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Review

We studied a variety of type systems

We repeatedly made the type system more
expressive to enable the type checker to catch
more errors

But we have steered clear of undecidable systems
- Thus there must still be many errors that are not caught

Now we explore more complex type systems that
bring type checking closer to program verification
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One-Slide Summary

e A dependent type is a type that depends on
the (exact) value of the expression. They are
powerful but also hard to implement in
practice. Liquid and refinement types are
practical dependent types. Proof checking
(cf. Certificates in complexity class NP) is a
useful, decideable application.

e Existential types support abstraction and
modularity, hiding the implementation while
exporting the interface.
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Proximate Cause

e Theorem proving is quite useful and can
determine if things are true or false: “your
file system can segfault” or “this formula is
satisfiable”

 However, we also want theorem provers to
provide checkable proofs to back up what
they decide

e Fortunately, “proof checking is equivalent to
type checking in a dependent type system”

#4



A dependent type is a
type that depends on a
value.



Dependent Types

« Say that we have the functions
zero : nat — vector (creates vector of requested length)
dotprod : vector — vector — real (dot product)

o The types do not prevent using dotprod on vectors
of different length

et vl =zero 51in
et v2 = zero 15 1n
orint (dotprod v1 v2)
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Dependent Types

« Say that we have the functions
zero : nat — vector (creates vector of requested length)
dotprod : vector — vector — real (dot product)

o The types do not prevent using dotprod on vectors
of different length
- If they did, we could catch more bugs!

o ldea: Make “vector” a type family annotated by a
natural number

“vector n” is the type of vectors of length n
dotprod: vector n — yector n — real (where is n bound?)
zero : nat — vector ?

Need a way to refer to
the value of the first
argument in the type!
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Dependent Type Notation

« How to write the type of zero : nat — vector ?

o Given two sets A and B verify the isomorphism
A—-B~IIL_,B

- The latter is the cartesian product of B with itself as
many times as there are elements in A

- Also written as I'1x:A.B (x plays no role so far!)
- But now we can make B depend on x!
« Definition: I'Ix:A.B is the type of functions with

argument in A and with the result type B (possibly
depending on the value of the argument x in A)

- We write “zero : I'lx:nat. vector x”
- Special case when x¢B we abbreviate as A — B
- We play “fast and loose” with the binding of I1
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Dependent Typing Rules

[, . mH>Fe:.T [ Fey:lle:mm7 [ Fex:im

FTE Xz :me: Nz 1T T Fepes:lex/x]r
- Note that expressions are now part of types

- Have types like “vector 5” and “vector (2 + 3)”
- We need type equivalence

FFe:T TFHr=71
e 7
|—|—€1 €2

[ = vector e; = vector eo
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Dependent Types
and Program Specifications

Types act as specifications
With dependent types we can specify any property!

For example, define the following types:
“eq e” - the type of values equal to “e”.
Also named “sng e” (the singleton type)
“ge e” - the type of values larger or equal to “e”
“lt e” - the type of values smaller than “e”
“and 1, t,” - the type of values having both type 1, and r,

Need appropriate typing rules for the new types

The precondition for vector-accessing (cf. HW5)
- read: Iln:nat.vector n — (and (ge 0) (lt n)) — int

The type checker must do program verification

#10



Dependent Type Commentary

o Type checking with IT types can be as hard as full
program verification

« Type equivalence can be undecidable

- If types are dependent on expressions drawn from a
powerful language (“powerful” = “arithmetic”)

- Then even type checking will be undecidable
o Dependent types play an important role in the
formalization of logics
- Started with Per Martin-Lof
- Proof checking via type checking

- Proof-carrying code uses a dependent type checker to
check proofs

- There are program specification tools based on IT types
#11



Dependent Sum Types

« We want to pack a vector with its length
- e =(n, v) where “v : vector n”

The type of an element of a pair depends on the value of
another element

This is another form of dependency
The type of e is “nat x vector ?”

o Given two sets A and B verify the isomorphism
AxB~X ,B

- The latter is the disjoint union of B with itself as many
times as there are elements in A

- Also written as Zx:A.B (x here plays no role)
- But now we can make B depend on x!

X €A
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Dependent Sum Types

« Definition: >x:A.B is the type of pairs with first
element of type A and second element of type B
(possibly depending on the value of first element x)

- Now we can write e : Xx:nat. vector x

« Old functions that compute the length of a vector

- vlength : I'In:nat.vector n — nat
o (the type system doesn't tell you anything about the result value)

- slength : I'ln:nat.vector n — sng n
e “sng n” is a dependent type that contains only n
o called the singleton type (recall from 3 slides ago ...)

o What if the vector is packed with its length?
- pvlength : Xn:nat.vector n — nat
- pslength : Zn:nat.vector n — sng n
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Dependent Sum Types
Static Semantics

|_|—€1:T1 |_|—621[€1/.CU]’7‘2

[ (61,62) 2T T1.72

[ Fe:2x:71.70
[ Fsnde: [fste/x]m

- Note how this rule reduces to the usual rules for
tuples when there is no dependency

e The evaluation rules are unchanged
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Refinement Types

e Refinement types are types with predicates
that hold for all elements of the refined type
- Example: the type of a function which accepts

natural numbers and returns natural numbers
greater than 5 may be written as:

f:nat—={nenat| n>5}

e Refinement types are (a special case of)
dependent types

e Grand Unified Theory

- Type Checking = Verification (= Model Checking =
Proof Checking = Abstract Interpretation ...)

