# More Lambda Calculus and Intro to Type Systems



## One Slide Summary

- The lambda calculus is a model of computation or a programming language that is as expressive as a Turing machine.
- The lambda calculus centers on function definition and function application. The meaning of function application is given by substitution (beta reduction).
- We can **encode** the **booleans** (and, or, not, if) and the **numbers** (zero, successor, add, multiply, equality, looping) via lambdas.

#### It May Seem Difficulty, But ...



## Plan

- Heavy Class Participation
- Lambda Calculus
  - How is it related to real life?
  - Encodings
  - Fixed points
- Type Systems
  - Overview
  - Static, Dyamic
  - Safety, Judgments, Derivations, Soundness

#### Lambda Review

λ-calculus is a calculus of functions
e := x | λx. e | e<sub>1</sub> e<sub>2</sub>

• Several evaluation strategies exist based on  $\underline{\beta\text{-reduction}}$ 

$$(\lambda x.e) e' \rightarrow_{\beta} [e'/x] e$$

 How does this simple calculus relate to real programming languages?

## Functional Programming

- The λ-calculus is a prototypical functional language with:
  - no side effects
  - several evaluation strategies
  - lots of functions



- nothing but functions (pure  $\lambda$ -calculus does not have any other data type)
- How can we program with functions?
- How can we program with *only* functions?

## **Programming With Functions**

- Functional programming is a programming style that relies on lots of functions
- A typical functional paradigm is *using functions as arguments or results of other functions* 
  - Called "higher-order programming"
- Some "impure" functional languages permit sideeffects (e.g., Lisp, Scheme, ML, Python)
  - references (pointers), in-place update, arrays, exceptions
  - Others (and by "others" we mean "Haskell") use monads to model state updates

## Variables in Functional Languages

• We can introduce new variables:

let  $x = e_1$  in  $e_2$ 

- x is <u>bound</u> by let
- x is statically scoped in (a subset of)  $e_2$
- This is pretty much like  $(\lambda x. e_2) e_1$
- In a functional language, variables are never updated
  - they are just *names for expressions or values*
  - e.g., x is a name for the value denoted by  $e_1$  in  $e_2$
- This models the meaning of "let" in math (proofs)

### **Referential Transparency**

- In "pure" functional programs, we can reason equationally, by substitution
  - Called "referential transparency"

let  $x = e_1$  in  $e_2 == [e_1/x]e_2$ 

- In an imperative language a side-effect in  $\mathbf{e}_1$  might invalidate the above equation
- The behavior of a function in a "pure" functional language depends only on the actual arguments
  - Just like a function in math
  - This makes it easier to understand and to reason about functional programs

#### How Tough Is Lambda?

Given e<sub>1</sub> and e<sub>2</sub>, how complex (a la CS theory) is it to determine if:

 $\mathbf{e}_1 \rightarrow_{\beta}^* \mathbf{e}$  and  $\mathbf{e}_2 \rightarrow_{\beta}^* \mathbf{e}$ 



#### Expressiveness of $\lambda$ -Calculus

- The  $\lambda$ -calculus is a minimal system but can express
  - data types (integers, booleans, lists, trees, etc.)
  - branching
  - recursion
- This is enough to encode Turing machines
  - We say the lambda calculus is **Turing-complete**
- Corollary:  $e_1 =_{\beta} e_2$  is undecidable
- Still, how do we encode all these constructs using only functions?
- Idea: *encode the "behavior" of values* and not their structure

## Encoding Booleans in $\lambda$ -Calculus

- What can we *do* with a boolean?
  - we can make a binary choice (= "if" statement)
- A boolean is a function that, given two choices, selects one of them:
  - true =  $\lambda x. \lambda y. x$
  - false =  $\lambda x. \lambda y. y$
  - if  $E_1$  then  $E_2$  else  $E_3 =_{def} E_1 E_2 E_3$
- Example: "if true then u else v" is  $(\lambda x. \lambda y. x) u v \rightarrow_{\beta} (\lambda y. u) v \rightarrow_{\beta} u$

## More Boolean Encodings

- Let's try to do boolean <u>or</u> together
- Recall:
  - true  $=_{def} \lambda x. \lambda y. x$  $=_{def} \lambda x. \lambda y. y$
  - if  $E_1$  then  $E_2$  else  $E_3$  =<sub>def</sub>  $E_1 E_2 E_3$
- We want <u>or</u> to take in two booleans and yield a result that is a boolean
- How can we do this?

