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Reminder: Small-Step 
Contextual Semantics

• In small-step contextual semantics, 
derivations are not tree-structured

• A contextual semantics derivation is a 
sequence (or list) of atomic rewrites:

<x+(7-3),> ! <x+(4),> ! <5+4,> ! <9,>

If <r, >  <e, ’> 

then <H[r], >  <H[e], ’>

x)=5

r = redex
H = context (has hole)
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Context Decomposition
• Decomposition theorem:

   If c is not “skip” then there exist unique 
H and r such that c is H[r]

– “Exist” means progress

– “Unique” means determinism
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Short-Circuit Evaluation

• What if we want to express short-circuit 
evaluation of  ?
– Define the following contexts, redexes and 

local reduction rules  
                H ::= ... | H  b2

                r ::= ... | true  b | false  b
                <true  b, >  <b, >
                <false  b, >  <false, >

– the local reduction kicks in before b2 is 
evaluated
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Contextual Semantics Summary
• Can view  as representing the program counter
• Contextual semantics is inefficient to implement 

directly

• The major advantage of contextual semantics: it 
allows a mix of local and global reduction rules
– For IMP we have only local reduction rules: only the 

redex is reduced
– Sometimes it is useful to work on the context too
– We’ll do that when we study memory allocation, etc. 
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Cunning Plan for 
Proof Techniques

• Why Bother?
• Mathematical Induction
• Well-Founded Induction
• Structural Induction

– “Induction On The Structure Of 
The Derivation”
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One-Slide Summary
• Mathematical Induction is a proof technique: If you 

can prove P(0) and you can prove that P(n) implies 
P(n+1), then you can conclude that for all natural 
numbers n, P(n) holds.

• Induction works because the natural numbers are 
well-founded: there are no infinite descending 
chains n > n-1 > n-2 > ... > ... . 

• Structural induction is induction on a formal 
structure, like an AST. The base cases use the 
leaves, the inductive steps use the inner nodes.

• Induction on a derivation is structural induction 
applied to a derivation D (e.g., D::<c, >  ’).
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Why Bother?

• I am loathe to teach you anything that I 
think is a waste of your time.

• Thus I must convince you that inductive 
opsem proof techniques are useful.
– Recall class goals: understand PL research 

techniques and apply them to your research

• This motivation should also highlight 
where you might use such techniques in 
your own research. 
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““Any counter-example posed by the Any counter-example posed by the 
Reviewers against this proof would Reviewers against this proof would 
be a useless gesture, no matter be a useless gesture, no matter 
what technical data they have what technical data they have 
obtained. obtained. Structural InductionStructural Induction is  is 
now the ultimate proof technique now the ultimate proof technique 
in the universe. I suggest we use in the universe. I suggest we use 
it.” --- Admiral Motti, it.” --- Admiral Motti, A New Hope A New Hope 
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Classic Example (Schema)
• “A well-typed program cannot go wrong.” 

– Robin Milner

• When you design a new type system, you must show 
that it is safe (= that the type system is sound with 
respect to the operational semantics). 

• A Syntactic Approach to Type Soundness. Andrew K. 
Wright, Matthias Felleisen, 1992.
– Type preservation: “if you have a well-typed program 

and apply an opsem rule, the result is well-typed.”
– Progress: “a well-typed program will never get stuck in a 

state with no applicable opsem rules”

• Done for real languages: SML/NJ, SPARK ADA, Java
– PL/I, plus basically every toy PL research language ever.
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Examples From the Recent Past
• “We prove soundness (Theorem 6.8) by mutual 

induction on the derivations of ...”

– An Operational and Axiomatic Semantics for Non-
determinism and Sequence Points in C, POPL 2014

• “The proof goes by induction on the structure of p.”

– NetKAT: Semantic Foundations of Networks, POPL 2014

• “The operational semantics is given as a big-step 
relation, on which our compiler correctness proofs can 
all proceed by induction ...”

– CakeML: A Verified Implementation of ML, POPL 2014

• Method: Chose 4 papers from POPL 2014, 3 of them use 
structural induction. 



