Simply-Typed
Lambda Calculus |

You guys are both my witnesses... He insinuated that
ZFC set theory is superior to Type Theory!

BERORE GOING | (T) || seaT RRLTS?
DOWN A STEEP
WILL LIKE THIS, ‘1
OE SHOLD L
MMWMS GNE | o@r

Hi% 5LED A é

One-Slide Summary

A type is an upper bound on the range of values a
program expression could take on at run-time.

A formal type system, also known as a static
semantics, describes rules for checking types.

A typing judgment typically associates a typing
environment and an expression with a type.

The simply-typed lambda calculus adds type
annotations for function abstractions.

A type system is sound iff every expression
evaluates to a value in that expression’s static type.

#2

Review!

e What is operational semantics? When would
you use contextual (small-step) semantics?

« What is satisfiability modulo theories?

e What is axiomatic semantics? What is a
verification condition?

PLACE. ME .

WHY DOES BECAUSE TS COLD, ICE WANK [1S THAT | LOOK \T UP AND || I SHoulD JusT | You CAM
ICE FLOAT 7 TO GET WARM, SO \WQOES | TRUE? FIND QUT. LOOK STUFE UP | LEARN A 1OT,
TO THE TOF OF LiQUIDS IN I THE FIRST | TALKING TO
= R0R T B NERERTO |]

Today’s (Short?) Cunning Plan

e Type System Overview
e First-Order Type Systems

» Typing Rules

e Typing Derivations

» Type Safety

WHAT DOES MFU2
MEAN ON YOUR
TIMELINE?

wiwnardilberl.com scottadams® aol.oom

THAT'S MANAGEMENT
FOUL-UP NUMBER TLWIO.
IT USUALLY HAPPENS
AROUND THE THIRD

Lo

WEEK.

WE DONT ANTICIPATE
ANY MANAGEMENT
MISTAKES.

THAT™S |

o P00E Scott Adoms, Inc./DHsL by UES, Inc.

MFUL. |
ey \

Types

e A program variable can assume a range of
values during the execution of a program

e An upper bound of such a range is called a
type of the variable

- A variable of type “bool” is supposed to assume
only boolean values

- If x has type “bool” then the boolean expression
“not(x)” has a sensible meaning during every run
of the program

#5

Typed and Untyped Languages

« Untyped languages
- Do not restrict the range of values for a given variable

- Operations might be applied to inappropriate arguments.

The behavior in such cases might be unspecified

- The pure A-calculus is an extreme case of an untyped
language (however, its behavior is completely specified)

 (Statically) Typed languages
- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

#6

The Purpose Of Types

o The foremost purpose of types is to prevent certain
types of run-time execution errors

« Traditional trapped execution errors
- Cause the computation to stop immediately
- And are thus well-specified behavior
Usually enforced by hardware
e.g., Division by zero, floating point op with a NaN
- e.g., Dereferencing the address 0 (on most systems)

« Untrapped execution errors

- Behavior is unspecified (depends on the state of the
machine = this is very bad!)

- e.g., accessing past the end of an array
- e.g., jumping to an address in the data segment

#7

Why Typed Languages?

« Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signhatures enable separate compilation

e Maintenance
- Types act as checked specifications
- Types can enforce abstraction

o Execution

- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
o the compiler can generate better code

#8

Properties of Type Systems

 How do types differ from other program

annotations?

- Types are more precise than comments

- Types are more easily mechanizable than
program specifications

e Expected properties of type systems:

- Types should
- Types should

- Typing rules s

be enforceable
e checkable algorithmically

nould be transparent

« Should be easy to see why a program is not well-typed

#9

Why Formal Type Systems?

e Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

o A fair amount of careful analysis is required
to avoid false claims of type safety

e A formal presentation of a type system is a
precise specification of the type checker

- And allows formal proofs of type safety

e But even informal knowledge of the
principles of type systems help

#10

Formalizing a Language

1. Syntax
o Of expressions (programs)
o Of types
« Issues of binding and scoping
2. Static semantics (typing rules)
o Define the typing judgment and its derivation rules
3. Dynamic Semantics (e.g., operational)
o Define the evaluation judgment and its derivation rules
4. Type soundness

o Relates the static and dynamic semantics
« State and prove the soundness theorem

#11

Typing Judgments

o Judgment (recall from prior lectures)
- A statement J about certain formal entities
- Has a truth value = J

- Has a derivation - J (= “a proof”)
« A common form of typing judgment:
I'e:x (e is an expression and t is a type)

e [(Gamma) is a set of type assighments for the free
variables of e

- Defined by the grammar ' ::=- | I, X : 1
- Type assignments for variables not free in e are not
relevant

- e.g.,, X:int,y:intkFx+y:int
#12

Typing rules

- Typing rules are used to derive typing
judgments

e Examples: PP liine

x.T €T
[Fx T

[Feq:int [Feo:int
| Fe; +ep:int

#13

Typing Derivations

« A typing derivation is a derivation of a typing
judgment (big surprise there ...)

