Abstract Interpretation

(Galois, Collections, Widening)

HEY DAD, KHMOW
WHAT T FIGURED
QUT? THE
MEANING OF
WORDS 1SNT

ANY WORD CAN

A FIXED THING /P

MEAN ANY{THING / .' '

BY GINING WORDS NEW
MEANINGS, CRDINARY
ENGLISH CAN BECOME AN
EXCLUSIONARY CQDE ! TWO
GENERATIONS CAN BE
DIVIDED BY THE SAME
LANGUAGE !

To THAT END, TLL BE
INVENTING NEW DEFINITIONS
FOR, COMMON WORDS, SO
WELL BE UNABLE TO

DOMT Hou THINK [MARVY .
THATS TOTALY FAB,
SPaM? TS FAR OUT.

LUBRICATED ./ Ay —get
J &

WELL, 1M

PHASING. | §
“‘i—’/ |

One Slide Summary

« In abstract interpretation, the abstraction function
B and concretization function y form a Galois
connection: they are almost inverses.

o To abstract the state o at each program point we
use a collecting semantics (the abstract domain
holds sets of states). This shows the link between
abstract interpretation and model checking.

« This will result in recursively-defined equations. We
use the fixed point theorem to solve them. This
shows the link between abstract interpretation and
dataflow analysis.

 Widening operators help accelerate convergence.

Abstract Interpretation

« We have an abstract domain A

- e.g., A ={ positive, negative, zero }
- An abstraction function f : Z — A

e /. 1S our concrete domain

- A concretization function y : A — P(Z)
e Positive + Positive = 7?7
e Positive + Negative = 7?7
o Positive / Zero = ???

#3

“The Usual Combinations”

an's home, the A simple dish of Hylian tomato topped with Fresh seafood delightfully accented with a This simple dish is common all over Hyrule. This home-styile
the fishy flavor. delicious Hateno cheese. A perfect snack. generous 5erving of Hateno cheese. Simply fry egg until it's nice and plump. chopped vegeata,

fhgredients —————Sé&= —me——————————— [ngredients

—me————— |ngredients — e

B vv
\ P

Back ©
#4

POPL 2025 (one month ago!)

o Calculational Design of Hyperlogics by Abstract Interpretation

we design a generic, structural, fixpoint abstract interpreter parameterized
by an algebraic abstract domain describing finite and infinite computations

that can be instantiated for various operational, denotational, or relational
program semantics.

o The Best of Abstract Interpretations

we put forward a program logic parameterized on an abstract domain A which
infers triples [pre], p [post],. These triples encode that the inductive abstract

interpretation of p on A with abstract input pre € A gives post € A as abstract
output and this is the best possible in A.

o Linear and Non-linear Relational Analyses for Quantum Program Optimization

Abstract interpretation has previously been applied to the problems of
simulating circuits [9] or verifying properties of circuits including separability
[42] and projection-based assertions [21, 58]. The work of [58] gave an
abstract domain of products of subspaces on subsets of qubits and applied this
to the verification of assertions in static (but large) quantum circuits.

#5

Today's Plan

 We introduced abstract interpretation

e An abstraction mapping from concrete to
abstract values

- Has a concretization mapping which forms a
Galois connection

« We’ll look a bit more at Galois connections
o We’ll lift Al from expressions to programs
e ... and we’ll discuss the mythic “widening”

#6

Why Galois Connections?

We have an abstract domain A
- An abstraction function : Z — A

- Induces o : P(Z) - Aandy : A — P(Z)
We argued that for correctness
v(a; 0P a,) D y(a,) op v(a,)

- We wish for the set on the left to be as small as possible
- To reduce the loss of information through abstraction

For each set S C C, define a(S) as follows:

- Pick smallest S’ that includes S and is in the image of y
- Define a(S) = y'(S’)
- Then we define: a, op a, = a(y(a,) op y(a,))

Then o and y form a Galois connection

#7

Galois Connections
e A Galois connection between complete

lattices A and P(C) is a pair of functions a

and y such that:

- v and a are monotonic
o (with the C ordering on P(C))
- a(y(a))=a foralla € A

- v (a(5)) 25 for all S € P(C)

=

-

T
1,2
N
1 2 3 4
W

#8

More on Galois Connections

e All Galois connections are monotonic

e In a Galois connection one function uniquely
and absolutely determines the other

il N
“‘j‘."‘- N, 3 :. }

g7 4 \

e I. L

. o i ¥ -

N N
/ .\] S

Evariste Galois % Wi/ \&77% |

#9

Abstract Interpretation for
Imperative Programs

e SO far we abstracted the value of
expressions

« Now we want to abstract the state
at each point in the program

e First we define the concrete
semantics that we are abstracting

- We’ll use a collecting semantics

#10

Collecting Semantics

Recall
- A state ¢ € X. Any state o has type Var — Z

- States vary from program point to program point
We introduce a set of program points: labels
We want to answer questions like:

- Is x always positive at label i?

