
#1

Recursive Types and SubtypingRecursive Types and Subtyping



#2

One-Slide Summary

• Recursive types (e.g.,  list) make the typed 
lambda calculus as powerful as the untyped 
lambda calculus.

• If  is a subtype of  then any expression of 
type  can be used in a context that expects a 
; this is called subsumption.

• A conversion is a function that converts 
between types. 

• A subtyping system should be coherent. 



#3

Recursive Types: Lists
• We want to define recursive data structures 

• Example: lists
– A list of elements of type  (a  list) is either empty or it 

is a pair of a  and a  list

 list = unit + ( £  list)
– This is a recursive equation. We take its solution to be  

the smallest set of values L that satisfies the equation

L = { * } [ (T £ L)  
where T is the set of values of type 

– Another interpretation is that the recursive equation is 
taken up-to (modulo) set isomorphism



#4

Recursive Types
• We introduce a recursive type constructormu

t.  
– The type variable t is bound in 
– This stands for the solution to the equation

t ' (t is isomorphic with )
– Example:  list = t. (unit +  £ t)
– This also allows “unnamed” recursive types

• We introduce syntactic (sugary) operations for the 
conversion between t. and [t./t]

• e.g. between “ list” and “unit + ( £  list)”
e ::= … | foldt. e | unfoldt. e 

      ::= … | t | t.



#5

Example with Recursive Types
• Lists

  list = t. (unit +  £ t)
 nil = fold list (injl *)

 cons = x:.L: list. fold list injr (x, L)

• A list length function
length = L: list. 

case (unfold list L) of   injl x ) 0

       | injr y ) 1 + length (snd y)

• (At home …) Verify that
– nil       :  list

– cons    :  !  list !  list

– length :  list ! int



#6

Type Rules for Recursive Types

• The typing rules are syntax directed
• Often, for syntactic simplicity, the fold and 

unfold operators are omitted
– This makes type checking somewhat harder



#7

Dynamics of Recursive Types
• We add a new form of values

v ::= … | foldt. v

– The purpose of fold is to ensure that the value 
has the recursive type and not its unfolding

• The evaluation rules:

• The folding annotations are for type checking only

• They can be dropped after type checking



#8

Recursive Types in ML
• The language ML uses a simple syntactic trick to 

avoid having to write the explicit fold and unfold
• In ML recursive types are bundled with union types

type t = C1 of 1 | C2 of 2 | ... | Cn of n                                            

                    (* t can appear in i *)

– e.g., “type intlist = Nil of unit | Cons of int * intlist”

• When the programmer writes Cons (5, l)
– the compiler treats it as              foldintlist (injr (5, l))

• When the programmer writes
– case e of Nil ) ... | Cons (h, t) ) ... 
the compiler treats it as

– case unfoldintlist e of Nil ) ... | Cons (h,t) ) ...



#9

Encoding Call-by-Value 
-calculus in F1



• So far, F1 was so weak that we could not 
encode non-terminating computations
– Cannot encode recursion
– Cannot write the x.x x   (self-application)

• The addition of recursive types makes typed 
-calculus as expressive as untyped -
calculus!

• We could show a conversion algorithm from 
call-by-value untyped -calculus to call-by-
value F1





#10

Smooth Transition
• And now, on to subtyping ...



#11

Introduction to Subtyping

• We can view types as denoting sets of values

• Subtyping is a relation between types induced by 
the subset relation between value sets

• Informal intuition:
– If  is a subtype of  then any expression with type  also 

has type (e.g., Z µ R, 12Z ) 12R) 

– If  is a subtype of  then any expression of type  can be 
used in a context that expects a 

– We write  <  to say that  is a subtype of 

– Subtyping is reflexive and transitive 



#12

Cunning Plan For Subtyping

• Formalize Subtyping Requirements
– Subsumption

• Create Safe Subtyping Rules
– Pairs, functions, references, etc. 