« Example:

z.intkFx :int « :inthkF 1 : int
r . int F 2 : int r:.intF x4+ 1: int
z.intFxz 4+ (x4 1) : int

e Wesay I e : 1t to mean there exists a derivation
of this typing judgment (= “we can prove it”)

« Type checking: given I', e and t find a derivation

« Type inference: given I" and e, find T and a
derivation

#14

Proving Type Soundness

A typing judgment is either true or false
Define what it means for a value to have a type
vel |
(e.g. 5 € | int || and true € || bool |)
Define what it means for an expression to have a
type

ec |t| iff w.(eldv=ve|r|)
Prove type soundness

If . -e:n thene e | 1|
or equivalently
If Fe:tandelv thenvelr|

This implies safe execution (since the result of a

unsafe execution is not in || t || for any 1) s

Upcoming Exciting Episodes

« We will give formal description of first-order type
systems (no type variables)
- Function types (simply typed A-calculus)
Simple types (integers and booleans)
Structured types (products and sums)
Imperative types (references and exceptions)
Recursive types (linked lists and trees)

o The type systems of most common languages are
first-order

« Then we move to second-order type systems
- Polymorphism and abstract types

#16

Q: Movies (378 / 842)

e This 1988 animated movie written and
directed by Isao Takahata for Studio
Ghibli was considered by Roger Ebert to
be one of the most powerful anti-war
films ever made. It features Selta and
his sister Setsuko and their e
efforts to survive outside of RS <y
society during the firebombing EX® '\
of Tokyo. @ §°

Computer Science
e This American-Canadian Turing-award

winner is known for major contributions
to the fields of complexity theory and
proof complexity. He is known for

formalizing the polynomial-time
reduction, NP-completeness, P vs. NP,
and showing that SAT is NP-complete.
This was all done in the seminal 1971
paper The Complexity of Theorem
Proving Procedures.

Q: Student

e This piece of diving ™
equipment with an air- mflatable
bladder changes its average

density for use in SCUBA diving.
It typically requires manual
adjustment throughout the dive
and can be augmented by breath
control.

Q: Games (504 / 842)

e This 1985 falling-blocks
computer game was invented by
Alexey Pajitnov (Anekceu

[TaxknuTHOB) and inspired by
pentominoes.

Simply-Typed Lambda Calculus
e Syntax:

(-

Terms e ::= X Axit.e | e e
n e, +e, iszero e
true false not e
if e, then e, else e,

Types t::=int | bool | T, — 7,
e T, — T, 1S the function type

e« — associates to the right

 Arguments have typing annotations :t
 This language is also called F,

#21

Static Semantics of F.
e The typing judgment

['Fe:nt
e Some (simpler) typing rules:
v Tl x:7kFe: T
ka7 Xz :7e:7— 7

| Fei i —=7 | Fes:to

[€1 . T

#22

More Static Semantics of F.
[ey :int [Feos:int

[= n:int [Fe1 +eo:int

Why did | leave this mysterious gap? | don’t know either!

[e : bool
[F true : bool [- not e : bool

[Feqibool [Fei7 [hepiT

[~ 1if e; theneselseey ! T

#23

Typing Derivation in F.

e Consider the term (also underlined below)
AX . int. Ab : bool. if b then f x else x
- With the initial typing assignment f : int — Int

- WhereI' =f :int — int, x : int, b : bool
[f:int - int [F x: int
[b: bool [+ fx:int [+ 2 int

f iint — int,x : int,b : bool F if b then f x else = ! int

f int — int,x : int - Ab : bool. if b then f x else = : bool — int

J iint — int H Az ! int.\b ! bool. if b then [x else x ! int — bool — int

l

#24

oley cat sez:

Type Checking in F.