#15



Example: Liquid Haskell

e Liquid Haskell adds refinement types to
Haskell, allowing verification of richer
semantic properties in the type system

- Liquid Type = “Logically Qualified Data Type”

- “a new static verification technique which combines the
complementary strengths of automated deduction (SMT solvers),
model checking (Predicate Abstraction), and type systems (Hindley-
Milner inference). Liquid Types automate static verification of deep
invariants by combining local implication checks over simple
refinement predicates with global subtyping checks. The former are
discharged using SMT solvers, and the latter using standard type-based
mechanisms.” - Ranjit Jhala, UCSD, >500 citations, etc.

- Try It: https://ucsd-progsys.github.io/liquidhaskell/
#16


https://ucsd-progsys.github.io/liquidhaskell/

Explain Each Underlined Type

(hint: [a] = “list of a”)

append :: xs:[a] -> ys:[a]
-> {v:[a]| len v = len xs + len ys}
map :: (a => b) -> xs:[a]
-> {v:[b]]|] len v = len xs}
filter :: (a -> Bool) -> xs:[a] .
- {V: [a]l len v <= len XS} type IncrList a [a]<{\h v —> h <= v}>

type DecrlList a [al]<{\h v —> h >= v}>

type UnigList a [al]<{\h v —> h != v}>
insertSort :: (Ord a) => [a] —> IncrlList a
insertSort [] = []
insertSort (xX:xs) = 1insert xXx (insertSort xs)
insert :: (0rd a) => a —> IncrlList a —> IncrlList a

insert y [] = [yl
insert y (x:xs)
| v <= X =y ! X I XS

| otherwise = X : 1lnsert y Xxs
#17



Examples: POPL 2024

... allows the refinement type system to precisely track what effects occur and in what order
when a program is executed, and reflect such information as modifications to the
refinements in the types of delimited continuations. We formalize our type system that
supports ARM (as well as answer type modification, or ATM) and prove its soundness.

- Answer Refinement Modification: Refinement Type System for Algebraic Effects and
Handlers

... we introduce Quotient Haskell, an extension of Liquid Haskell that extends the notion of
refinement types to support a class of quotient types for which the elimination laws are
SMT-decidable.

- Quotient Haskell: Lightweight Quotient Types for All

Practical checkers based on refinement types use the combination of implicit semantic
subtyping and parametric polymorphism to simplify the specification and automate the
verification of sophisticated properties of programs ... We present ARF, a core refinement
calculus that combines semantic subtyping and parametric polymorphism. We develop a
metatheory for this calculus and prove soundness of the type system.

- Mechanizing Refinement Types

Out of space: dependent/refinement/liquid types are a hot topic these days! And we've
been hearing a lot about proofs (type checking = proof checking, soundness proofs, etc.) ...
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Proof Generation

« We want our theorem prover to emit proofs
- No need to trust the prover
- Can find bugs in the prover
- Can be used for proof-carrying code
- Can be used to extract invariants

- Can be used to extract models (e.g., in SLAM or
to support some Liquid Type work)

e Implements the soundness argument
- On every run, a soundness proof is constructed

#19



Proof Representation

Proofs are trees

- Leaves are hypotheses/axioms
- Internal nodes are inference rules

Axiom: “true introduction”

- Constant: truei : pf = A - B
- pfis the type of proofs andi

Inference: “conjunction introduction” ~AANB
- Constant: andi : pf — pf — pf

Inference: “conjunction elimination” -~ANAB andel
- Constant: andel : pf — Pf = A
Problem:

- “andel truei : pf” but does not represent a valid proof

- Need a more powerful type system that checks content
#20
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Proofs and Dependent Types

« Make pf a family of types indexed by formulas
- f: Type (type of encodings of formulas)
- e : Type (type of encodings of expressions)

- pf . f — Type (the type of proofs indexed by formulas: it
is a proof that f is true)

« Examples:

- true . f
- and f—-f—f
- truei : pf true

- andi : pf A— pf B— pf (and A B)
- andi  : IIA:f. IIB:f. pf A —» pf B — pf (and A B)

- (ITA:f.X means “forall A of type f, dependent type X uses value A”) 421



Proof Checking

Validate proof trees by type-checking them
Given a proof tree X claiming to prove A A B

Must check X : pf (and A B)

We use “expression tree equality”, so
- andel (andi “1+2=3" “x=y”) does not have type pf (3=3)

- This is already a proof system! If the proof-supplier wants
to use the fact that 1+2=3 < 3=3, she can include a proof
of it somewhere!

