More Lambda Calculus
and
Intro to Type Systems

Yo Ko, T
DOMT THIMK
MATH 'S A
EII:.IIEH.':E: I
THIME TS
b RELIGION

A RELIGION P

=
A
o

.-\.

151 B e pon Dyl T LevrEE ek

TEAM. AL TWESE EQUATIONS
ART LIKE WRACTIES, “w)

TAKE TS WOMBERS MAD WHEH,
s 00 BDD THEM, THEY MAGCA

BECOME OME MER NUMEBER f

MO OME ChM Sy HOW LT

HAPPENS. 00 EITWER BRELIENE
W OR o) DT

THIS WiadE Bocyl 15 UL
OF THINGS THAT WAk 10
BE ACEPTED oW FATM!
s B
RELVEION f

IND M THE
PUBLIC. SCHODLS| ATHEIST, T
MO LESS. CAL [SHOULD BE EXOSED

A LAWNRR, [PR THIS.

One Slide Summary

 The lambda calculus is a model of
computation or a programming language that
is as expressive as a Turing machine.

 The lambda calculus centers on function
definition and function application. The
meaning of function application is given by
substitution (beta reduction).

« We can encode the booleans (and, or, not, if)
and the numbers (zero, successor, add,
multiply, equality, looping) via lambdas.

#2

It May Seem Difficulty, But ...

_ IFYOUAPPLY YOURSELF

(Jiawei Chen memorial meme) 44

Plan

e Heavy Class Participation

« Lambda Calculus
- How is it related to real life?
- Encodings
- Fixed points
« Type Systems
- Overview
- Static, Dyamic
- Safety, Judgments, Derivations, Soundness

#4

Lambda Review

e)-calculus is a calculus of functions
e:=X | Ax. e | e, e,

e Several evaluation strategies exist based on
B-reduction

(Ax.e) e’ —;[e’/x] e

e How does this simple calculus relate to real
programming languages?

#5

Functional Programming

 The A-calculus is a prototypical functlonal
language with: T

- no side effects
- several evaluation strategies
- lots of functions

- nothing but functions (pure A- calculus does not
have any other data type)

« How can we program with functions?
 How can we program with only functions?

#6

Programming With Functions

« Functional programming is a programming style
that relies on lots of functions

o A typical functional paradigm is using functions as
arguments or results of other functions

- Called “higher-order programming”

o Some “impure” functional languages permit side-
effects (e.g., Lisp, Scheme, ML, Python)
- references (pointers), in-place update, arrays,
exceptions

- Others (and by “others” we mean “Haskell”) use monads
to model state updates

#7

Variables in Functional Languages

We can introduce new variables:
letx=¢e,in e,
- X is bound by let
- X is statically scoped in (a subset of) e,

This is pretty much like (Ax. e,) e,

In a functional language, variables are never
updated

- they are just names for expressions or values
- e.g., x is a name for the value denoted by e, in g,

This models the meaning of “let” in math (proofs)

#8

Referential Transparency

e In “pure” functional programs, we can reason

equationally, by substitution
- Called “referential transparency”
letx=e,ine, ==

 In an imperative language a side-effect in e, might

invalidate the above equation

o The behavior of a function in a “pure” functional
language depends only on the actual arguments
- Just like a function in math
- This makes it easier to understand and to reason about
functional programs

[e,/X]e,

#9

How Tough Is Lambda?

« Given e, and e,, how complex (a la CS
theory) is it to determine if:

e and e, —

THE MORE “OU KNOW, THE
HARDER IT 1S TO TAKE

PECISWE ACTION.
— P i

ONCE MO BECOME

INFORMED, YOU START
SEEING COMPLEXITIES
AND SHADES
OF GRAY.

&5

g €

YOO REALVZE THAT NMOTHING

IS AS CLEAR AMND SIMPLE

AS \T FIRST APPEARS.

ULTIMATELY, KNOWLEDGE
1S PARAINZING.

\
Mz

%

8 0
2
=

BEING A MAN OF ACTION,
1 CANT AFFORD TO TAKE

THAT RiSK.

