
#1

Proof Techniques Proof Techniques
for Operational for Operational

SemanticsSemantics

#2

Reminder: Small-Step
Contextual Semantics

• In small-step contextual semantics,
derivations are not tree-structured

• A contextual semantics derivation is a
sequence (or list) of atomic rewrites:

<x+(7-3),> ! <x+(4),> ! <5+4,> ! <9,>

If <r, >  <e, ’>

then <H[r], >  <H[e], ’>

x)=5

r = redex
H = context (has hole)

#3

Context Decomposition
• Decomposition theorem:

 If c is not “skip” then there exist unique
H and r such that c is H[r]

– “Exist” means progress

– “Unique” means determinism

#4

Short-Circuit Evaluation

• What if we want to express short-circuit
evaluation of  ?
– Define the following contexts, redexes and

local reduction rules
 H ::= ... | H  b2

 r ::= ... | true  b | false  b
 <true  b, >  <b, >
 <false  b, >  <false, >

– the local reduction kicks in before b2 is
evaluated

#5

Contextual Semantics Summary
• Can view  as representing the program counter
• Contextual semantics is inefficient to implement

directly

• The major advantage of contextual semantics: it
allows a mix of local and global reduction rules
– For IMP we have only local reduction rules: only the

redex is reduced
– Sometimes it is useful to work on the context too
– We’ll do that when we study memory allocation, etc.

#6

Cunning Plan for
Proof Techniques

• Why Bother?
• Mathematical Induction
• Well-Founded Induction
• Structural Induction

– “Induction On The Structure Of
The Derivation”

#7

One-Slide Summary
• Mathematical Induction is a proof technique: If you

can prove P(0) and you can prove that P(n) implies
P(n+1), then you can conclude that for all natural
numbers n, P(n) holds.

• Induction works because the natural numbers are
well-founded: there are no infinite descending
chains n > n-1 > n-2 > ... >

• Structural induction is induction on a formal
structure, like an AST. The base cases use the
leaves, the inductive steps use the inner nodes.

• Induction on a derivation is structural induction
applied to a derivation D (e.g., D::<c, >  ’).

#8

Why Bother?

• I am loathe to teach you anything that I
think is a waste of your time.

• Thus I must convince you that inductive
opsem proof techniques are useful.
– Recall class goals: understand PL research

techniques and apply them to your research

• This motivation should also highlight
where you might use such techniques in
your own research.

#9

““Any counter-example posed by the Any counter-example posed by the
Reviewers against this proof would Reviewers against this proof would
be a useless gesture, no matter be a useless gesture, no matter
what technical data they have what technical data they have
obtained. obtained. Structural InductionStructural Induction is is
now the ultimate proof technique now the ultimate proof technique
in the universe. I suggest we use in the universe. I suggest we use
it.” --- Admiral Motti, it.” --- Admiral Motti, A New Hope A New Hope

#10

Classic Example (Schema)
• “A well-typed program cannot go wrong.”

– Robin Milner

• When you design a new type system, you must show
that it is safe (= that the type system is sound with
respect to the operational semantics).

• A Syntactic Approach to Type Soundness. Andrew K.
Wright, Matthias Felleisen, 1992.
– Type preservation: “if you have a well-typed program

and apply an opsem rule, the result is well-typed.”
– Progress: “a well-typed program will never get stuck in a

state with no applicable opsem rules”

• Done for real languages: SML/NJ, SPARK ADA, Java
– PL/I, plus basically every toy PL research language ever.

#13

Examples From the Recent Past
• “We prove soundness (Theorem 6.8) by mutual

induction on the derivations of ...”

– An Operational and Axiomatic Semantics for Non-
determinism and Sequence Points in C, POPL 2014

• “The proof goes by induction on the structure of p.”

– NetKAT: Semantic Foundations of Networks, POPL 2014

• “The operational semantics is given as a big-step
relation, on which our compiler correctness proofs can
all proceed by induction ...”

– CakeML: A Verified Implementation of ML, POPL 2014

• Method: Chose 4 papers from POPL 2014, 3 of them use
structural induction.

#14

Induction

• Most important technique for studying
the formal semantics of prog languages
– Understanding this is critical for performing

and understanding PL research

• Mathematical Induction (simple)
• Well-Founded Induction (general)
• Structural Induction (widely used in PL)

#15

Mathematical Induction

• Goal: prove n  N. P(n)

• Base Case: prove P(0)

• Inductive Step:
– Prove 8 n>0. P(n)) P(n+1)

– “Pick arbitrary n, assume P(n), prove P(n+1)”

• Why does induction work?

