
#1

More Lambda CalculusMore Lambda Calculus
andand

Intro to Type SystemsIntro to Type Systems

#2

One Slide Summary

• The lambda calculus is a model of
computation or a programming language that
is as expressive as a Turing machine.

• The lambda calculus centers on function
definition and function application. The
meaning of function application is given by
substitution (beta reduction).

• We can encode the booleans (and, or, not, if)
and the numbers (zero, successor, add,
multiply, equality, looping) via lambdas.

#3

It May Seem Difficulty, But ...

(Jiawei Chen memorial meme)

#4

Plan

• Heavy Class Participation
• Lambda Calculus

– How is it related to real life?
– Encodings
– Fixed points

• Type Systems
– Overview
– Static, Dyamic
– Safety, Judgments, Derivations, Soundness

#5

Lambda Review

• -calculus is a calculus of functions
 e := x | x. e | e1 e2

• Several evaluation strategies exist based on
-reduction
 (xe) e’ ! [e’/x] e

• How does this simple calculus relate to real
programming languages?

#6

Functional Programming
• The -calculus is a prototypical functional

language with:
– no side effects

– several evaluation strategies

– lots of functions

– nothing but functions (pure -calculus does not
have any other data type)

• How can we program with functions?
• How can we program with only functions?

#7

Programming With Functions

• Functional programming is a programming style
that relies on lots of functions

• A typical functional paradigm is using functions as
arguments or results of other functions
– Called “higher-order programming”

• Some “impure” functional languages permit side-
effects (e.g., Lisp, Scheme, ML, Python)
– references (pointers), in-place update, arrays,

exceptions

– Others (and by “others” we mean “Haskell”) use monads
to model state updates

#8

Variables in Functional Languages

• We can introduce new variables:
let x = e1 in e2

– x is bound by let

– x is statically scoped in (a subset of) e2

• This is pretty much like (x. e2) e1

• In a functional language, variables are never
updated
– they are just names for expressions or values

– e.g., x is a name for the value denoted by e1 in e2

• This models the meaning of “let” in math (proofs)

#9

Referential Transparency
• In “pure” functional programs, we can reason

equationally, by substitution
– Called “referential transparency”

let x = e1 in e2 === [e1/x]e2

• In an imperative language a side-effect in e1 might
invalidate the above equation

• The behavior of a function in a “pure” functional
language depends only on the actual arguments
– Just like a function in math

– This makes it easier to understand and to reason about
functional programs

#10

How Tough Is Lambda?

• Given e1 and e2, how complex (a la CS
theory) is it to determine if:

e1 !
* e and e2 !

* e

#11

Expressiveness of -Calculus
• The -calculus is a minimal system but can express

– data types (integers, booleans, lists, trees, etc.)
– branching
– recursion

• This is enough to encode Turing machines
– We say the lambda calculus is Turing-complete

• Corollary: e1 = e2 is undecidable

• Still, how do we encode all these constructs using
only functions?

• Idea: encode the “behavior” of values and not
their structure

#12

Encoding Booleans in -Calculus
• What can we do with a boolean?

– we can make a binary choice (= “if” statement)

• A boolean is a function that, given two
choices, selects one of them:
– true =def x. y. x

– false =def x. y. y

– if E1 then E2 else E3 =def E1 E2 E3

• Example: “if true then u else v” is
(x. y. x) u v ! (y. u) v ! u

#13

More Boolean Encodings

• Let’s try to do boolean or together

• Recall:
– true =def x. y. x

– false =def x. y. y

– if E1 then E2 else E3 =def E1 E2 E3

• We want or to take in two booleans and yield
a result that is a boolean

• How can we do this?

#14

A Trying Ordeal

• Recall:
– true =def x. y. x

– false =def x. y. y

– if E1 then E2 else E3 =def E1 E2 E3

• Intution:
– or a b = if a then true else b

• Either of these will work:
– or =def a. b. a true b

– or =def a. b. x. y. a x (b x y)

#16

Another Demand

• How to do and and not
• and a b = if a then b else false

– and =def a. b. a b false

– and =def a. b. x. y. a (b x y) y

• not a = if a then false else true
– not =def a. a false true

– not =def a. x. y. a y x

#17

Encoding Pairs in -Calculus
• What can we do with a pair?