- Is x always greater or equal to y at label j?

To answer these questions we’ll construct
C € Contexts. C has type Labels — P(X)
- For each label i, C(i) = all possible states at label i

- This is called the collecting semantics of the program

- This is software model checkers approximate (e.g., using
BDDs to store P(X) efficiently)

#11

Defining the Collecting Semantics

o We first define relations between the collecting
semantics at different labels

- We do it for unstructured CFGs (cf. HWé!)
- Can do it for IMP with careful notion of program points

« Define a label on each edge in the CFG
e For assignment

1
X:2€] C ={o[x:=n]|ceCAels=n}

t]

#12

Defining the Collecting Semantics

e For conditionals

2
. . false true

else then
C..={oc | oceC_Ablc=false}

C...={oc| ceC_ Ablc=true}

« Assumes b has no side effects (as in IMP or HW6)

#13

Defining the Collecting Semantics

e For a join

#14

Defining the Collecting Semantics

e For a join

Cout = G UC,

e Verify that these relations are monotonic
- If we increase a C, all other C, can only increase

#15

Collecting Semantics: Example

e Assume x > 0 initially

C,={o | o(x) > 0}

#16

Collecting Semantics: Example

e Assume x > 0 initially

T 1

y i 1 C;={c | o(x) > O}
3 2 C,={o[y:=1] | o €C}

#17

Collecting Semantics: Example

e Assume x > 0 initially

T 1

y;=1

3 2
. F‘T ,
3 5

C,={oc | o(x) > 0}
C,={o[y:=1] | s € C}
C.,=C,n{c | o(x) = 0}

#18

Collecting Semantics: Example

e Assume x > 0 initially

T 1

1] G{o | o(x) > 0)

$ 2 C, = { oly:=1] ‘ G C C1}
3. C.,=C,n{c | o(x) = 0}

C, = {oly:=o(y)*s(x)] |

y

=y *X

c € C;}

4

X

=X -1

#19

Collecting Semantics: Example

e Assume x > 0 initially

1
y§=1 C,={o | o(x) > 0}
: 2 C,={oly:=11|oceC}
3 %_4 @T U {o[x:=0(x)-1] | c€C,}
| ° C.,=C,n{c | o(x) = 0}

y =y *x C, = {oly:=o(y)*o(x)] |

4° c € G}
X :=Xx-1

#20

Collecting Semantics: Example

e Assume x > 0 initially

1

y§=1 C,={c | o(x) > 0}

1) C,={o[y:=1] | 5 € C}
. F‘@T . U{o[x:=6(x)-1] | ceC,}
3,,) C.=C,Nn{c | o(x) =0}
Yy X C, = {oly:=0(y)*s(x)] |
4° c € C,}
X:=x- 1 C.=C,N{c | o(x) =0}

#21

Why Does This Work?

 We just made a system of recursive
equations that are defined largely in terms
of themselves

- e.g.,C,=F(C,), C,=G(C,), C, = H(C,)
« Why do we have any reason to believe that

this will?get us what we want?

[\II'"-.- H..I"’r I/
HEY, YOU . YOU'VE NEVER * How DO DO I REALLY ~ HOW CAN ARE YOU W,
w%méﬁa&ﬁn‘gﬁ @ﬂ ; %Eﬂégrﬁu THE Pﬁy Eﬁ’ﬂfﬂ };3 WT 11 PUTTING YU
TH ' Ire KINCW - ON? MEAN ¥
'F EAA:V\ THE RULESZ| ' "C O
— M
I - 4 -

\EAEE / “‘-uh___:r_//‘h__

<V
4 Ly

i

The Collecting Semantics

« We have an equation with the unknown C

- The equation is defined by a monotonic and
continuous function on domain Labels — P(X)

« We can use the least fixed-point theorem
- Start with C°(L)=0) (aka C° = AL.0)
- Apply the relations between C; and C; to get C',
from C°,
- Stop when all Ck = Ck1
- Problem: we’ll go on forever for most programs