TOURE IGNORANT,
BUT AT LEAST
YOO ACT ON T,

Expressiveness of A-Calculus

The A-calculus is a minimal system but can express
- data types (integers, booleans, lists, trees, etc.)

- branching

- recursion

This is enough to encode Turing machines

- We say the lambda calculus is Turing-complete

Corollary: e, =, e, is undecidable

Still, how do we encode all these constructs using
only functions?

ldea: encode the “behavior” of values and not
their structure

Encoding Booleans in A-Calculus

 What can we do with a boolean?
- we can make a binary choice (= “if” statement)

e A boolean is a function that, given two
choices, selects one of them:

- true = AX.AY. X
- false =i AX.AY.Y
- ifE, thenE,elseE;, =, E,E,E;

e Example: “if true then u else v” is

(AX. AY. X) UV =4 (LY. U) V =4 U

#12

More Boolean Encodings

o Let’s try to do boolean or together
e Recall:

- true = AX.AY. X
- false =ier AX.AY.Y
- if E, then E, else E, =.r EqE; E5

« We want or to take in two booleans and yield
a result that is a boolean

« How can we do this?

#13

A Trying Ordeal

e Recall:
- true =i AX. AY. X
- false =4er AX.AY.Y
- if E, then E, else E, = EqE, E;

e [ntution:
-orab = if a then true else b

e Either of these will work:
- or =, M. Ab. a true b

- or =, M. Ab. AX. Ay. a X (b x y)

#14

Final Boolean Encodings

e Think about how to do and and not
e (You'll retain more if you try it.)

Another Demand

e How to do and and not

candab = if a then b else false
- and =, Ma. Ab. a b false
- and =, A. Ab. AX. Ay. a (bxy)y
e not a = if a then false else true
- hot =, M. a false true

- not =ef M. AX. AY. QY X

#16

Encoding Pairs in A-Calculus

« What can we do with a pair?

- We can access one of its elements
(= “.field access™)

e A pair is a function that, given a boolean,
returns the first or second element

mkpair xy =,, Ab.bXxy

fst p =..c P true
snd p =, P false
o fst (mkpair x y) —, (mkpair x y) true

—g true xy —;X

#17

Encoding Numbers in A—Calculus

e What can we do with a natural number?
- What do you, the viewers at home, think?

MISS WORMWOOD, GINEM THAT, SOOMER OR TURN TO NOBODY LIKES US
1 HANE A ES? || LATER, WERE AlL JUST PAGE 83, "BiG PICTURE”
QUESTION ABWT GOING TO DIE, WHAT'S CLASS, PEOPLE .

THE POINT OF LEARNING

ABMT INTEGERS?
P " i 5

X b
e o

THIS MATH
LESSON .

Encoding Numbers A-Calculus

What can we do with a natural humber?

- we can iterate a number of times over some function
(= “for loop”)

A natural number is a function that given an

operation f and a starting value s, applies f a

number of times to s:

0 =4e M. AS.S
1 =4 M. AS. 'S
2 =4er M. AS. T (fS)

- Very similar to List.fold_left and friends
These are numerals in a unary representation

Called Church numerals #19

Test Time!

 How would you encode the successor
function (succ x === x+1)?

 How would you encode more general
addition?

e Recall: 4=, Af. As. fff (fs)

SEE,WOBBES, WE SHOULDNT | THATS WUt TVE STOPPED DOING | S TUE SECRET To GOOD SELF-| | REMIND ME | T THINK THIS
NEED ACCOMPLISUMENTS TO | HOMEWORK. T DONT NEEDTD |ESTEEM IS TO LOWER YOUR || TO RNWEST | SNOWMAN 1S
FEEL GOOD ABWT OURSELVES. | LEARN THINGS TO LIKE M{SELF. | EXPECTATIONS T THE POWNT | | OVERSERS. / GOOD ENOUGH,

SELF-ESTEEM | I'M FINE THE WAY T AM. WHERE THEYRE ALREADY MET ? OONT O ?
SHOULDNT B ,_ |
7]\ CONDITIONAL | 7\ RIGHT. WE
“E-Z R SHOULD TRKE
i PRIDE "N OVR

MEDIOCRITY.