# A Trying Ordeal

- Recall:
  - true =  $\lambda x. \lambda y. x$
  - false =  $\lambda x. \lambda y. y$
  - if  $E_1$  then  $E_2$  else  $E_3$  =<sub>def</sub>  $E_1 E_2 E_3$
- Intution:
  - <u>or</u> a b = if a then true else b
- Either of these will work:
  - <u>or</u> =<sub>def</sub>  $\lambda a. \lambda b. a true b$
  - <u>or</u> =<sub>def</sub>  $\lambda a. \lambda b. \lambda x. \lambda y. a x (b x y)$

### Final Boolean Encodings

- Think about how to do <u>and</u> and <u>not</u>
- (You'll retain more if you try it.)



#### Another Demand

How to do <u>and</u> and <u>not</u>

- and

- <u>not</u>

- not

- and a b = if a then b else false
  - =<sub>def</sub> λa. λb. a b false
  - and =<sub>def</sub>  $\lambda a. \lambda b. \lambda x. \lambda y. a (b x y) y$

- <u>not</u> a = if a then false else true
  - =<sub>def</sub> λa. a false true
  - =<sub>def</sub> λ**a.** λ**x.** λ**y. a y x**

## Encoding Pairs in $\lambda$ -Calculus

- What can we *do* with a pair?
  - we can access one of its elements (= ".field access")
- A pair is a function that, given a boolean, returns the first or second element

mkpair x y =  $\frac{\lambda b. b \times y}{\lambda b. b \times y}$ 

fst p =<sub>def</sub> p true

snd p =<sub>def</sub> p false

• fst (mkpair x y)  $\rightarrow_{\beta}$  (mkpair x y) true  $\rightarrow_{\beta}$  true x y  $\rightarrow_{\beta}$  x

## Encoding Numbers in $\lambda$ –Calculus

- What can we *do* with a natural number?
  - What do you, the viewers at home, think?



## Encoding Numbers $\lambda$ -Calculus

- What can we *do* with a natural number?
  - we can iterate a number of times over some function (= "for loop")
- A natural number is a function that given an operation f and a starting value s, applies f a number of times to s:

$$0 =_{def} \lambda f. \lambda s. s$$

$$=_{def} \lambda f. \lambda s. f s$$

$$2 =_{def} \lambda f. \lambda s. f (f s)$$

- Very similar to List.fold\_left and friends
- These are numerals in a unary representation
- Called <u>Church numerals</u>

#### Test Time!

- How would you encode the successor function (succ x === x+1)?
- How would you encode more general addition?
- Recall:  $4 =_{def} \lambda f. \lambda s. f f f (f s)$



## **Computing with Natural Numbers**

• The successor function

or succ n

succ n

=<sub>def</sub> 
$$\lambda$$
f.  $\lambda$ s. f (n f s)  
=<sub>def</sub>  $\lambda$ f.  $\lambda$ s. n f (f s)

Addition

add  $n_1 n_2 =_{def} n_1 \operatorname{succ} n_2$ 

• Multiplication

 $\operatorname{mult} n_1 n_2 =_{\operatorname{def}} n_1 (\operatorname{add} n_2) 0$ 

• Testing equality with 0 iszero n

 $=_{def}$  n ( $\lambda$ b. false) true

- Subtraction
  - Is not instructive, but makes a fun exercise ...

#### **Computation Example**

- What is the result of the application add 0?  $(\lambda n_1, \lambda n_2, n_1 \operatorname{succ} n_2) 0 \rightarrow_{\beta}$   $\lambda n_2, 0 \operatorname{succ} n_2 =$ 
  - $\lambda n_2$ . ( $\lambda f. \lambda s. s$ ) succ  $n_2 \rightarrow_{\beta}$

```
\lambda n_2 \cdot n_2 =
```

λ**x. x** 

- By computing with functions we can express some optimizations
  - But we need to reduce under the lambda
  - Thus this "never" happens in practice

#### **Toward Recursion**

- Given a predicate P, encode the function "<u>find</u>" such that "find P n" is the smallest natural number which is larger than n and satisfies P
- Claim: with find we can encode all recursion

Intuitively, why is this true?



