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Why
analyze

programs
statically?
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The Problem

• It is extremely useful to predict program behavior 
statically (= without running the program)
– For optimizing compilers, program analyses, software 

engineering tools, finding security flaws, etc.

• The semantics we studied so far give us the precise 
behavior of a program

• However, precise static predictions are impossible
– The exact semantics is not computable

• We must settle for approximate, but correct, static 
analyses (e.g. VC vs. WP)
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One-Slide Summary

• Abstraction interpretation is a static analysis for 
soundly approximating the semantics of a program. 

• While the concrete semantics refers to what actually 
happens when you run the program (e.g., “x*x+1” 
may result in multiple integers), the abstract 
semantics tracks only certain information about that 
computation (e.g., “x*x+1” will be some positive 
number, but we don't know which one). 

• Special functions transfer between the abstract 
domain (typically a lattice) and the concrete 
domain.
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The Plan

• We will introduce abstract 
interpretation by example

• Starting with a miniscule language we 
will build up to a fairly realistic 
application

• Along the way we will see most of the 
ideas and difficulties that arise in a big 
class of applications
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A Tiny Language

• Consider the following language of 
arithmetic (“shrIMP”?) 

                   e ::= n | e1 * e2

• The operational semantics of this language

                   n  n

                   e1 * e2  = e1 £ e2

• We’ll take opsem as the “ground truth”
• For this language the precise semantics is 

computable (but in general it’s not)
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An Abstraction

• Assume that we are interested not in the 
value of the expression, but only in its sign: 
– positive (+), negative (-), or zero (0)

• We can define an abstract semantics that 
computes only the sign of the result
                : Exp ! {-, 0, +}

 (n) = sign(n)

 (e1 * e2) = (e1)  (e2) +0-+

0000

-0+-

+0-
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   I Saw the Sign
• Why did we want to compute the sign of an 

expression?
– One reason: no one will believe you know 

abstract interpretation if you haven’t seen the 
sign example :-)

• What could we be computing instead? 
– Alex Aiken was here …
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Correctness of Sign Abstraction

• We can show that the abstraction is correct 
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -
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Correctness of Sign Abstraction

• We can show that the abstraction is correct 
in the sense that it predicts the sign
e > 0 , (e) = +

e = 0 , (e) = 0

e < 0 , (e) = -

• Our semantics is abstract but precise
• Proof is by structural induction on the 

expression e
– Each case repeats similar reasoning
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Another View of Soundness

• Link each concrete value to an abstract one:
                        : Z ! { -, 0, + }

• This is called the abstraction function ()
– This three-element set is the abstract domain

• Also define the concretization function (): 
 : {-, 0, +} ! P(Z)

                  (+) = { n 2 Z | n > 0 }

                  (0) = { 0 } 
                  (-) = { n 2 Z | n < 0 }
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Another View of Soundness 2

• Soundness can be stated succinctly

8e 2 Exp. e 2 ((e)) 
   (the real value of the expression is among the concrete 

values represented by the abstract value of the expression)

• Let C be the concrete domain (e.g. Z) and A be the 
abstract domain (e.g. {-, 0, +})

• Commutative diagram:

P(C)

Exp A

C
2
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Another View of Soundness 3

• Consider the generic abstraction of an operator

                  (e1 op e2) = (e1) op  (e2)

• This is sound iff

8a18a2. (a1 op a2) ¾  {n1 op n2 | n1 2 (a1), n2 2 (a2)}

• e.g. (a1  a2) ¾  { n1 * n2 | n1 2 (a1), n2 2 (a2) }

• This reduces the proof of correctness to one proof 
for each operator
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Abstract Interpretation

• This is our first example of an abstract 
interpretation

• We carry out computation in an abstract 
domain

• The abstract semantics is a sound 
approximation of the standard semantics

• The concretization and abstraction functions 
establish the connection between the two 
domains
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Adding Unary Minus and Addition

• We extend the language to 
e ::= n | e1 * e2 | - e

• We define (- e) = ª (e)

• Now we add addition: 
e ::= n | e1 * e2 | - e | e1 + e2 

• We define (e1 + e2) = (e1) © (e2)

-0+ª
+0-

++?+

+0-0

?---

+0-©
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Adding Addition
• The sign values are not closed under addition
• What should be the value of “+ © –”?