Computing with Natural Numbers

e The successor function
succ n =ef M. AS. T (N TS)

or succ n =.of Mo AS. N T (fS)
« Addition
add n, n, =,.n,succn,
« Multiplication
multn, n, =,.n, (addn,)0
o Testing equality with 0
iszeron =,.n (Ab. false) true

e Subtraction

- Is not instructive, but makes a fun exercise ...
#21

Computation Example
 What is the result of the application add 0?

(An;. An,. nysucc ny) 0 —
An,. 0 succ n, =

An,. (Af. As. s) succ n, —,
AN,. N, =

AX. X

e By computing with functions we can express
some optimizations
- But we need to reduce under the lambda

s . € ’» : 1
- Thus this “never” happens in practice -

Toward Recursion

« Given a predicate P, encode the function “find”
such that “find P n” is the smallest natural number

which is larger than n and satisfies P
o Claim: with find we can encode all recursion
Intuitively, why is this true?

[1F T WERE, You

DAD, ARE YOU VICARIOUSLY LIVING
THROUGH ME IN THE HOPE THAT MY || CAM BET ID BE
ACCOMPLISHMENTS WiLL VALIDATE | RE-EVALUATING
YOUR. MEDIOCRE s -1 | M{ STRATEGY.
[LIFE AND IN SOME | - | —
WAY COMPENSATE | '

FOR ALL OF THE |
OPFORTUMITIES »’I

Yo BOTCHED ?
N _}____/
. o
PM’\ '

|
DAD KELD @
msuumca |

Encoding Recursion

Given a predicate P encode the function “find”
such that “find P n” is the smallest natural number
which is larger than n and satisfies P
find satisfies the equation
find p n = if p n then n else find p (succ n)
Define
F=Af.Ap.AN.(p n) n (f p (succ n))
We need a fixed point of F
find = F find
or
findpn=Ffindpn

#24

The Fixed-Point Combinator Y
Let Y = AF. (Ay.F(y y)) (Ax. F(X X))

- This is called the fixed-point combinator
- Verify that Y F is a fixed point of F
YF =, (Ay.F(yy)) Ax. F (xx)) =4 F (YF)
- Thus Y F =, F (Y F)
Given any function in A-calculus we can define its
fixed-point (“w00t”, but why do we not win here?)

Thus we can define “find” as the fixed-point of the
function F from the previous slide

Essence of recursion is the self-application “y y”

#25

Expressiveness of Lambda
Calculus

e Encodings are fun
- Yes! Yes they are! :-)

e But programming in pure A-calculus is painful

e So we will add constants (0O, 1, 2, ..., true,
false, if-then-else, etc.)

- But now we know this doesn't change the power

e Next we will add types

#26

C @\ N @ueﬂ H@b JC S A\ SRIEEHER R

i/ V7 NO EARTHLING HAS ENER REFORE.

-

- ALTHONEH 1T'S NOT UNLIKE
SOME OF THOSE ZiT CREAM,

ON RS DP\NGE'F’«Q\)S

QUT AT THE FARTHEST REACHES
) MISSION !

_ OF THE GALAXY..

MAN, THIS CLASS
LASTS FORENER!

Still Going!

e Trivia break
e Stretch!

#27

Q: Books (711 / 842)

e In this 1943 Antoine de Saint-
Exupery novel the title
character lives on an asteroid

with a rose but eventually
travels to Earth.

made with Indian spices, rice,
and meat. It is popular in the

Indian subcontinent as well as in
Afghanistan, Pakistan, lran, and
Iraq. It appeared on a 2017
Indian postage stamp.

Q: Computer Science (WkHA%S)

e This Shanghai-born Turing Award winner is
known for contributions to the theory of
computation. He formulated the Millionaire's
Problem and stated this minimax principle:

“the expected cost of any randomized algorithm for
solving a given problem, on the worst case input for that
algorithm, can be no better than the expected cost, for
a worst-case random probability distribution on the
inputs, of the deterministic algorithm that performs best
against that distribution.”

