
#1

Grad PLGrad PL
vs.vs.

The WorldThe World

#2

Grad PL Conclusions
•You are now equipped to read

the most influential papers in
PL.

•You can also recognize PL
concepts and will know what to
do when they come up in your
research.

#3

Questions
• Model Checking, Abstraction Refinement,

SLAM, Large-Step Opsem, Contextual Opsem,
Structural Induction, Theorem Proving,
Simplex, Proof Checking, Axiomatic
Semantics, VCGen, Symbolic Execution,
Invariant Detection, Abstract Interpretation,
Lambda Calculus, Monomorphic and
Polymorphic Type Systems, Recursive and
Dependent Types, Pi Calculus, AI + PL,
Neurosymbolic, Program Repair, Instructor.

#4

ACM SIGPLAN
Most Influential Paper Awards

• SIGPLAN presents these awards to the
author(s) of a paper presented at ICFP,
OOPSLA, PLDI, and POPL held 10 years prior
to the award year. The award includes a prize
of $1,000 to be split among the authors of the
winning paper. The papers are judged by
their influence over the past decade. Each
award is presented at the respective
conference.

#5

2024 (POPL 2014): CakeML: A
Verified Implementation of ML.

• This paper provided exciting
evidence that the idea of machine-
checked verified compilation can
generalize beyond CompCert-style
optimization verification to end-to-
end correctness statements in the
context of ML. …

#8

2023 (POPL 2013): Views: Compositional
reasoning for concurrent programs.

• Concurrency remains one of the most
challenging aspects of modern-day
programming, and verification techniques for
ensuring the correctness of concurrent
programs are of utmost importance. … The
paper shows that the proposed Concurrent
View Framework unifies most prior attempts
at reasoning about concurrency, including
both type systems as well as different
program logics. …

#11

• 2020 (POPL 2010): From program verification
to program synthesis. Saurabh Srivastava,
Sumit Gulwani, Jeffrey Foster.

• The paper greatly advanced our ability to synthesize programs
from logical specifications. It was based on the insight that
much of the work carried out by a program verifier could be
repurposed not just for checking that code matches a
specification, but also to synthesize code that does. The user
specifies the input-output behavior as a logical formula, and
also provides structural and resource constraints, which
describe a template language for the space of possible
programs. … The authors were able to synthesize a range of
clever algorithms, which served as inspiration for some of the
massive effort on verification-based program synthesis over the
past decade.

#14

• 2018 (POPL 2008): Multiparty asynchronous
session types. Kohei Honda, Nobuko Yoshida,
Marco Carbone.

• … Session types are a type-based framework for codifying
communication structures and verifying protocols in concurrent,
message-passing programs. Previously, session types could only
model binary (two-party) protocols. This paper generalizes the
theory to the multiparty case with asynchronous
communications, preventing deadlock and communication
errors in more sophisticated communication protocols involving
any number (two or more) of participants. The central idea was
to introduce global types, which describe multiparty
conversations from a global perspective and provide a means to
check protocol compliance. This work has inspired numerous
authors to build on its pioneering foundations …

#15

Multiparty asynchronous
session types

Pi Calculus

Scope Extrusion

Read me in English

#16

Multiparty asynchronous
session types

• They use a slightly different syntax. Look at
this [Recv] rule. How do they write send?
How do they write receive?

Look here …

#17

Multiparty asynchronous
session types

You know three of
these four. Explain

them to me.

#18

• 2008 (POPL 1998): From System F to Typed
Assembly Language, Greg Morrisett, David
Walker, Karl Crary, and Neal Glew.

• ... began a major development in the application of type
system ideas to low level programming. The paper shows how
to compile a high-level, statically typed language into TAL, a
typed assembly language defined by the authors. The type
system for the assembly language ensures that source-level
abstractions like closures and polymorphic functions are
enforced at the machine-code level while permitting
aggressive, low-level optimizations such as register allocation
and instruction scheduling. This infrastructure provides the
basis for ensuring the safety of untrusted low-level code
artifacts, regardless of their source. A large body of
subsequent work has drawn on the ideas in this paper, including
work on proof-carrying code and certifying compilers.