– we can access one of its elements
 (= “.field access”)

• A pair is a function that, given a boolean,
returns the first or second element

mkpair x y =def b. b x y

fst p =def p true

snd p =def p false

• fst (mkpair x y) ! (mkpair x y) true

! true x y ! x

#18

Encoding Numbers in Calculus

• What can we do with a natural number?
– What do you, the viewers at home, think?

#19

Encoding Numbers -Calculus
• What can we do with a natural number?

– we can iterate a number of times over some function
(= “for loop”)

• A natural number is a function that given an
operation f and a starting value s, applies f a
number of times to s:

0 =def f. s. s

1 =def f. s. f s

2 =def f. s. f (f s)

– Very similar to List.fold_left and friends

• These are numerals in a unary representation

• Called Church numerals

#20

Test Time!

• How would you encode the successor
function (succ x === x+1)?

• How would you encode more general
addition?

• Recall: 4 =def f. s. f f f (f s)

#21

Computing with Natural Numbers

• The successor function
 succ n =def f. s. f (n f s)
 or succ n =def f. s. n f (f s)

• Addition
 add n1 n2 =def n1 succ n2

• Multiplication
 mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0
 iszero n =def n (b. false) true

• Subtraction
– Is not instructive, but makes a fun exercise …

#22

Computation Example
• What is the result of the application add 0?

(n1. n2. n1 succ n2) 0 !

n2. 0 succ n2 =

n2. (f. s. s) succ n2 !

n2. n2 =

x. x

• By computing with functions we can express
some optimizations
– But we need to reduce under the lambda

– Thus this “never” happens in practice

#23

Toward Recursion
• Given a predicate P, encode the function “find”

such that “find P n” is the smallest natural number
which is larger than n and satisfies P

• Claim: with find we can encode all recursion

Intuitively, why is this true?

#24

Encoding Recursion

• Given a predicate P encode the function “find”
such that “find P n” is the smallest natural number
which is larger than n and satisfies P

• find satisfies the equation
find p n = if p n then n else find p (succ n)

• Define
F = f.p.n.(p n) n (f p (succ n))

• We need a fixed point of F
find = F find

or
find p n = F find p n

#25

The Fixed-Point Combinator Y
• Let Y = F. (y.F(y y)) (x. F(x x))

– This is called the fixed-point combinator

– Verify that Y F is a fixed point of F

 Y F ! (y.F (y y)) (x. F (x x)) ! F (Y F)

– Thus Y F = F (Y F)

• Given any function in -calculus we can define its
fixed-point (“w00t”, but why do we not win here?)

• Thus we can define “find” as the fixed-point of the
function F from the previous slide

• Essence of recursion is the self-application “y y”

#26

Expressiveness of Lambda
Calculus

• Encodings are fun
– Yes! Yes they are! :-)

• But programming in pure -calculus is painful

• So we will add constants (0, 1, 2, …, true,
false, if-then-else, etc.)
– But now we know this doesn't change the power

• Next we will add types

#27

Still Going!

• Trivia break
• Stretch!

Q: Books (711 / 842)

•In this 1943 Antoine de Saint-
Exupery novel the title
character lives on an asteroid
with a rose but eventually
travels to Earth.

Cuisine

•This mixed-rice dish is generally
made with Indian spices, rice,
and meat. It is popular in the
Indian subcontinent as well as in
Afghanistan, Pakistan, Iran, and
Iraq. It appeared on a 2017
Indian postage stamp.

Q: Computer Science (姚期智)
• This Shanghai-born Turing Award winner is

known for contributions to the theory of
computation. He formulated the Millionaire's
Problem and stated this minimax principle:
“the expected cost of any randomized algorithm for
solving a given problem, on the worst case input for that
algorithm, can be no better than the expected cost, for
a worst-case random probability distribution on the
inputs, of the deterministic algorithm that performs best
against that distribution.”