- But we know the fixed point exists
#23

Collecting Semantics: Example

e (assume x > 0 initially)

pe?
0 yi=1
P
0
3 == 0
2 ¢={o]o(x)>0)
y =y *x C,= {oly:=1]1lceC}
4 f g U {o[x:=c(x)-1]| c € C,}
C.=C,N{c | o(x) =0}
Xizx-1 C.=C,Nn{c | o(x) =0}

C, = {oly:=o(y)*o(x) | o € Cj}

Collecting Semantics: Example

e (assume x > 0 initially)

I 1 {x>0}
0 yi=1
72 @
0
== 0
3 5
0
y:=y*X
41
X:i=x-1

C,={o | o(x) > 0}
C,= {oly:=1]1lceC}

U {o[x:=c(x)-1]| c € C,}
C.=C,N{c | o(x) =0}
C.=C,Nn{c | o(x) =0}

C, = {o[y:=o(y)*c(x) | c € C#%l

Collecting Semantics: Example

e (assume x > 0 initially)

I 1 {x>0}

] y:=1

) 2 {x>0,y=1}

3 == 0

% C,={c | o(x) > 0}

yi=y*x C;= {oly=1]loeC}

A f " U {o[x:=c(x)-1]| c € C,}
— C,;=C,N{o | o(x) = 0}
x=x-1 C.=C,Nn{c | o(x) =0}

C, = {oly:=o(y)*o(x) | o € C;}

Collecting Semantics: Example

e (assume x > 0 initially)

I 1 {x>0}
0 yi=1
2 {x>0,y=1}
{x>0,y=1}
3 == 0 .
ey G716 0)
y =y *x C,= {oly:=1]1lceC}
4 f U {o[x:=c(x)-1]| c € C,}
C.=C,N{c | o(x) =0}
Xizx-1 C.=C,Nn{c | o(x) =0}

C, = {o[y:=o(y)*c(x) | c € C#%l

Collecting Semantics: Example

e (assume x > 0 initially)

O ¢={o]o(x)>0)
y* x C,= {oly:=1]1lceC}
f U {o[x:=c(x)-1]| c € C,}
C.=C,N{c | o(x) =0}
C.=C,Nn{c | o(x) =0}

C, = {o[y:=o(y)*c(x) | c € C#%

Collecting Semantics: Example

e (assume x > 0 initially)

{x>0, y=x+1} |y = 1

{(x>0,y=1}
3 == 0 .
{x=0y=1} 62{o ol 20)
yi=y*x C;= {oly=1]loeC}
U {o[x:=c(x)-1]| c € C,}
i f {(x>0.y=x} C,=C,N{c | o(x) =0}
x=x-1 C.=C,Nn{c | o(x) =0}

C, = {o[y:=o(y)*c(x) | c € C#%

Collecting Semantics: Example

e (assume x > 0 initially)
I 1 {x>0}

{x> 0, y=x+1}

y =1

{x>0,y=1}
3

== 0

{x>0,y=x}

2 {x>0,y=1vy=x+1}

2 C=olo(x)>0)
b0yl C,= {oly=1]1lceC}
U {o[x:=c(x)-1]| c € C,}
C.=C,N{c | o(x) =0}
C.=C,Nn{c | o(x) =0}

C, = {oly=o(y)*o(x) | o € C}

Spanish Novels

e This 1605 Spanish novel, El ingenioso hidalgo
de la Mancha, is considered
foundational to Western literature and is the
second most-translated book in the world. In
it, a noble believes he is a knight-errant and
travels with a witty farmer, along the way
making social commentary about md1v1duals
and society.

Sanskrit Epics (Memory Test)

e This Sanskrit epic is one of the two great
canon stories of India, and is attributed to the
Hindu sage Valmiki. It covers dharma and
human values while explaining the
protagonist's attempt to recover his wife,
Sita, who has been taken by the demons of
Lanka. It is heavy on allegory and philosophy.
Archery, including an epic use of the
brahmastra, is often involved.

“.'f
\

Botany

e Give the common name for the acer genus of
trees and shrubs. Most species are deciduous,
and many are renowned for their autumn leaf
colors. Their distinctive seeds spin as they
fall. They are popular in bonsai and in syrup
production. Their wood is used in bowling
pins, MLB baseball bats, and recurve bows. It
is also a tonewood, and most violins, violas,
cellos, double basses and electric guitars
include components made of it.