Types

e A program variable can assume a range of
values during the execution of a program

e An upper bound of such a range is called a
type of the variable

- A variable of type “bool” is supposed to assume
only boolean values

- If x has type “bool” then the boolean expression
“not(x)” has a sensible meaning during every run
of the program

#31

Typed and Untyped Languages

« Untyped languages
- Do not restrict the range of values for a given variable

- Operations might be applied to inappropriate arguments.
The behavior in such cases might be unspecified

- The pure A-calculus is an extreme case of an untyped
language (however, its behavior is completely specified)

 (Statically) Typed languages
- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

#32

The Purpose Of Types

o The foremost purpose of types is to prevent certain
types of run-time execution errors

« Traditional trapped execution errors
- Cause the computation to stop immediately
- And are thus well-specified behavior
Usually enforced by hardware
e.g., Division by zero, floating point op with a NaN
- e.g., Dereferencing the address 0 (on most systems)

« Untrapped execution errors

- Behavior is unspecified (depends on the state of the
machine = this is very bad!)

- e.g., accessing past the end of an array
- e.g., jumping to an address in the data segment

#33

Execution Errors

o A program is safe if it does not cause untrapped errors

Languages in which all programs are safe are safe languages

« For a language we can designate a set of forbidden errors
- A superset of the untrapped errors, usually including some

trapped errors as well
o e.g., null pointer dereference

« Modern Type System Powers:

prevent race conditions

prevent insecure information flow or security bugs
prevent resource leaks

ensure correct use of data structures or APIs

help with generic programming or probabilistic languages
are often combined with dynamic analyses

#34

Preventing Forbidden Errors:
Static Checking

e Forbidden errors can be caught by a
combination of static and run-time checking
e Static checking
- Detects errors early, before testing

- Types provide the necessary static information
for static checking

- e.g., ML, Modula-3, Java

- Detecting certain errors statically is undecidable
in most languages

#35

Preventing Forbidden Errors:
Dynamic Checking

e Required when static checking is
undecidable

- e.g., array-bounds checking

e Run-time encodings of types are still used
(e.g., Python, Lisp)

e Should be limited since it delays the
manifestation of errors

e Can be done in hardware (e.g., null-pointer)

#36

Safe Languages

« There are typed languages that are not safe
(“weakly typed languages”)

o All safe languages use types (static or dynamic)

« We focus on statically typed languages

Typed Untyped
Static Dynamic
Safe ML, Java, |Lisp, Scheme, Ruby, | A-calculus
Ada, C#, Perl, Smalltalk,
Haskell, ... PHP, Python, ...

#37

Why Typed Languages?

« Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signhatures enable separate compilation

e« Maintenance
- Types act as checked specifications
- Types can enforce abstraction

o Execution
- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
o the compiler can generate better code

#38

Homework

e Read Cardelli article
 Read Wright & Matthias article
e Homework Due Soon

#39

	More Lambda Calculus and Intro to Type Systems
	Slide 2
	Slide 3
	Plan
	Lambda Review
	Functional Programming
	Programming With Functions
	Variables in Functional Languages
	Referential Transparency
	How Tough Is Lambda?
	Expressiveness of l-Calculus
	Encoding Booleans in -Calculus
	More Boolean Encodings
	A Trying Ordeal
	Final Boolean Encodings
	Another Demand
	Encoding Pairs in -Calculus
	Encoding Numbers in -Calculus
	Encoding Numbers -Calculus
	Test Time!
	Computing with Natural Numbers
	Computation Example
	Toward Recursion
	Encoding Recursion
	The Fixed-Point Combinator Y
	Expressiveness of Lambda Calculus
	Still Going!
	Q: Books (711 / 842)
	Slide 29
	Slide 30
	Types
	Typed and Untyped Languages
	The Purpose Of Types
	Execution Errors
	Preventing Forbidden Errors - Static Checking
	Preventing Forbidden Errors - Dynamic Checking
	Safe Languages
	Why Typed Languages?
	Homework

