gadget(Q) be the reachability instance
corresponding to method P.

● For all states σ
1
, σ

2
, σ

3
, all values c

1
 ...c

n
, all

inputs values x, it holds that

● If σ
1
(v

i
) = c

i
, then <P(x), σ

1
> ↓ σ

2
 iff

 <inst(Q,c), σ
1
> ↓ σ

3

 and for all y ≠ v
i
, σ

2
(y) = σ

3
(y).

 50

Lemma 2 (Reach L = Pass Tests)

● Let Q be the input synthesis instance method with
template variables v

1
 … v

n
 and tests <input

1
, output

n
>.

● Let P = Gadget(Q) be the reachability instance
method main.

● The execution of P reaches L starting from state σ
1
 iff

σ
1
 |= wp(result = inst(Q,c)(input

1
), result = output

1
)

&& … wp(result = inst(Q,c)(input
n
), result = output

n
)

where σ
1
(v

i
) = c

i
.

 51

Lemma 2 Proof

● By gadget construction there is only one label
L in P, “if e then [L]” where e is of the form
f(input

1
) = output

1
 && … f(intput

n
) = output

n
.

● By standard weakest precondition definitions
for if, conjunction, equality and function calls,
we have that L is reachable iff σ

1
 |= wp(result =

f(input
1
), result = output

1
) && … wp(result = f(input

n
),

result = output
n
).

 52

Lemma 2 Proof

● Have: L is reachable iff σ
1
 |= wp(result = f(input

1
),

result = output
1
) && … wp(result = f(input

n
), result =

output
n
).

● Want: L is reachable iff σ
1
 |= wp(result = inst(Q,

c)(input
1
), result = output

1
) && … wp(result = inst(Q,

c)(input
n
), result = output

n
)

● To show: σ
1
 |= wp(result = f(input

i
), result = output

i
)

iff σ
1
|= wp(result = inst(Q, c)(input

i
), result = output

i
)

 53

Lemma 2 Proof

● To show: σ
1
 |= wp(result = f(input

i
), result = output

i
)

iff σ
1
|= wp(result = inst(Q, c)(input

i
), result = output

i
)

… where f is the method from Gadget(Q)

● By the soundness and completeness of weakest
preconditions with respect to operational semantics,
we have < result = f(input

i
) , σ

1
 > ↓ σ

2
 iff σ

2
 |= result =

output
i
.

 54

Lemma 2 Proof

● Have: < result = f(input
i
) , σ

1
 > ↓ σ

2
 iff σ

2
 |= result =

output
i
.

● By Lemma 1, we have < result = inst(Q, c)(input
i
) , σ

1

> ↓ σ
3
 iff σ

1
(y) = σ

3
(y) for all y ≠ v

i
.

● Since “result” ≠ v
i
, σ

1
(result) = σ

3
(result) (“Lemma1”)

and σ
3
(result) = output

i
 (“Have”). Transitively …

● So running the template program Q instantiated with
c

i
 = v

i
 on a test input produces the required output.

 55

Correctness Theorem

● Let Q be the input synthesis instance method with
template variables v

1
 … v

n
 and tests <input

1
, output

n
>.

● Let P = Gadget(Q) be the reachability instance
method main.

● There exist parameter values c
i
 such that for all

<input,output>, inst(Q,c)(input) = output iff there
exist input values t

i
 such that the execution of P with

v
i
 t→

i
 reaches L.

● Proof: From Lemma 2 with t
i
 = c

i
.

 56

Reducing Reachability To Synthesis

● We can also carry out a constructive reduction
going the other direction.

● Suppose we are given an instance of program
reachability. Can we convert it into a program
synthesis instance to solve it?

 57

Reachability to Synthesis Example

???
???

 58

Reachability to Synthesis Example

Convert

Convert

 59

Implications

● Program reachability tools are much more
mature than program repair tools.

● CETI Program Repair Algorithm
● For each buggy line, in ranked order

– For every repair template, in ranked order
● Convert repair instance to reachability instance
● Call off-the-shelf reachability tool (e.g., SMT solver / KLEE)
● If reachable, return parameters as patch

 60

Prototype CETI Evaluation
● Considered 41 bugs and

simple one-line templates

● Fixed 100% of bugs
admitting one-line fixes

● 22 seconds each, average

● Debroy & Wong (random
mutation): 9 repairs

● GenProg: 11 repairs

● Forensic (concolic
execution): 23 repairs

● CETI: 26 repairs

 61

Concluding Thoughts
● PL Theory almost always translates into useful PL

Practice (just with an X year lag time)

● There is plenty of scope for insight and creativity
(e.g., whence these gadgets?)

● Techniques like structural induction, SMT solving,
fault localization, substitution, axiomatic semantics,
etc., remain relevant!

● HW0 (BLAST), HW6 (tigen), Axiomatic Semantics and
GenProg (last lecture) are all “secretly the same
thing”

= “statically reason about dynamic execution”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