Computer Science

e This American Turing-award winner is known
for work on the B and C programming
languages, the Unix and Plan 9 operating
systems, regular expressions in text editors,
UTF-8, and chess endgames. He co-developed
the Go language at Google. Almost all
programs that use regular expressions today
use his notation for them (and he invented an
algorithm for converting REs to NFAs).

Abstract Interpretation

e Pick a complete lattice A (abstractions for P(X))
- Along with a monotonic abstraction a : P(X) — A

- Alternatively, pick B : ¥ — A
- This uniquely defines its Galois connection y

« Take the relations between C. and move them to
the abstract domain:
a: Label — A
o Assignment
Concrete: C; ={o[x:=n] | c € (; A elo =n}

Abstract: a;=a {o[x:=n] | c € v(a) A elc = n} 435

Abstract Interpretation

o Conditional
Concrete: C;={c | c € (; A bls = false} and
={o | o eC Ablc = true}
Abstract: a, = o { 5 | ¢ € y(a,) A blo = false} and
a =afo| GEy(/\bUG—true}
e Join
Concrete: C =G UC,
Abstract: a, = a (y(a;) Uy(a)) =lub {a;, a;}

#36

Least Fixed Points
In The Abstract Domain

« We have a recursive equation with unknown “a”

- Defined by a monotonic and continuous function on the
domain Labels — A

« We can use the least fixed-point theorem:
- Start with a® = AL. L (aka: a°(L) = L)
- Apply the monotonic function to compute a**' from a*
- Stop when ak*! = ak
o Exactly the same computation as for the collecting
semantics
- What is new?

- “There is nothing new under the sun but there are lots

of old things we don't know.” - Ambrose Bierce
#37

Least Fixed Points
In The Abstract Domain

We have a hope of termination!

Classic setup: A has only uninteresting chains (finite
number of elements in each chain)

- A has finite height h (= “finite-height lattice”)

The computation takes O(h x |Labels|?) steps

- At each step “a” makes progress on at least one label

- We can only make progress h times

- And each time we must compute |Labels| elements
This is a quadratic analysis: good news

- This is exactly the same as Kildall’s 1973 analysis of
dataflow’s polynomial termination given a finite-height
lattice and monotonic transfer functions.

#38

Abstract Interpretation: Example
e Consider the following program, x>0

Il

y =1
2
False — True
3 x==0 5
V= y*tx We want to do the
4{ sign analysis on it.

#39

Abstract Domain for Sign Analysis

 Invent the complete sign lattice
S={1,-,0,+ T}
e Construct the complete lattice
A=1{x,y}—S
- With the usual point-wise ordering
- Abstract state gives the sign for x and y

e We start with a° = AL.Ave{x,y}. L
- aka: a’(L,v) = L

#40

Let’s Do It!

Label lterations —
1 X | +
» —
2 | x|L4
y | L
3 |x|4d
y .
4 |x|4+
y | L
5 |x|4
y | L

Let’s Do It!

Label lterations —

1 X | + +
yIT —

2 |x|L1 T T
y |4 T

3 |x|4L + T T
y e +

4 |x|4L + T T
y | L + T T

5 |x|L1 0
y | L + T

Notes, Weaknesses, Solutions

e We abstracted the state of each variable
independently

A={X)y}_>{J—) IB) O) +, T}
e We lost relationships between variables

- e.g., at a point x and y may always have the
same sign

- In the previous abstraction we get {x := T, y :=
T} at label 2 (when in fact y is always positive!)

e We can also abstract the state as a whole
A= P({J—) Ty O) +, T}X {J—) T O) +, T})

#43

Other Abstract Domains

« Range analysis
- Lattice of ranges: R ={ L, [n..m], (-o0, m], [n, +o0), T }
It is a complete lattice
e [n..m] U [n’..m’] = [min(n, n’)..max(m,m’)]
e [n.m] M [n°..m’] = [max(n, n’)..min(m, m’)]
o With appropriate care in dealing with oo
B : Z — R such that (n) = [n..n]

o : P(Z) — R such that a(S) = lub {B(n) | n € S} =
[min(S)..max(5)]
v : R— P(L) such thaty(r)={n | ner}
« This lattice has infinite-height chains
- So the abstract interpretation might not terminate!

#44

Example of Non-Termination

e Consider this (common) program fragment

We want to do range
analysis on it.

