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One-Slide Summary

A type is an upper bound on the range of values a
program expression could take on at run-time.

A formal type system, also known as a static
semantics, describes rules for checking types.

A typing judgment typically associates a typing
environment and an expression with a type.

The simply-typed lambda calculus adds type
annotations for function abstractions.

A type system is sound iff every expression
evaluates to a value in that expression’s static type.
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Review!

e What is operational semantics? When would
you use contextual (small-step) semantics?

« What is satisfiability modulo theories?

e What is axiomatic semantics? What is a
verification condition?
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Today’s (Short?) Cunning Plan

e Type System Overview
e First-Order Type Systems

» Typing Rules

e Typing Derivations

» Type Safety

WHAT DOES MFU2
MEAN ON YOUR
TIMELINE?

wiwnardilberl.com  scottadams® aol.oom

THAT'S MANAGEMENT
FOUL-UP NUMBER TLWIO.
IT USUALLY HAPPENS
AROUND THE THIRD

Lo

WEEK.

WE DONT ANTICIPATE
ANY MANAGEMENT
MISTAKES.

THAT™S |

o P00E Scott Adoms, Inc./DHsL by UES, Inc.

MFUL. |
ey \



Types

e A program variable can assume a range of
values during the execution of a program

e An upper bound of such a range is called a
type of the variable

- A variable of type “bool” is supposed to assume
only boolean values

- If x has type “bool” then the boolean expression
“not(x)” has a sensible meaning during every run
of the program
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Typed and Untyped Languages

« Untyped languages
- Do not restrict the range of values for a given variable

- Operations might be applied to inappropriate arguments.

The behavior in such cases might be unspecified

- The pure A-calculus is an extreme case of an untyped
language (however, its behavior is completely specified)

 (Statically) Typed languages
- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed
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The Purpose Of Types

o The foremost purpose of types is to prevent certain
types of run-time execution errors

« Traditional trapped execution errors
- Cause the computation to stop immediately
- And are thus well-specified behavior
Usually enforced by hardware
e.g., Division by zero, floating point op with a NaN
- e.g., Dereferencing the address 0 (on most systems)

« Untrapped execution errors

- Behavior is unspecified (depends on the state of the
machine = this is very bad!)

- e.g., accessing past the end of an array
- e.g., jumping to an address in the data segment
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Why Typed Languages?

« Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signhatures enable separate compilation

e Maintenance
- Types act as checked specifications
- Types can enforce abstraction

o Execution

- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
o the compiler can generate better code
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Properties of Type Systems

 How do types differ from other program

annotations?

- Types are more precise than comments

- Types are more easily mechanizable than
program specifications

e Expected properties of type systems:

- Types should
- Types should

- Typing rules s

be enforceable
e checkable algorithmically

nould be transparent

« Should be easy to see why a program is not well-typed
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Why Formal Type Systems?

e Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

o A fair amount of careful analysis is required
to avoid false claims of type safety

e A formal presentation of a type system is a
precise specification of the type checker

- And allows formal proofs of type safety

e But even informal knowledge of the
principles of type systems help
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Formalizing a Language

1. Syntax
o Of expressions (programs)
o Of types
« Issues of binding and scoping
2. Static semantics (typing rules)
o Define the typing judgment and its derivation rules
3. Dynamic Semantics (e.g., operational)
o Define the evaluation judgment and its derivation rules
4. Type soundness

o Relates the static and dynamic semantics
« State and prove the soundness theorem
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Typing Judgments

o Judgment (recall from prior lectures)
- A statement J about certain formal entities
- Has a truth value = J

- Has a derivation - J (= “a proof”)
« A common form of typing judgment:
I'e:x (e is an expression and t is a type)

e [ (Gamma) is a set of type assighments for the free
variables of e

- Defined by the grammar ' ::=- | I, X : 1
- Type assignments for variables not free in e are not
relevant

- e.g.,, X:int,y:intkFx+y:int
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Typing rules

- Typing rules are used to derive typing
judgments

e Examples: PP liine

x.T €T
[ Fx T

[ Feq:int [ Feo:int
| Fe; +ep:int

#13



Typing Derivations

« A typing derivation is a derivation of a typing
judgment (big surprise there ...)

« Example:

z.intkFx :int « :inthkF 1 : int
r . int F 2 : int r:.intF x4+ 1: int
z.intFxz 4+ (x4 1) : int

e Wesay I e : 1t to mean there exists a derivation
of this typing judgment (= “we can prove it”)

« Type checking: given I', e and t find a derivation

« Type inference: given I" and e, find T and a
derivation
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Proving Type Soundness

A typing judgment is either true or false
Define what it means for a value to have a type
vel |
(e.g. 5 € | int || and true € || bool | )
Define what it means for an expression to have a
type

ec |t| iff w.(eldv=ve|r|)
Prove type soundness

If . -e:n thene e | 1|
or equivalently
If Fe:tandelv thenvelr|

This implies safe execution (since the result of a

unsafe execution is not in || t || for any 1) s



Upcoming Exciting Episodes

« We will give formal description of first-order type
systems (no type variables)
- Function types (simply typed A-calculus)
Simple types (integers and booleans)
Structured types (products and sums)
Imperative types (references and exceptions)
Recursive types (linked lists and trees)

o The type systems of most common languages are
first-order

« Then we move to second-order type systems
- Polymorphism and abstract types
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Q: Movies (378 / 842)

e This 1988 animated movie written and
directed by Isao Takahata for Studio
Ghibli was considered by Roger Ebert to
be one of the most powerful anti-war
films ever made. It features Selta and
his sister Setsuko and their e
efforts to survive outside of RS <y
society during the firebombing EX® '\
of Tokyo. @ §°




Computer Science
e This American-Canadian Turing-award

winner is known for major contributions
to the fields of complexity theory and
proof complexity. He is known for

formalizing the polynomial-time
reduction, NP-completeness, P vs. NP,
and showing that SAT is NP-complete.
This was all done in the seminal 1971
paper The Complexity of Theorem
Proving Procedures.