#17

Well-Founded Induction

• A relation ¹  A £ A is well-founded if there
are no infinite descending chains in A
– Example: <1 = { (x, x +1) | x  N }

• aka the predecessor relation

– Example: < = { (x, y) | x, y  N and x < y }

• Well-founded induction:
– To prove x  A. P(x) it is enough to prove

x  A. [y ¹ x  P(y)]  P(x)

• If ¹ is <1 then we obtain mathematical
induction as a special case

#18

Structural Induction
• Recall e ::= n | e1 + e2 | e1 * e2 | x

• Define ¹  Aexp £ Aexp such that
e1 ¹ e1 + e2 e2 ¹ e1 + e2

e1 ¹ e1 * e2 e2 ¹ e1 * e2

– no other elements of Aexp £ Aexp are ¹-related

• To prove e  Aexp. P(e)
– ` n  Z. P(n)

– ` x  L. P(x)

– ` e1, e2  Aexp. P(e1)  P(e2)  P(e1 + e2)

– ` e1, e2  Aexp. P(e1)  P(e2)  P(e1 * e2)

#19

Notes on Structural Induction

• Called structural induction because the
proof is guided by the structure of the
expression

• One proof case per form of expression
– Atomic expressions (with no subexpressions)

are all base cases

– Composite expressions are the inductive case

• This is the most useful form of induction
in the study of PL

#20

Example of Induction on
Structure of Expressions

• Let
– L(e) be the # of literals and variable occurrences in e
– O(e) be the # of operators in e

• Prove that e  Aexp. L(e) = O(e) + 1
• Proof: by induction on the structure of e

– Case e = n. L(e) = 1 and O(e) = 0
– Case e = x. L(e) = 1 and O(e) = 0

– Case e = e1 + e2.
• L(e) = L(e1) + L(e2) and O(e) = O(e1) + O(e2) + 1

• By induction hypothesis L(e1) = O(e1) + 1 and L(e2) = O(e2) + 1

• Thus L(e) = O(e1) + O(e2) + 2 = O(e) + 1

– Case e = e1 * e2. Same as the case for +

#21

Other Proofs by Structural
Induction on Expressions

• Most proofs for Aexp sublanguage of IMP
• Small-step and natural semantics obtain

equivalent results:
e  Exp. n  N. e * n  e  n

• Structural induction on expressions works
here because all of the semantics are
syntax directed

#22

Stating The Obvious
(With a Sense of Discovery)

• You are given a concrete state .

• You have ` <x + 1, >  5

• You also have ` <x + 1, >  88

• Is this possible?

#23

Why That Is Not Possible

• Prove that IMP is deterministic
e  Aexp.   . n, n’  N. <e, >  n  <e, >  n’  n = n’

b  Bexp.   . t, t’  B. <b, >  t  <b, >  t’  t = t’

c  Comm. ’,’’  . <c, >  ’  <c, >  ’’  ’ = ’’

• No immediate way to use mathematical induction

• For commands we cannot use induction on the
structure of the command
– while’s evaluation does not depend only on the evaluation

of its strict subexpressions

<while b do c, >  ’’
<b, >  true <c, >  ’ <while b do c, ’>  ’’

#24

French Literature and Feminism

• This French existentialist author is known for
her novels, essays and treatment of feminist
and social issues. Her work, Le Deuxième
Sexe, is often regarded as the start of second-
wave feminism. Her argument, “On ne naît
pas femme, on le devient” (one is not born a
woman, one becomes a woman), is viewed as
one of the first articulations of a distinction
between biological sex and socially-
constructed gender.

#25

Q: Movies (292 / 842)

•From the 1981 movie Raiders
of the Lost Ark, give either
the protagonist's phobia xor
the composer of the musical
score.

#26

Sports
• Mountain climbing and carabiners are

associated with this. In this common activity,
tension and friction help ensure safety. These
devices act as friction brakes, and allow the
climber to easily vary the amount of friction
on the rope by altering the rope's position. In
one position, the rope runs freely through the
device. In another position, it can be held
(“locked off”) without the rope sliding
through the device because of the friction on
the rope.

#27

Computer Science
• This Dutch Turing-award winner is famous for

the semaphore, “THE” operating system, the
Banker's algorithm, and a shortest path
algorithm. He favored structured
programming, as laid out in the 1968 article
Go To Statement Considered Harmful. He was
a strong proponent of formal verification and
correctness by construction. He also penned
On The Cruelty of Really Teaching Computer
Science, which argues that CS is a branch of
math and relates provability to correctness.