Z:=Z+ 1

#45

Example of Non-Termination

o Consider the sequence of abstract states at point 2

- [1..1], [1..2], [1..3], ..
- The analysis never terminates

- Or terminates very late if the loop bound is known

statically

anymore.

The Cullens and the Hales sat at the same

table as always, not eating, talking only among them-
selves. None of them, especially Edward, glanced my way

Example:

-

One person cannot do nothing

more than other people who
are also doing nothing.

None of them bougitt an apple, especially Edward.

#46

Example of Non-Termination

« Consider the sequence of abstract states at point 2

- [1..1], [1..2], [1..3], ..
- The analysis never terminates

- Or terminates very late if the loop bound is known
statically

« It is time to approximate even more: widening

« We redefine the join (lub) operator of the lattice to

ensure that from [1..1] upon union with [2..2] the
result is [1..+o0) and not [1..2]

« Now the sequence of states is

- [1..1], [1, +o0), [1, +o0) Done (no more infinite chains)

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

o A widening 7 : (P x P) — P on a poset (P,C)
satisfies:
~VX,yeP. XE(Xvy) AN YEXTY)
- For all increasing chains x° C x' C ... the increasing chain
yo =def 0., ym! =def yn 7 xn*1 .. is not strictly increasing.
« Two different main uses:
- Approximate missing lubs. (Not for us.)

- Convergence acceleration. (This is the real use.)

o A widening operator can be used to effectively compute an
upper approximation of the least fixpoint of F € L vy L starting
from below when L is computer-representable but does not
satisfy the ascending chain condition.

#48

Formal Widening Example
[1,1]v11,2] = [1,+00)

« Range Analysis on z: |Original x Widened y!
10: z:=1; X0, =1 yto,= L

_1: while z<99 do xH,=1[1,1 y-, = [1,1]

| 2: Z :=7+1 X2, = [1,1] y2, = [1,1.
13: done /*z > 99 */|x5, = [2,2] y-oo = [2,2,

4: x2=[1,2 y“ = [1,+00)
xt; =% the jth iterative attempt XL31 = :2,+OO)
to compute an abstract value for XL40 = '99,+OO) yL40 = [99,+OQ)
Z at label Li -

_ stable (fewer than 99 iterations!)

#49

Other Abstract Domains

o Linear relationships between variables

- A convex polyhedron is a subset of Zx whose elements
satisfy a number of inequalities:

- This is a complete lattice; linear programming methods
compute lubs

« Linear relationships with at most two variables
- Convex polyhedra but with < 2 variables per constraint
- Octagons (x +y > c¢) have efficient algorithms

e Modulus constraints (e.g. even and odd)

#50

Abstract Chatter

Al, Dataflow and Software Model Checking

- The big three (aside from flow-insensitive type systems)
for program analyses

Are in fact quite related:

- David Schmidt. Data flow analysis is model checking of
abstract interpretation. POPL ’98.

Al is usually flow-sensitive (per-label answer)

Al can be path-sensitive (if your abstract domain
includes Vv, for example), which is just where
model checking uses BDD’s

#51

Abstract Interpretation
Conclusions

« Disadvantages:
- Without care, Al can be slow

- When the lattices have infinite height and

widening heuristics are used the result becomes
unpredictable

« Al can be applied to many problems in functional
and imperative programming languages

o Al is a very powerful technique that underlies a
large number of program analyses

- Including Dataflow Analysis and Model Checking

#52

	Abstract Interpretation (Galois, Collections, Widening)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Review
	Why Galois Connections?
	Galois Connections
	More on Galois Connections
	Abstract Interpretation for Imperative Programs
	Collecting Semantics
	Defining the Collecting Semantics
	Slide 13
	Slide 14
	Slide 15
	Collecting Semantics: Example
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Why Does This Work?
	The Collecting Semantics
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Abstract Interpretation
	Abstract Interpretation
	Least Fixed Points In The Abstract Domain
	Slide 38
	Abstract Interpretation: Example
	Abstract Domain for Sign Analysis
	Slide 41
	Let’s Do It!
	Notes, Weaknesses, Solutions
	Other Abstract Domains
	Example of Non-Termination
	Slide 46
	Slide 47
	Formal Definition of Widening (Cousot 16.399 “Abstract Interpretation”, 2005)
	Formal Widening Example [1,1]5[1,2] = [1,+1)
	Slide 50
	Abstract Chatter
	Abstract Interpretation Conclusions