Thus Type Checking = Proof Checking
- And it’s quite easily decidable! []
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Q: Games (540 / 842)

e This seminal 1991 turn-based
strategy computer game by Sid
Meier of Microprose spawned an

entire genre about
micromanaging exploration,
expansion and conflict.




Q: Yanqgi Wang

e This counting frame was used
as early as 2500 BCE in
Sumeria (before Arabic
numerals and “zero”!) to aid
with arithmetic. The Chinese
suanpan E#§ (top) and
Japanese soroban FAIXA
(middle), and Korean jupan
2 are examples.




Q: Books (754 / 842)

« Name the factory owner, the
workers, and the newly-
developed form of unending

suckable candy in the 1964
children’'s book that features the
title character finding a golden
ticket and visiting the title
chocolate factory.




Turing Award Winners

e This Ron-bearing golden trio is known best not
for defeating Voldemort but for making one of
the first practical public-key cryptosystems. A
user publishes a public key based on two
large, secret prime numbers. Anyone can use
the public key to encrypt a message, but
(ideally) only someone who knows the two
secret prime numbers can decrypt it.




Types for Data Abstraction

What’s inside the implementation?
We don’t know!

QUESTIONS NOT EVEN 5+ YEARS OF GRAD SCHOOL WILL HELP YOU ANSWER

S0, SON, THINK
WE CAN FI THIS

EW|WENTI"'-L ENGINEERING SLIENCE
g Wwww.phdecemics.com



An abstract data type has a
public name, a hidden
representation, and operations to
create, combine, and observe
values of the abstraction.
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Data Abstraction

e Ability to hide (abstract) concrete
implementation details

e Modularity builds on data abstraction

e Improves program structure and minimizes
dependencies

e One of the most influential developments of
the 1970’s

e Key element for much of the success of
object orientation in the 1980’s
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Example of Abstraction

« Cartesian points (gotta love it!)

o Introduce the “abstype” language construct:

abstype point implements ¢ Shows a concrete

mk : real x real — point implementation

o Allows the rest of the
program to access the
implementation through

Xc : point — real
yc : point — real

is an abstract interface
< point = real x real, « Only the interface need
mk = AX. X, to be publicized
xc = fst, o Allows separate

yc =snd > compilation
#30



Data Abstraction

o |t is useful to separate the creation of the
abstract type and its use (understatement)

o Extend the syntax (t = imp, o = interface):
Terms = ... | <t=1,e:0>| opene,ast,x:cine,
Types ::=... | dt. o

o The expression <t=1, e : o> takes the concrete

implementation e and “packs it” as a value of an
abstract type

- Alternative notation: “pack e as 3t. o with t = t”
- “existential types” - used to model the stack, etc.
« The “open” expression allows e, to access the

abstract type expression e, using the name x, the

unknown type of the concrete implementation
“t” and the interface o

#31



Example with Abstraction

C ={ mk = Ax.X, Xc = fst, yc = snd } is a concrete
implementation of points as real x real

We want to hide the type of the representation

o is the following type:

f mk : real x real — point,
XC : point — real, yc : point — real }

Note that C : [realxreal/point]oc

A = <point=realxreal, C : o> is an expression of the
abstract type dpoint.oc

We want clients to access only the second
component of A and just use the abstract name
“point” for the first component:

open A as point, P : o in ... P.xc(P.mk(1.0, 2.0)) ...
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Typing Rules for Existential Types

« We add the following typing rules:
[ F[7/tle: |7/tlo
[F(t=T,e.:0):3dt.o

[ Feqg:dt.o T, ,t,p:obkey:T

tZ FV(ITUT)

[ Hopenegast,p:oiney: T

e The restriction in the rule for “open”
ensures that t does not escape its scope

#33



Evaluation Rules
for Abstract Types

e We add a new form of value
Vi=..|<t=t,Vv:o>

- This is just like v but with some type decorations that
make it have an existential type

cab(t=rv:0) [v/allr/tley 4o/
openeg as t,x . o in ey | v/

« At the time e, is evaluated, abstract-type variables
are replaced with concrete values
- If we ignore the type issues “opene,ast, x: cine.” is
like “letx: c=¢e,ine)”
- Difference: e, cannot know statically what is the
concrete type of x so it cannot take advantage of it

#34



Abstract Types
as a Specification Mechanism

Just like polymorphism, existential types are mostly
a type checking mechanism

A function of type Vt. t List — int does not know
statically what is the type of the list elements.
Therefore no operations are allowed on them

- But it will have, at run-time, the actual value of t
- “There are no type variables at run-time”

Same goes for existentials

These type mechanisms are a very powerful (and
widely used!) form of static checking

- Recall Wadler’s “Theorems for Free” 435



Data Abstraction
and the Real World

e Example: file descriptors

e Solution 1:

- Represent file descriptors as “int” and export
the interface {open:string—int, read:int— data}

e An untrusted client of the interface calls
“read”

« How can we know that “read” is invoked
with a file descriptor that was obtained from
“Open”?