## **Encoding Recursion**

- Given a predicate P encode the function "find" such that "find P n" is the smallest natural number which is larger than n and satisfies P
- find satisfies the equation

find p n = if p n then n else find p (succ n)

• Define

 $F = \lambda f.\lambda p.\lambda n.(p n) n (f p (succ n))$ 

• We need a fixed point of F

find = F find

or

find p n = F find p n

### The Fixed-Point Combinator Y

- Let  $Y = \lambda F$ . ( $\lambda y$ . F(y y)) ( $\lambda x$ . F(x x))
  - This is called the <u>fixed-point combinator</u>
  - Verify that Y F is a fixed point of F

 $Y F \rightarrow_{\beta} (\lambda y.F (y y)) (\lambda x. F (x x)) \rightarrow_{\beta} F (Y F)$ 

- Thus Y F =  $_{\beta}$  F (Y F)
- Given any function in λ-calculus we can define its fixed-point ("w00t", but why do we *not* win here?)
- Thus we can define "find" as the fixed-point of the function F from the previous slide
- Essence of recursion is the self-application "y y"

#### Expressiveness of Lambda Calculus

- Encodings are fun
  - Yes! Yes they are! :-)
- But programming in pure  $\lambda$ -calculus is painful

- So we will add constants (0, 1, 2, ..., true, false, if-then-else, etc.)
  - But now we know this doesn't change the power

Next we will add types



# Still Going!

- Trivia break
- Stretch!

### Q: Books (711 / 842)

 In this 1943 Antoine de Saint-Exupery novel the title character lives on an asteroid with a rose but eventually travels to Earth.

#### Cuisine



 This mixed-rice dish is generally made with Indian spices, rice, and meat. It is popular in the Indian subcontinent as well as in Afghanistan, Pakistan, Iran, and Iraq. It appeared on a 2017 Indian postage stamp.

## Q: Computer Science (姚期智)

• This Shanghai-born Turing Award winner is known for contributions to the theory of computation. He formulated the Millionaire's Problem and stated this minimax principle: "the expected cost of any randomized algorithm for solving a given problem, on the worst case input for that algorithm, can be no better than the expected cost, for a worst-case random probability distribution on the inputs, of the deterministic algorithm that performs best against that distribution."

## Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a type of the variable
  - A variable of type "bool" is supposed to assume only boolean values
  - If x has type "bool" then the boolean expression "not(x)" has a sensible meaning during every run of the program

# Typed and Untyped Languages

#### <u>Untyped languages</u>

- Do *not* restrict the range of values for a given variable
- Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
- The pure  $\lambda$ -calculus is an extreme case of an untyped language (however, its behavior is completely specified)

#### • (Statically) Typed languages

- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

## The Purpose Of Types

- The foremost <u>purpose of types</u> is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
  - Cause the computation to stop immediately
  - And are thus well-specified behavior
  - Usually enforced by hardware
  - e.g., Division by zero, floating point op with a NaN
  - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
  - Behavior is unspecified (depends on the state of the machine = this is very bad!)
  - e.g., accessing past the end of an array
  - e.g., jumping to an address in the data segment

#### **Execution Errors**

- A program is <u>safe</u> if it does *not* cause untrapped errors
  - Languages in which all programs are safe are <u>safe languages</u>
- For a language we can designate a set of forbidden errors
  - A superset of the untrapped errors, usually including some trapped errors as well
    - e.g., null pointer dereference
- Modern Type System Powers:
  - prevent race conditions
  - prevent insecure information flow or security bugs
  - prevent resource leaks
  - ensure correct use of data structures or APIs
  - help with generic programming or probabilistic languages
  - are often combined with dynamic analyses

## Preventing Forbidden Errors: Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
  - Detects errors early, *before testing*
  - Types provide the necessary static information for static checking
  - e.g., ML, Modula-3, Java
  - Detecting certain errors statically is undecidable in most languages

## Preventing Forbidden Errors: Dynamic Checking

- Required when static checking is undecidable
  - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g., Python, Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g., null-pointer)

## Safe Languages

- There are typed languages that are not safe (<u>"weakly typed languages</u>")
- All safe languages use types (static or dynamic)

| -      | Typed                             |                                                         | Untyped    |
|--------|-----------------------------------|---------------------------------------------------------|------------|
|        | Static                            | Dynamic                                                 |            |
| Safe   | ML, Java,<br>Ada, C#,<br>Haskell, | Lisp, Scheme, Ruby,<br>Perl, Smalltalk,<br>PHP, Python, | λ-calculus |
| Unsafe | C, C++,<br>Pascal,                | ?                                                       | Assembly   |

• We focus on statically typed languages

# Why Typed Languages?

#### Development

- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation
- Maintenance
  - Types act as checked specifications
  - Types can enforce abstraction
- Execution
  - Static checking reduces the need for dynamic checking
  - Safe languages are easier to analyze statically
    - the compiler can generate better code

#### Homework

- Read Cardelli article
- Read Wright & Matthias article
- Homework Due Soon