#28

Recall Opsem
• Operational semantics

assigns meanings to
programs by listing rules of
inference that allow you to
prove judgments by making
derivations.

• A derivation is a tree-
structured object made up
of valid instances of
inference rules.

#29

We Need Something New

• Some more powerful form of induction …
• With all the bells and whistles!

#30

Induction on the
Structure of Derivations

• Key idea: The hypothesis does not just assume a c 
Comm but the existence of a derivation of <c, >  ’

• Derivation trees are also defined inductively, just like
expression trees

• A derivation is built of subderivations:

• Adapt the structural induction principle to work on the
structure of derivations

xi+1>  5 - i 5 - i  5

 <x  5, i+1>  true <x:=x+1; W, i+1>  0

<while x  5 do x := x + 1, i+1>  0

<x:=x+1, i+1>  i <W, i>  0

x + 1i+1>  6 - i

#31

Induction on Derivations

• To prove that for all derivations D of a
judgment, property P holds

• For each derivation rule of the form

• Assume P holds for derivations of Hi (i = 1..n)

• Prove the the property holds for the derivation
obtained from the derivations of Hi using the
given rule

 C

H1 … Hn

#32

New
Notation

• Write D :: Judgment
to mean “D is the
derivation that
proves Judgment”

• Example:

 D :: <x+1, >  2

#33

Induction on Derivations (2)
• Prove that evaluation of commands is deterministic:

 <c, >  ’  ’’  . <c, >  ’’  ’ = ’’

• Pick arbitrary c, , ’ and D :: <c, >  ’
• To prove: ’’  . <c, >  ’’  ’ = ’’

– Proof: by induction on the structure of the
derivation D

• Case: last rule used in D was the one for skip

– This means that c = skip, and ’ = 
– By inversion <c, >  ’’ uses the rule for skip
– Thus ’’ = 
– This is a base case in the induction

<skip, >  
D ::

#34

Induction on Derivations (3)
• Case: the last rule used in D was the one for

sequencing

• Pick arbitrary ’’ such that D’’ :: <c1; c2, >  ’’.
– by inversion D’’ uses the rule for sequencing
– and has subderivations D’’1 :: <c1, >  ’’1 and

D’’2 :: <c2, ’’1>  ’’

• By induction hypothesis on D1 (with D’’1): 1 = ’’1

– Now D’’2 :: <c2, 1>  ’’

• By induction hypothesis on D2 (with D’’2): ’’ = ’
• This is a simple inductive case

<c1; c2, >  ’
D ::

D1 :: <c1, >  1 D2 :: <c2, 1>  ’

#35

Induction on Derivations (4)
• Case: the last rule used in D was while true

• Pick arbitrary ’’ s.t. D’’::<while b do c, >  ’’
– by inversion and determinism of boolean expressions, D’’

also uses the rule for while true

– and has subderivations D’’2 :: <c, >  ’’1 and
D’’3 :: <W, ’’1>  ’’

• By induction hypothesis on D2 (with D’’2): 1 = ’’1

– Now D’’3 :: <while b do c, 1>  ’’

• By induction hypothesis on D3 (with D’’3): ’’ = ’

<while b do c, >  ’
D ::

D1 :: <b, >  true D2 :: <c, >  1 D3 :: <while b do c, 1>  ’

#36

What Do You,
The Viewers At Home, Think?

• Let’s do if true together!
• Case: the last rule in D was if true

• Try to do this on a piece of paper. In a
few minutes I’ll have some lucky winners
come on down.

<if b do c1 else c2, >  1

D ::
D1 :: <b, >  true D2 :: <c1, >  1

#37

Induction on Derivations (5)

• Case: the last rule in D was if true

• Pick arbitrary ’’ such that
D’’ :: <if b do c1 else c2, >  ’’
– By inversion and determinism, D’’ also uses if true

– And has subderivations D’’1 :: <b, >  true and

D’’2 :: <c1, >  ’’

• By induction hypothesis on D2 (with D’’2): ’ = ’’

<if b do c1 else c2, >  ’
D ::

D1 :: <b, >  true D2 :: <c1, >  ’

#38

Induction on Derivations
Summary

• If you must prove x  A. P(x)  Q(x)
– with A inductively defined and P(x) rule-defined

– we pick arbitrary x  A and D :: P(x)

– we could do induction on both facts
• x  A leads to induction on the structure of x

• D :: P(x) leads to induction on the structure of D

– Generally, the induction on the structure of the
derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
– choosing the right one is a trial-and-error process

– a bit of practice can help a lot

#39

Equivalence

• Two expressions (commands) are equivalent if
they yield the same result from all states

e1  e2 iff

   n  N.