– Most easy thing we try will be wrong

• Subtyping Coercions
– When is a subtyping system correct?



#13

Subtyping Examples

• FORTRAN introduced int < real
– 5 + 1.5 is well-typed in many languages

• PASCAL had [1..10] < [0..15] < int

• Subtyping is a fundamental property of 
object-oriented languages
– If S is a subclass of C then an instance of S can be 

used where an instance of C is expected
– “subclassing ) subtyping” philosophy



#14

Subsumption
• Formalize the requirements on subtyping
• Rule of subsumption

– If  <  then an expression of type  has type 

• But now type safety may be in danger:

• If we say that int < (int ! int)

• Then we can prove that “11  8” is well typed!

• There is a way to construct the subtyping relation to 
preserve type safety



#15

Subtyping in   
POPL/PLDI 14 

• Backpack: Retrofitting 
Haskell with Interfaces

• Getting F-Bounded 
Polymorphism into Shape

• Optimal Inference of 
Fields in Row-Polymorphic 
Records

• Polymorphic Functions 
with Set-Theoretic Types 
(Part 1: Syntax, 
Semantics, and 
Evaluation) 

• … (out of space)

• Decidable Subtyping for 
Path Dependent Types

• Graduality and 
Parametricity: Together 
Again for the First Time

– By UM's Max New!
• Partial Type Constructors: 

Or,Making Ad Hoc 
Datatypes Less Ad Hoc

• What Is Decidable about 
Gradual Types?

• … (out of space)

Subtyping in   
POPL 20



#16

POPL 2025
• Many programming languages need to check whether two recursive 

types are in a subtyping relation. Traditionally recursive types are 
modelled in two different ways: equi- or iso- recursive types. While 
efficient algorithms for subtyping … 

– QuickSub: Efficient Iso-Recursive Subtyping

• We first propose a subtyping system based on type graphs, offering more 
efficient (quadratic) subtype-checking than the existing (exponential) 
inductive algorithm …

– Top-Down or Bottom-Up? Complexity Analyses of Synchronous 
Multiparty Session Types

• However, existing type inference implementations lack solid theoretical 
foundations when dealing with non-structural subtyping and intersection 
and union types, which were not studied before.

– Bidirectional Higher-Rank Polymorphism with Intersection and 
Union Types



#17

Defining Subtyping

• The formal definition of subtyping is by derivation 
rules for the judgment  < 

• We start with subtyping on the base types
– e.g.   int < real   or   nat < int
– These rules are language dependent and are typically 

based directly on types-as-sets arguments

• We then make subtyping a preorder (reflexive and 
transitive)

• Then we build-up subtyping for “larger” types



#18

Subtyping for Pairs

• Try

• Show (informally) that whenever a s £ s’ can be used, a 
t £ t’ can also be used:

• Consider the context H = H’[fst ²] expecting a s £ s’

• Then H’ expects a s

• Because t < s then H’ accepts a t

• Take e : t £ t’. Then fst e : t so it works in H’

• Thus e works in H

• The case of “snd ²” is similar



#19

Subtyping for Records
• Several subtyping relations for records
• Depth subtyping

• e.g., {f1 = int, f2 = int} < {f1 = real, f2 = int}

• Width subtyping

• E.g., {f1 = int, f2 = int} < {f2 = int}

• Models subclassing in OO languages

• Or, a combination of the two



#20

Subtyping for Functions

Example Use: 
  rounded_sqrt : R ! Z 
  actual_sqrt : R ! R
Since Z < R, rounded_sqrt < actual_sqrt
So if I have code like this: 

float result = rounded_sqrt(5); // 2

… I can replace it like this: 
float result = actual_sqrt(5); // 2.23

… and everything will be fine. 



Chinese Literature (紅樓夢 )

• This semi-autobiographical novel is one of 
China's Four Great Classic Novels. It mirrors 
the rise and fall of the author's family and is 
presented as a memorial to the women he 
knew in his youth. It describes 18th-century 
Chinese society using many characters, 
including the compassionate Jia Baoyu (賈寶
玉 ) and the sickly and spiritual Lin Daiyu (林
黛玉 ). It also features a sentient stone and  
romantic rivalry. 