#36



Data Abstraction
and the Real World

Example: file descriptors

Solution 1:

- Represent file descriptors as “int” and export the
interface {open:string—int, read:int— data}

An untrusted client of the interface calls “read”

How can we know that “read” is invoked with a file
descriptor that was obtained from “open”?

- We must keep track of all integers that represent file
descriptors

- We design the interface such that all such integers are
small integers and we can essentially keep a bitmap

- This becomes expensive with more complex (e.g.
pointer-based) representations

#37



Data Abstraction, Static Checking

o Solution 2: Use the same representation but export
an abstraction of it.
- dfd. File or
- dfd. {open : string — fd, read : fd — data}
- A possible value:
- Fd=<fd =int, { open = ..., read = ...} : File> : 3fd. File
« Now the untrusted client e
open Fd as fd, x : Fileine

« At run-time “e” can see that file descriptors are
integers
- But cannot cast 187 as a file descriptor.
- Static checking with no run-time costs!

- Catch: you must be able to type check e! 435



Modularity

A module is a program fragment along with
visibility constraints

Visibility of functions and data

- Specify the function interface but hide its
implementation

Visibility of type definitions
- More complicated because the type might appear in
specifications of the visible functions and data
- Can use data abstraction to handle this
A module is represented as a type component and
an implementation component
<t=r1,€:06> (wheretcanoccurineando)

- even though the specification (o) refers to the
implementation type we can still hide the latter

- But there are problems with 3 ...
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Problems with Existentialists

« Existentialist types
- Assert that truth is subjectivity
- Oppose the rational tradition and positivism
- Are subject to an “absurd” universe

e Problems:

- "In so far as Existentialism is a philosophical doctrine, it
remains an idealistic doctrine: it hypothesizes specific
historical conditions of human existence into ontological
and metaphysical characteristics. Existentialism thus
becomes part of the very ideology which it attacks, and
its radicalism is illusory.” (Herbert Marcuse, “Sartre's

Existentialism”, p. 161) :-)

#40



Problems with Existentials

e Existential types
- Allow representation (type) hiding

- Allow separate compilation. Need to know only
the type of a module to compile its client

- First-class modules. They can be selected at run-
time. (cf. OO interface subtyping)

e Problems:

- Closed scope. Must open an existential before
using it!
- Poor support for module hierarchies

#41



Problems with Existentials (Cont.)

o There is an inherent tension between handling modules in

isolation (good for separate compilation, interchangeability)
and the need to integrate them

point
/\

rect circle

\/ (the arrow means “depends on”)

geometry

« Solution 1: open “point” at top level
- Inversion of program structure
- The most basic construct has the widest scope

#42



Give Up Abstraction?

« Solution 2: incorporate point in rect and circle
R = < point = ..., <rect = point x point, ...> ... >
C = < point = ..., <circle = point x real, ...> ... >
« When we open R and C we get two distinct notions
of point!
- And we will not be able to combine them
« Another option is to allow the type checker to see
the representation type
- and thus give up representation hiding

#43



Strong Sums

« New way to open a package
Terms e ::=... | Ops(e)
Types t::=...Zt.t | Typ(e)
- Use Typ and Ops to decompose the module
- Operationally, they are just like “fst” and “snd”
- Xt.t is the dependent sum type
- It is like Jt.t except we can look at the type

[ Fe:2t.T
[T F Ops(e) : 7[Typ(e) /]

#44



Modularity with Strong Sums

e Consider the R and C defined as before:
Pt = <point = real x real, ...> : Zpoint. T,
R = <point = Typ(Pt),
< rect = point x point, ...> : Xrect. 7,
C = <point = Typ(Pt),
< circle = point x real, ...> : Zcircle. 1,

e Since we use strong-sums the type checker
sees that the two point types are the same

#45



Modules with Strong Sums

« ML’s module system is based on strong sums
Problems:
« Poorer data abstraction

o EXpressions appear in types (Typ(e))
- Types might not be known until at run time
- Lost separate compilation

- Trouble if e has side-effects (but we can use a value
restriction - e.g., “IntSet.t”)

« Second-class modules (because of value restriction)

« We can combine existentials with strong sums

- Translucent sums: partially visible
#46



« HW6

- Need help?
Send email,
post on the
forum, etc.

Homework
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