<e1, >  n iff <e2, >  n
 and for commands

c1  c2 iff

’  
<c1, >  ’ iff <c2, >  ’

Starting here, the material
is not covered in lecture

but is referenced in the HW.

#40

Notes on Equivalence

• Equivalence is like logical validity
– It must hold in all states (= all valuations)
– 2  1 + 1 is like “2 = 1 + 1 is valid”
– 2  1 + x might or might not hold.

• So, 2 is not equivalent to 1 + x

• Equivalence (for IMP) is undecidable
– If it were decidable we could solve the halting problem

for IMP. How?

• Equivalence justifies code transformations
– compiler optimizations
– code instrumentation
– abstract modeling

• Semantics is the basis for proving equivalence

#41

Equivalence Examples
• skip; c  c
• while b do c 

if b then c; while b do c else skip
• If e1  e2 then x := e1  x := e2

• while true do skip  while true do x := x + 1
• Let c be

while x  y do
 if x  y then x := x - y else y := y - x

 then
(x := 221; y := 527; c) (x := 17; y := 17)

#42

Potential Equivalence

•(x := e1; x := e2)  x := e2

•Is this a valid equivalence?

`

#43

Not An Equivalence

• (x := e1; x := e2) ¿ x := e2

• Iie. Chigau yo. Dame desu!

• Not a valid equivalence for all e1, e2.

• Consider:
– (x := x+1; x := x+2) ¿ x := x+2

• But for n1, n2 it’s fine:

– (x := n1; x := n2)  x := n2

#44

Proving An Equivalence

• Prove that “skip; c  c” for all c
• Assume that D :: <skip; c, >  ’
• By inversion (twice) we have that

• Thus, we have D1 :: <c,>  ’

• The other direction is similar

<skip; c, >  ’
D ::

 <skip, >   D1 :: <c, >  ’

#45

Proving An Inequivalence

• Prove that x := y ¿ x := z when yz

• It suffices to exhibit a  in which the two
commands yield different results

• Let (y) = 0 and (z) = 1
• Then

<x := y, >  [x := 0]
<x := z, >  [x := 1] Special

Material
Ends

#46

Summary of
Operational Semantics

• Precise specification of dynamic semantics
– order of evaluation (or that it doesn’t matter)
– error conditions (sometimes implicitly, by rule

applicability; “no applicable rule” = “get stuck”)

• Simple and abstract (vs. implementations)
– no low-level details such as stack and memory

management, data layout, etc.

• Often not compositional (see while)
• Basis for many proofs about a language

– Especially when combined with type systems!

• Basis for much reasoning about programs
• Point of reference for other semantics

#47

Homework

• Don't Neglect Your Homework
• Read DPLL(T) and Simplex
• Peer Review for HW1

	Proof Techniques for Operational Semantics
	Contextual Derivations
	Context Decomposition
	Short-Circuit Evaluation
	Contextual Semantics Summary
	Today’s Cunning Plan
	Slide 7
	Why Bother?
	Never Underestimate
	Classic Example (Schema)
	Slide 11
	Slide 12
	Slide 13
	Induction
	Mathematical Induction
	Why Does It Work?
	Well-Founded Induction
	Structural Induction
	Notes on Structural Induction
	Example of Induction on Structure of Expressions
	Other Proofs by Structural Induction on Expressions
	Stating The Obvious (With a Sense of Discovery)
	Why That Is Not Possible
	Slide 24
	Q: Movies (292 / 842)
	Slide 26
	Slide 27
	Recall Opsem
	We Need Something New
	Induction on the Structure of Derivations
	Induction on Derivations
	New Notation
	Induction on Derivations (2)
	Induction on Derivations (3)
	Induction on Derivations (4)
	What Do You, The Viewers At Home, Think?
	Induction on Derivations (5)
	Induction on Derivations Summary
	Equivalence
	Notes on Equivalence
	Equivalence Examples
	Potential Equivalence
	Not An Equivalence
	Proving An Equivalence
	Proving An Inequivalence
	Summary of Operational Semantics
	Slide 47

