
#1

Abstract InterpretationAbstract Interpretation
(Non-Standard Semantics)(Non-Standard Semantics)

a.k.a.a.k.a.
“Picking The Right Abstraction”“Picking The Right Abstraction”

#2

Why
analyze

programs
statically?

#3

The Problem

• It is extremely useful to predict program behavior
statically (= without running the program)
– For optimizing compilers, program analyses, software

engineering tools, finding security flaws, etc.

• The semantics we studied so far give us the precise
behavior of a program

• However, precise static predictions are impossible
– The exact semantics is not computable

• We must settle for approximate, but correct, static
analyses (e.g. VC vs. WP)

#4

One-Slide Summary

• Abstraction interpretation is a static analysis for
soundly approximating the semantics of a program.

• While the concrete semantics refers to what actually
happens when you run the program (e.g., “x*x+1”
may result in multiple integers), the abstract
semantics tracks only certain information about that
computation (e.g., “x*x+1” will be some positive
number, but we don't know which one).

• Special functions transfer between the abstract
domain (typically a lattice) and the concrete
domain.

#5

The Plan

• We will introduce abstract
interpretation by example

• Starting with a miniscule language we
will build up to a fairly realistic
application

• Along the way we will see most of the
ideas and difficulties that arise in a big
class of applications

#6

A Tiny Language

• Consider the following language of
arithmetic (“shrIMP”?)

 e ::= n | e1 * e2

• The operational semantics of this language

 n n

 e1 * e2 = e1 £ e2

• We’ll take opsem as the “ground truth”
• For this language the precise semantics is

computable (but in general it’s not)

#7

An Abstraction

• Assume that we are interested not in the
value of the expression, but only in its sign:
– positive (+), negative (-), or zero (0)

• We can define an abstract semantics that
computes only the sign of the result
 : Exp ! {-, 0, +}

 (n) = sign(n)

 (e1 * e2) = (e1) (e2) +0-+

0000

-0+-

+0-

#8

 I Saw the Sign
• Why did we want to compute the sign of an

expression?
– One reason: no one will believe you know

abstract interpretation if you haven’t seen the
sign example :-)

• What could we be computing instead?
– Alex Aiken was here …

#9

Correctness of Sign Abstraction

• We can show that the abstraction is correct
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -

#10

Correctness of Sign Abstraction

• We can show that the abstraction is correct
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -

• Our semantics is abstract but precise
• Proof is by structural induction on the

expression e
– Each case repeats similar reasoning

#11

Another View of Soundness

• Link each concrete value to an abstract one:
 : Z ! { -, 0, + }

• This is called the abstraction function ()
– This three-element set is the abstract domain

• Also define the concretization function ():
 : {-, 0, +} ! P(Z)

 (+) = { n 2 Z | n > 0 }

 (0) = { 0 }
 (-) = { n 2 Z | n < 0 }

#12

Another View of Soundness 2

• Soundness can be stated succinctly

8e 2 Exp. e 2 ((e))
 (the real value of the expression is among the concrete

values represented by the abstract value of the expression)

• Let C be the concrete domain (e.g. Z) and A be the
abstract domain (e.g. {-, 0, +})

• Commutative diagram:

P(C)

Exp A

C
2

#13

Another View of Soundness 3

• Consider the generic abstraction of an operator

 (e1 op e2) = (e1) op (e2)

• This is sound iff

8a18a2. (a1 op a2) ¾ {n1 op n2 | n1 2 (a1), n2 2 (a2)}

• e.g. (a1 a2) ¾ { n1 * n2 | n1 2 (a1), n2 2 (a2) }

• This reduces the proof of correctness to one proof
for each operator

#14

Abstract Interpretation

• This is our first example of an abstract
interpretation

• We carry out computation in an abstract
domain

• The abstract semantics is a sound
approximation of the standard semantics

• The concretization and abstraction functions
establish the connection between the two
domains

#15

Adding Unary Minus and Addition

• We extend the language to
e ::= n | e1 * e2 | - e

• We define (- e) = ª (e)

• Now we add addition:
e ::= n | e1 * e2 | - e | e1 + e2

• We define (e1 + e2) = (e1) © (e2)

-0+ª
+0-

++?+

+0-0

?---

+0-©

#16

Adding Addition
• The sign values are not closed under addition
• What should be the value of “+ © –”?

• Start from the soundness condition:

(+ © –) ¾ { n1 + n2 | n1 > 0, n2 < 0} = Z
• We don’t have an abstract
value whose concretization
includes Z, so we add one:

 > (“top” = “don’t know”)
>++>+

>

+

>
+

>

>

>

>

>>>

0-0

0-©

#17

Loss of Precision
• Abstract computation may lose information:

«(1 + 2) + -3¬ = 0

but: ((1+2) + -3) =

((1) © (2)) © (-3) =

(+ © +) © - = >

• We lost some precision
• But this will simplify the computation of the

abstract answer in cases when the precise
answer is not computable

#18

Adding Division
• Straightforward except for division by 0

– We say that there is no answer in that case

– (+ ® 0) = { n | n = n1 / 0 , n1 > 0 } = ;

• Introduce ? to be the abstraction of the ;
– We also use the same

abstraction for

non-termination!