Q:  General  (455 / 842) 

• This numerical technique for finding 
solutions to boundary-value problems 
was initially developed for use in 
structural analysis in the 1940's. The 
subject is represented by a model 
consisting of a number of linked 
simplified representations of discrete 
regions. It is often used to determine 
stress and displacement in mechanical 
systems.  



Languages

• This Dravidian language dates back to at least 
300 BCE and combines vowels and consonants 
to form over 200 compound characters. It 
uses multiple suffices to mark noun numbers 
and verb tenses (called agglutination). The 
poet C. Subramania Bharati wrote in this 
language against child marriage and the caste 
system and in favor of women's rights. 
– Example: மனனதபப பறவயனரப



Computer Science
• This American Turing-award winner is known 

for his visionary and pioneering contributions 
to Computer Graphics, and for Sketchpad, an 
early predecessor to the GUI. He created the 
first virtual reality display, and a graphics line 
clipping algorithm. His students include Alan 
Kay (Smalltalk), Henri Gouraud (shading), 
Frank Crow (anti-aliasing), and Edwin Catmull 
(Pixar). When asked, "How could you possibly have done the 
first interactive graphics program, the first non-procedural 
programming language, the first object oriented software system, 
all in one year?" He replied: "Well, I didn't know it was hard."



#25

Subtyping for Functions
• What do you 

think of this 
rule? 



#26

Subtyping for Functions

• This rule is unsound
– Let  = f : int ! bool   (and assume int < real)

– We show using the above rule that  ` f  5.0 : bool

– But this is wrong since 5.0 is not a valid argument of f



#27

Correct Function Subtyping

• We say that ! is covariant in the result type and 
contravariant in the argument type

• Informal correctness argument:

• Pick f :  ! ’

• f expects an argument of type 

• It also accepts an argument of type  < 

• f returns a value of type ’

• Which can also be viewed as a ’ (since ’ < ’)

• Hence f can be used as  ! ’



#28

More on Contravariance
• Consider the subtype relationships:

int ! real

real ! int

real ! real int ! int

• In what sense (f 2 real ! int) ) (f 2 int ! int) ?
• “real ! int” has a larger domain! 

• (recall the set theory (arg,result) pair encoding for functions)

• This suggests that “subtype-as-subset” interpretation is 
not straightforward
• We’ll return to this issue (after these commercial messages …)



#29

Subtyping References
• Try covariance

– Example: assume  < 
– The following holds (if we assume the above rule): 

x : , y :  ref, f :  ! int ` y := x; f (! y)
– Unsound: f is called on a  but is defined only on 
– Java has covariant arrays!  

• If we want covariance of references we can recover 
type safety with a runtime check for each y := x
– The actual type of x matches the actual type of y
– But this is generally considered a bad design



#30

Subtyping References (Part 2)
• Contravariance?

– Example: assume  < 
– The following holds (if we assume the above rule): 

x : , y :  ref, f :  ! int ` y := x; f (! y)
– Unsound: f is called on a  but is defined only on 

• References are invariant
– No subtyping for references (unless we are prepared to 

add run-time checks)
– hence, arrays should be invariant
– hence, mutable records should be invariant



#31

Subtyping Recursive Types

• Recall  list = t.(unit + £t)
– We would like  list <  list whenever  < 

• Covariance?

• This is wrong if t occurs contravariantly in 
• Take  = t.t!int and = t.t!real
• Above rule says that  < 
• We have '!int and '!real
•  < would mean covariant function type!
• How can we get safe subtyping for lists?



#32

Subtyping Recursive Types

• The correct rule

• We add as an assumption that the type variables 
stand for types with the desired subtype 
relationship
– Before we assumed they stood for the same type!