#31

Types
• A program variable can assume a range of

values during the execution of a program

• An upper bound of such a range is called a
type of the variable
– A variable of type “bool” is supposed to assume

only boolean values

– If x has type “bool” then the boolean expression
“not(x)” has a sensible meaning during every run
of the program

#32

Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments.

The behavior in such cases might be unspecified
– The pure -calculus is an extreme case of an untyped

language (however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types
– A type system keeps track of types
– Types might or might not appear in the program itself
– Languages can be explicitly typed or implicitly typed

#33

The Purpose Of Types
• The foremost purpose of types is to prevent certain

types of run-time execution errors
• Traditional trapped execution errors

– Cause the computation to stop immediately
– And are thus well-specified behavior
– Usually enforced by hardware
– e.g., Division by zero, floating point op with a NaN
– e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the

machine = this is very bad!)
– e.g., accessing past the end of an array
– e.g., jumping to an address in the data segment

#34

Execution Errors
• A program is safe if it does not cause untrapped errors

– Languages in which all programs are safe are safe languages

• For a language we can designate a set of forbidden errors
– A superset of the untrapped errors, usually including some

trapped errors as well
• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions
– prevent insecure information flow or security bugs
– prevent resource leaks
– ensure correct use of data structures or APIs
– help with generic programming or probabilistic languages
– are often combined with dynamic analyses

#35

Preventing Forbidden Errors:
Static Checking

• Forbidden errors can be caught by a
combination of static and run-time checking

• Static checking
– Detects errors early, before testing

– Types provide the necessary static information
for static checking

– e.g., ML, Modula-3, Java

– Detecting certain errors statically is undecidable
in most languages

#36

Preventing Forbidden Errors:
Dynamic Checking

• Required when static checking is
undecidable
– e.g., array-bounds checking

• Run-time encodings of types are still used
(e.g., Python, Lisp)

• Should be limited since it delays the
manifestation of errors

• Can be done in hardware (e.g., null-pointer)

#37

Safe Languages
• There are typed languages that are not safe

(“weakly typed languages”)

• All safe languages use types (static or dynamic)

• We focus on statically typed languages

Assembly?C, C++,
Pascal, ...

Unsafe

-calculusLisp, Scheme, Ruby,
Perl, Smalltalk,
PHP, Python, …

ML, Java,
Ada, C#,

Haskell, ...

Safe

DynamicStatic

UntypedTyped

#38

Why Typed Languages?
• Development

– Type checking catches early many mistakes
– Reduced debugging time
– Typed signatures are a powerful basis for design
– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications
– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking
– Safe languages are easier to analyze statically

• the compiler can generate better code

#39

Homework

• Read Cardelli article
• Read Wright & Matthias article
• Homework Due Soon

	More Lambda Calculus and Intro to Type Systems
	Slide 2
	Slide 3
	Plan
	Lambda Review
	Functional Programming
	Programming With Functions
	Variables in Functional Languages
	Referential Transparency
	How Tough Is Lambda?
	Expressiveness of l-Calculus
	Encoding Booleans in -Calculus
	More Boolean Encodings
	A Trying Ordeal
	Final Boolean Encodings
	Another Demand
	Encoding Pairs in -Calculus
	Encoding Numbers in -Calculus
	Encoding Numbers -Calculus
	Test Time!
	Computing with Natural Numbers
	Computation Example
	Toward Recursion
	Encoding Recursion
	The Fixed-Point Combinator Y
	Expressiveness of Lambda Calculus
	Still Going!
	Q: Books (711 / 842)
	Slide 29
	Slide 30
	Types
	Typed and Untyped Languages
	The Purpose Of Types
	Execution Errors
	Preventing Forbidden Errors - Static Checking
	Preventing Forbidden Errors - Dynamic Checking
	Safe Languages
	Why Typed Languages?
	Homework