- Type checking is easy because P

F

Typing rules are syntax directed see2 ur typenroblim wil';z fiot 5o hard
Typing rules are compositional (what does this mean?)

All local variables are annotated with types

- “Easy” = deterministic polynomial time, etc.

o In fact, type inference is also easy for F.

o Without type annotations an expression may have
no unique type

- AX. X :int — int
. AX. X : bool — bool

#25

Operational Semantics of F,

e Judgment:

ellv
e Values:
v:i=n| true | false | Ax:t. e

e« The evaluation rules ...

- Audience participation time: “raise your hand”
and give me an opsem evaluation rule.

« Function application, Lambda abstraction, if, plus, ...

#26

e1 I Az : T.e’l

Opsem of F, (Cont.)

» Call-by-value evaluation rules (sample)

AxxiT.ell Az iTe

eo | vo

O

[v2/x]e] Y v

O

Where is the
Call-By-Value?
How might we

e1 e v

e1 dny exlmno

n=mni—+ no

change it?

n{n

€1

e1 | true

eo I n

er | v

if e1 then e, elseef | v

eq1 |} false

er v

if e; then e; elseer | v

Evaluation is
undefined for ill-
typed programs !

#27

Type Soundness for F,

e Thm:If .-Fe:t andel vthen . Fv:rz

- Also called, subject reduction theorem, type
preservation theorem

e This is one of the most important sorts of
theorems in PL

« Whenever you make up a new safe language
you are expected to prove this

- Examples: Vault, TAL, CCured, ...
e Proof: next time!

#28

Practice Paper Reading:
SIGPLAN PEPM 2025

e A Type Safe Calculus for Generating Syntax-
Directed Editors

The typed lambda calculi that we consider all satisfy the
same subject reduction property.

Theorem 3.1 (Subject reduction). IfT +e: 7 ande — ¢,
thenT + e’ : .

Ei,a 2 E!.d

(E1 >> Ej,a) 5 (E] >> E,a’)

(SEQ-TRIVIAL)

(nil 3> E5,a) = (E,, a)

#29

Practice Paper Reading:
POPL 2025

e Consistency of a Dependent Calculus of
Indistinguishability

4.2 Type Preservation

Like level checking, type checking admits substitution (WT-suBsT) and subsumption (WT-suB), as
stated in Figure 11. Due to rule Wr-Conv, deducing the well-typedness of subterms of a well-typed
term doesn’t follow immediately from inversion and requires separate generation lemmas, which
are standard and omitted here. One notable consequence is that if refl is a propositional equality
between a and b at some observer level £, then they are definitionally equal at that level. Finally,
we are able to prove type preservation, which proceeds by induction on the typing derivation.

LEMMA 4.4. IfT +refl :* a=%b, then |T| + a &% b.

THEOREM 4.5 (TYPE PRESERVATION). Ifa=> b (ora =* b)andT + a:* AthenT + b:' A.

The main judgment is the typing relation, which has the form [T + a :* A|for a term a that is
well typed under context I' at observer level ¢ with type A. Its rules are given in Figure 2. To

#30

e Read actually-exciting Leroy paper

Homework

e Homework continues
e HW4 Discussion

E
E

BEFoRE I HAND oUT
THE READING LIST, 15
THERE ANYONE HERE

__+ WITH CPR TRAINING?

S e e S
o e R S S e

I'VvE GoT A BAD
FEELING ABOUT
THIS CLASS. 1/
R
)
— T

e

i

el

- i C

+++++
+++++++
+++++
+++++

i]mm U S AmEe PRy Tl L R e

	Simply-Typed Lambda Calculus
	Slide 2
	Back to School
	Today’s (Short?) Cunning Plan
	Types
	Typed and Untyped Languages
	The Purpose Of Types
	Why Typed Languages?
	Properties of Type Systems
	Why Formal Type Systems?
	Formalizing a Type System
	Typing Judgments
	Typing rules
	Typing Derivations
	Proving Type Soundness
	Upcoming Exciting Episodes
	Slide 17
	Slide 18
	Slide 19
	Q: Games (504 / 842)
	Simply-Typed Lambda Calculus
	Static Semantics of F1
	More Static Semantics of F1
	Typing Derivation in F1
	Type Checking in F1
	Operational Semantics of F1
	Opsem of F1 (Cont.)
	Type Soundness for F1
	Slide 29
	Slide 30
	Homework