• Verify that now subtyping works properly for lists
• There is no subtyping between t.t!int and t.t!

real (recall:

Means assume t < s 
and use that to 

prove  < 



#33

Conversion Interpretation
• The subset interpretation of types leads to an 

abstract modeling of the operational behavior
– e.g., we say int < real even though an int could not be 

directly used as a real in the concrete x86 
implementation (cf. IEEE 754 bit patterns)

– The int needs to be converted to a real 

• We can get closer to the “machine” with a 
conversion interpretation of subtyping
– We say that  <  when there is a conversion function 

that converts values of type  to values of type 
– Conversions also help explain issues such as 

contravariance
– But: must be careful with conversions  



#34

Conversions

• Examples:
– nat < int  with conversion x.x

– int < real with conversion 2’s comp ! IEEE 

• The subset interpretation is a special case 
when all conversions are identity functions

• Write “ <  ) C(, )” to say that C(,) is 
the conversion function from subtype  to 
– If C(, ) is expressed in F1 then  C(,)  :  ! 



#35

Issues with Conversions
• Consider the expression “printreal 1” typed as follows:

     we convert 1 to real: printreal (C(int,real) 1)
• But we can also have another type derivation:

  with conversion “(C(real -> unit, int -> unit) printreal) 1”
• Which one is right? What do they mean? 



#36

Introducing Conversions
• We can compile a language with subtyping into one 

without subtyping by introducing conversions

• The process is similar to type checking
 ` e :  ) e

– Expression e has type  and its conversion is e

• Rules for the conversion process:



#37

Coherence of Conversions
• Questions and Concerns:

– Can we build arbitrary subtype relations just because we 
can write conversion functions?

– Is real < int just because the “floor” function is a 
conversion?

– What is the conversion from “real!int” to “int!int”?

• What are the restrictions on conversion functions?  
• A system of conversion functions is coherent if 

whenever we have  < ’ <  then
• C(, ) = x.x
• C(,) = C(’, )  C(, ’)  (= composed with)

• Example: if b is a bool then (float)b == (float)((int)b)

– otherwise we end up with confusing uses of subsumption



#38

Example of Coherence
• We want the following subtyping relations:

– int < real ) x:int. toIEEE x

– real < int ) x:real. floor x

• For this system to be coherent we need
– C(int, real)  C(real, int) = x.x, and

– C(real, int)  C(int, real) = x.x

• This requires that 
– 8x : real . ( toIEEE (floor x) = x )

– which is not true



#39

Building Conversions
• We start from conversions on basic types



#40

Comments
• With the conversion view we see why we do not 

necessarily want to impose antisymmetry for 
subtyping
– Can have multiple representations of a type
– We want to reserve type equality for representation 

equality
–   < ’ and also ’ <  (are interconvertible) but not 

necessarily  = ’
– e.g., Modula-3 has packed and unpacked records

• We’ll encounter subtyping again for object-oriented 
languages
– Serious difficulties there due to recursive types



#41

Homework

• Homework 5, Homework 6, etc.


	Subtyping
	Slide 2
	Recursive Types: Lists
	Recursive Types
	Example with Recursive Types
	Type Rules for Recursive Types
	Dynamics of Recursive Types
	Recursive Types in ML
	Encoding Call-by-Value l-calculus in F1m
	Slide 10
	Introduction to Subtyping
	Plan For This Lecture
	Subtyping Examples
	Subsumption
	Subtyping in POPL and PLDI 2005
	Slide 16
	Defining Subtyping
	Subtyping for Pairs
	Subtyping for Records
	Subtyping for Functions
	Slide 21
	Q: General (455 / 842)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Correct Function Subtyping
	More on Contravariance
	Subtyping References
	Subtyping References (Part 2)
	Subtyping Recursive Types
	Slide 32
	Conversion Interpretation
	Conversions
	Issues with Conversions
	Introducing Conversions
	Coherence of Conversions
	Example of Coherence
	Building Conversions
	Comments
	Homework