• Start from the soundness condition:

(+ © –) ¾ { n1 + n2 | n1 > 0, n2 < 0} = Z
• We don’t have an abstract 
value whose concretization 
includes Z, so we add one:

    > (“top” = “don’t know”)
>++>+

>

+

>
+

>

>

>

>

>>>

0-0

---

0-©
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Loss of Precision
• Abstract computation may lose information:

«(1 + 2) + -3¬ = 0

but: ((1+2) + -3) = 

((1) © (2)) © (-3) = 

(+ © +) © - = >

• We lost some precision
• But this will simplify the computation of the 

abstract answer in cases when the precise 
answer is not computable
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Adding Division
• Straightforward except for division by 0

– We say that there is no answer in that case

–  (+ ® 0) = { n | n = n1 / 0 , n1 > 0 } = ;

• Introduce ? to be the abstraction of the ;
– We also use the same 

abstraction for 

non-termination!

? = “nothing”

> = “something unknown”
?

>

>

?

>

>

?

?

?

?

?

?

>>>>

????

+0-+

?
-

+

??0

0+-

0-®



Game Criticism

• This term refers to a conflict between 
the mechanics or dynamics of a game 
and its story. For example, Bioshock 
was viewed as promoting selflessness 
through story but selfishness through 
gameplay, a disconnect that pulled 
some players out of the game. The term 
is often viewed as “highbrow” or 
“pretentious”.



Q:  Books  (750 / 842) 

•This 1962 Newbery Medal-
winning novel by Madeleine 
L'Engle includes Charles 
Wallace, Mrs. Who, Mrs. 
Whatsit, Mrs. Which and the 
space-bending Tesseract. In 
2018 it was adapted into a 
Disney film with Oprah Winfrey.



Music

• Otis Lee Jackson, Jr. is one of the most 
influential producers in modern hiphop. He 
collaborates with MF DOOM, incorporates 
elements from jazz, and makes heavy use of 
eclectic samples. Give his stage name, shared 
with the word-based party game in which 
players provide words to fill in the blanks in 
an unknown story.



Computer Science

• This American Turing-award winner is known 
for developing Speedcoding and FORTRAN 
(the first two high-level languages), as well 
creating a way to express the formal syntax of 
a language and using that approach to specify 
ALGOL. He later focused on function-level (as 
opposed to value-level) programming. His 
first major programming project calculated 
the positions of the Moon. 
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The Abstract Domain
• Our abstract domain forms a lattice

• A partial order is induced by 
                  a1 · a2   iff (a1) µ (a2)

– We say that a1 is more precise than a2!

• Every finite subset has a least-upper 

bound (lub) and a greatest-lower bound (glb)

>

?

- 0 +
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Lattice Facts

• A lattice is complete when every subset has 
a lub and a gub
– Even infinite subsets!

• Every finite lattice is (trivially) complete
• Every complete lattice is a complete partial 

order (recall: proof techniques: induction!)
– Since a chain is a subset

• Not every CPO is a complete lattice
– Might not even be a lattice at all



#25

From One, Many

• We can start with the abstraction function 
 : C ! A

(maps a concrete value to the best abstract value)

– A must be a lattice

• We can derive the concretization function 
     : A ! P(C)

    (a) = { x 2 C | (x) · a }

• And the abstraction for sets 
     : P(C) ! A 

    (S) = lub { (x) | x 2 S }
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Example
• Consider our sign lattice

             +    if n > 0
 (n) =   0     if n = 0
             -      if n < 0 

•  (S) = lub { (x) | x 2 S} 
– Example:  ({1, 2}) = lub { + } = +
                    ({1, 0}) = lub { +, 0} = >
                    ({}) = lub ; = ?

•  (a) = { n | (n) · a } 
– Example:  (+) = { n | (n) · +} = 

{ n | (n) = +}  =  { n | n > 0 }
 (>) = { n | (n) · > } = Z
 (?) = { n | (n) · ?} = ; 
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Galois Connections
• We can show that

–   and  are monotonic (with µ ordering on P(C))

–   ( (a)) = a for all a 2 A

–   ((S)) ¾ S for all S 2 P(C)

• Such a pair of functions is called a Galois 
connection
– Between the lattices A and P(C) 

S C

S
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Correctness Condition

• In general, abstract interpretation satisfies 
the following (amazingly common) diagram

P(C)

Exp A

C
2





  (·)means

concrete 
domain

abstract semantics

abstract 
domain

concretization
function

abstraction
function for sets
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Three Little Correctness Conditions

• Three conditions define a 
correct abstract interpretation

•   and  are monotonic

•   and  form a Galois 
connection

= “ and  are almost inverses”

1. Abstraction of operations is 
correct
          a1 op a2 = ((a1) op (a2)) 
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“On The Board” Questions
• What is the VC for:

for i = elow to ehigh do c done

• This axiomatic rule is unsound. Why?
 

` {A} if p then cthen else celse {Bthen Ç Belse}
` {A Æ :p} celse {Belse}` {A Æ p} cthen {Bthen}
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Homework

• Read Cousot & Cousot Article
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