#19

From System F to Typed
Assembly Language

Polymorphic
Function Type

Tuple Type

Tuple Field
SelectionPolymorphic Function

Type Application

Polymorphic Function
Creation

#20

From System F to Typed
Assembly Language

... but you know it.

Typing Judgment

What is “fix” like?

#21

“ if false ... ; S' ”

“L” is fresh.
Small-step opsem

for allocation.

Operational Semantics,
Forward Symex

#22

From System F to Typed
Assembly Language

Type Preservation

cf. Decomposition

#23

• 2011 (PLDI 2001): Automatic predicate
abstraction of C programs, Thomas Ball,
Rupak Majumdar, Todd Millstein, Sriram K.
Rajamani.

• ... presented the underlying predicate abstraction
technology of the SLAM project for checking that
software satisfies critical behavioral properties of the
interfaces it uses and to aid software engineers in
designing interfaces and software that ensure reliable
and correct execution. The technology is now part of
Microsoft's Static Driver Verifier in the Windows Driver
Development Kit. This is one of the earliest examples of
automation of software verification on a large scale and
the basis for numerous efforts to expand the domains
that can be verified.

#24

Automatic predicate
abstraction of C programs

Axiomatic
Semantics

#25

• 2009 (PLDI 1999): A Fast Fourier Transform
Compiler, Matteo Frigo

• ... describes the implementation of genfft, a special-purpose compiler
that produces the performance critical code for a library, called FFTW
(the “Fastest Fourier Transform in the West”), that computes the
discrete Fourier transform. FFTW is the predominant open fast Fourier
transform package available today, as it has been since its
introduction a decade ago. genfft demonstrated the power of domain-
specific compilation—FFTW achieves the best or close to best
performance on most machines, which is remarkable for a single
package. By encapsulating expert knowledge from the FFT algorithm
domain and the compiler domain, genfft and FFTW provide a
tremendous service to the scientific and technical community by
making highly efficient FFTs available to everyone on any machine. As
well as being the fastest FFT in the West, FFTW may be the last FFT in
the West as the quality of this package and the maturity of the field
may mean that it will never be superseded, at least for computer
architectures similar to past and current ones.

#26

A Fast Fourier
Transform Compiler

No joke. cf. Homeworks!

#27

• 2012 (PLDI 2002): Extended Static Checking
for Java, Cormac Flanagan, K. Rustan M.
Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, Raymie Stata

• ... marks a turning point in the field of static
checking, describing pragmatic design decisions that
promote practicality over completeness. Pioneered
in ESC/Modula-3, techniques from ESC/Java are now
widely used in various forms in Microsoft’s
development tools, notably as part of Code
Contracts which ships with VisualStudio. Recent
innovations strongly influenced by ESC/Java include
refinement types for Haskell, and verification of
Eiffel programs.

#28

Invariant
Generation

Axiomatic
Semantics

Automated
Theorem Proving

“tigen”
(Path Enum)

#29

• 2017 (POPL 2007): JavaScript
Instrumentation for Browser Security,
Dachuan Yu, Ajay Chander, Nayeem Islam,
Igor Serikov.

• ... presents one of the earliest models of the interaction between
the browser and JavaScript. It uses this model to work out the
formalization and dynamic enforcement of rich security policies.
Since then, people have routinely discovered additional, pernicious
security problems based on this model. Eliminating these problems
remains an important challenge to this day.

• Looking back, the selected paper made a prescient, and
influential, contribution to understanding these JavaScript-based
security problems. The authors chose a formal, semantic approach
to model these problems and potential solutions, while remaining
true to the complicated characteristics that make both JavaScript
and the browser real-world artifacts.

#33

Your Questions
Model Checking, Abstraction Refinement, SLAM, Large-Step Opsem,
Contextual Opsem, Structural Induction, Theorem Proving, Simplex,
Proof Checking, Axiomatic Semantics, VCGen, Symbolic Execution,
Invariant Detection, Abstract Interpretation, Lambda Calculus,
Monomorphic and Polymorphic Type Systems, Recursive and
Dependent Types, Pi Calculus, AI + PL, Neurosymbolic, Program
Repair, Instructor.

#34

Grad PL Conclusions
•You are now equipped to read

the most influential papers in
PL.

•You can also recognize PL
concepts and will know what to
do when they come up in your
research.

	Lambda Calculus
	Substitution
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