Q: Student

e This piece of diving ™
equipment with an air- mflatable
bladder changes its average

density for use in SCUBA diving.
It typically requires manual
adjustment throughout the dive
and can be augmented by breath
control.




Q: Games (504 / 842)

e This 1985 falling-blocks
computer game was invented by
Alexey Pajitnov (Anekceu

[TaxknuTHOB) and inspired by
pentominoes.




Simply-Typed Lambda Calculus
e Syntax:

(-

Terms e ::= X Axit.e | e e
n e, +e, iszero e
true false not e
if e, then e, else e,

Types t::=int | bool | T, — 7,
e T, — T, 1S the function type

e« — associates to the right

 Arguments have typing annotations :t
 This language is also called F,
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Static Semantics of F.
e The typing judgment

['Fe:nt
e Some (simpler) typing rules:
v Tl x:7kFe: T
ka7 Xz :7e:7— 7

| Fei i —=7 | Fes:to

[ €1 . T
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More Static Semantics of F.
[ ey :int [ Feos:int

[ = n:int [ Fe1 +eo:int

Why did | leave this mysterious gap? | don’t know either!

[ e : bool
[ F true : bool [ - not e : bool

[ Feqibool [ Fei7 [hepiT

[~ 1if e; theneselseey ! T
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Typing Derivation in F.

e Consider the term (also underlined below)
AX . int. Ab : bool. if b then f x else x
- With the initial typing assignment f : int — Int

- WhereI' =f :int — int, x : int, b : bool
[ f:int - int [ F x: int
[ b: bool [+ fx:int [+ 2 int

f iint — int,x : int,b : bool F if b then f x else = ! int

f int — int,x : int - Ab : bool. if b then f x else = : bool — int

J iint — int H Az ! int.\b ! bool. if b then [ x else x ! int — bool — int

l
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oley cat sez:

Type Checking in F.

- Type checking is easy because P

F

Typing rules are syntax directed see2 ur typenroblim wil';z fiot 5o hard
Typing rules are compositional (what does this mean?)

All local variables are annotated with types

- “Easy” = deterministic polynomial time, etc.

o In fact, type inference is also easy for F.

o Without type annotations an expression may have
no unique type

- AX. X :int — int
. AX. X : bool — bool
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Operational Semantics of F,

e Judgment:

ellv
e Values:
v:i=n| true | false | Ax:t. e

e« The evaluation rules ...

- Audience participation time: “raise your hand”
and give me an opsem evaluation rule.

« Function application, Lambda abstraction, if, plus, ...
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e1 I Az : T.e’l

Opsem of F, (Cont.)

» Call-by-value evaluation rules (sample)

AxxiT.ell Az iTe

eo | vo

O

[v2/x]e] Y v

O

Where is the
Call-By-Value?
How might we

e1 e v

e1 dny exlmno

n=mni—+ no

change it?

n{n

€1

e1 | true

eo I n

er | v

if e1 then e, elseef | v

eq1 |} false

er v

if e; then e; elseer | v

Evaluation is
undefined for ill-
typed programs !
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Type Soundness for F,

e Thm:If .-Fe:t andel vthen . Fv:rz

- Also called, subject reduction theorem, type
preservation theorem

e This is one of the most important sorts of
theorems in PL

« Whenever you make up a new safe language
you are expected to prove this

- Examples: Vault, TAL, CCured, ...
e Proof: next time!
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Practice Paper Reading:
SIGPLAN PEPM 2025

e A Type Safe Calculus for Generating Syntax-
Directed Editors

The typed lambda calculi that we consider all satisfy the
same subject reduction property.

Theorem 3.1 (Subject reduction). IfT +e: 7 ande — ¢,
thenT + e’ : .

Ei,a 2 E!.d

(E1 >> Ej,a) 5 (E] >> E,a’)

(SEQ-TRIVIAL)

(nil 3> E5,a) = (E,, a)
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Practice Paper Reading:
POPL 2025

e Consistency of a Dependent Calculus of
Indistinguishability

4.2 Type Preservation

Like level checking, type checking admits substitution (WT-suBsT) and subsumption (WT-suB), as
stated in Figure 11. Due to rule Wr-Conv, deducing the well-typedness of subterms of a well-typed
term doesn’t follow immediately from inversion and requires separate generation lemmas, which
are standard and omitted here. One notable consequence is that if refl is a propositional equality
between a and b at some observer level £, then they are definitionally equal at that level. Finally,
we are able to prove type preservation, which proceeds by induction on the typing derivation.

LEMMA 4.4. IfT +refl :* a=%b, then |T| + a &% b.

THEOREM 4.5 (TYPE PRESERVATION). Ifa=> b (ora =* b)andT + a:* AthenT + b:' A.

The main judgment is the typing relation, which has the form [T + a :* A|for a term a that is
well typed under context I' at observer level ¢ with type A. Its rules are given in Figure 2. To
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e Read actually-exciting Leroy paper

Homework

e Homework continues
e HW4 Discussion
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