? = “nothing”

> = “something unknown”
?

>

>

?

>

>

?

?

?

?

?

?

>>>>

????

+0-+

?
-

+

??0

0+-

0-®

Game Criticism

• This term refers to a conflict between
the mechanics or dynamics of a game
and its story. For example, Bioshock
was viewed as promoting selflessness
through story but selfishness through
gameplay, a disconnect that pulled
some players out of the game. The term
is often viewed as “highbrow” or
“pretentious”.

Q: Books (750 / 842)

•This 1962 Newbery Medal-
winning novel by Madeleine
L'Engle includes Charles
Wallace, Mrs. Who, Mrs.
Whatsit, Mrs. Which and the
space-bending Tesseract. In
2018 it was adapted into a
Disney film with Oprah Winfrey.

Music

• Otis Lee Jackson, Jr. is one of the most
influential producers in modern hiphop. He
collaborates with MF DOOM, incorporates
elements from jazz, and makes heavy use of
eclectic samples. Give his stage name, shared
with the word-based party game in which
players provide words to fill in the blanks in
an unknown story.

Computer Science

• This American Turing-award winner is known
for developing Speedcoding and FORTRAN
(the first two high-level languages), as well
creating a way to express the formal syntax of
a language and using that approach to specify
ALGOL. He later focused on function-level (as
opposed to value-level) programming. His
first major programming project calculated
the positions of the Moon.

#23

The Abstract Domain
• Our abstract domain forms a lattice

• A partial order is induced by
 a1 · a2 iff (a1) µ (a2)

– We say that a1 is more precise than a2!

• Every finite subset has a least-upper

bound (lub) and a greatest-lower bound (glb)

>

?

- 0 +

#24

Lattice Facts

• A lattice is complete when every subset has
a lub and a gub
– Even infinite subsets!

• Every finite lattice is (trivially) complete
• Every complete lattice is a complete partial

order (recall: proof techniques: induction!)
– Since a chain is a subset

• Not every CPO is a complete lattice
– Might not even be a lattice at all

#25

From One, Many

• We can start with the abstraction function
 : C ! A

(maps a concrete value to the best abstract value)

– A must be a lattice

• We can derive the concretization function
 : A ! P(C)

 (a) = { x 2 C | (x) · a }

• And the abstraction for sets
 : P(C) ! A

 (S) = lub { (x) | x 2 S }

#26

Example
• Consider our sign lattice

 + if n > 0
 (n) = 0 if n = 0
 - if n < 0

• (S) = lub { (x) | x 2 S}
– Example: ({1, 2}) = lub { + } = +
 ({1, 0}) = lub { +, 0} = >
 ({}) = lub ; = ?

• (a) = { n | (n) · a }
– Example: (+) = { n | (n) · +} =

{ n | (n) = +} = { n | n > 0 }
 (>) = { n | (n) · > } = Z
 (?) = { n | (n) · ?} = ;

#27

Galois Connections
• We can show that

– and are monotonic (with µ ordering on P(C))

– ((a)) = a for all a 2 A

– ((S)) ¾ S for all S 2 P(C)

• Such a pair of functions is called a Galois
connection
– Between the lattices A and P(C)

S C

S

#28

Correctness Condition

• In general, abstract interpretation satisfies
the following (amazingly common) diagram

P(C)

Exp A

C
2

 (·)means

concrete
domain

abstract semantics

abstract
domain

concretization
function

abstraction
function for sets

#29

Three Little Correctness Conditions

• Three conditions define a
correct abstract interpretation

• and are monotonic

• and form a Galois
connection

= “ and are almost inverses”

1. Abstraction of operations is
correct
 a1 op a2 = ((a1) op (a2))

#30

“On The Board” Questions
• What is the VC for:

for i = elow to ehigh do c done

• This axiomatic rule is unsound. Why?

` {A} if p then cthen else celse {Bthen Ç Belse}
` {A Æ :p} celse {Belse}` {A Æ p} cthen {Bthen}

#31

Homework

• Read Cousot & Cousot Article

	Abstract Interpretation (Non-Standard Semantics) a.k.a. “Picking The Right Abstraction”
	Slide 2
	The Problem
	Slide 4
	The Plan
	A Tiny Language
	An Abstraction
	I Saw the Sign
	Correctness of Sign Abstraction
	Slide 10
	Another View of Soundness
	Another View of Soundness 2
	Another View of Soundness 3
	Abstract Interpretation
	Adding Unary Minus and Addition
	Adding Addition
	Loss of Precision
	Adding Division
	Slide 19
	Q: Books (750 / 842)
	Slide 21
	Slide 22
	The Abstract Domain
	Lattice Facts
	From One, Many
	Example
	Galois Connections
	Correctness Condition
	Three Little Correctness Conditions
	On The Board Questions
	Slide 31