#14

Induction

• Most important technique for studying 
the formal semantics of prog languages
– Understanding this is critical for performing 

and understanding PL research

• Mathematical Induction (simple)
• Well-Founded Induction (general)
• Structural Induction (widely used in PL)
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Mathematical Induction

• Goal: prove n  N. P(n)

• Base Case: prove P(0)

• Inductive Step:
– Prove 8 n>0. P(n) ) P(n+1)

– “Pick arbitrary n, assume P(n), prove P(n+1)”

• Why does induction work? 
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Well-Founded Induction

• A relation ¹  A £ A is well-founded if there 
are no infinite descending chains in A
– Example: <1 = { (x, x +1) | x  N }

• aka the predecessor relation

– Example: <  = { (x, y) | x, y  N  and x < y }

• Well-founded induction:
– To prove x  A. P(x) it is enough to prove 

x  A. [y ¹ x  P(y)]  P(x)

• If ¹ is <1 then we obtain mathematical 
induction as a special case 
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Structural Induction
• Recall e ::= n | e1 + e2 | e1 * e2 | x

• Define ¹  Aexp £ Aexp such that
e1 ¹ e1 + e2 e2 ¹ e1 + e2

e1 ¹ e1 * e2 e2 ¹ e1 * e2

– no other elements of Aexp £ Aexp are ¹-related

• To prove e  Aexp. P(e)
–  ` n  Z. P(n)

–  ` x  L. P(x)

–  ` e1, e2  Aexp. P(e1)  P(e2)  P(e1 + e2)

–  ` e1, e2  Aexp. P(e1)  P(e2)  P(e1 * e2)
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Notes on Structural Induction

• Called structural induction because the 
proof is guided by the structure of the 
expression

• One proof case per form of expression
– Atomic expressions (with no subexpressions) 

are all base cases

– Composite expressions are the inductive case

• This is the most useful form of induction 
in the study of PL
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Example of Induction on 
Structure of Expressions

• Let
– L(e) be the # of literals and variable occurrences in e
– O(e) be the # of operators in e

• Prove that e  Aexp. L(e) = O(e) + 1
• Proof: by induction on the structure of e

– Case e = n. L(e) = 1 and O(e) = 0
– Case e = x. L(e) = 1 and O(e) = 0

– Case e = e1 + e2. 
• L(e) = L(e1) + L(e2)   and   O(e) = O(e1) + O(e2) + 1

• By induction hypothesis L(e1) = O(e1) + 1 and L(e2) = O(e2) + 1

• Thus L(e) = O(e1) + O(e2) + 2 = O(e) + 1

– Case e = e1 * e2. Same as the case for +
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Other Proofs by Structural 
Induction on Expressions

• Most proofs for Aexp sublanguage of IMP
• Small-step and natural semantics obtain 

equivalent results: 
e  Exp. n  N.   e * n  e  n 

• Structural induction on expressions works 
here because all of the semantics are 
syntax directed
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Stating The Obvious 
(With a Sense of Discovery)

• You are given a concrete state . 

• You have ` <x + 1, >  5

• You also have ` <x + 1, >  88

• Is this possible? 
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Why That Is Not Possible

• Prove that IMP is deterministic
e  Aexp.   . n, n’  N.  <e, >  n    <e, >  n’     n = n’

b  Bexp.   . t, t’  B.  <b, >  t    <b, >  t’      t = t’

c  Comm. ’,’’  .  <c, >  ’    <c, >  ’’      ’ = ’’

• No immediate way to use mathematical induction

• For commands we cannot use induction on the 
structure of the command
– while’s evaluation does not depend only on the evaluation 

of its strict subexpressions

<while b do c, >  ’’
<b, >  true     <c, >  ’    <while b do c, ’>  ’’
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French Literature and Feminism

• This French existentialist author is known for 
her novels, essays and treatment of feminist 
and social issues. Her work, Le Deuxième 
Sexe, is often regarded as the start of second-
wave feminism. Her argument, “On ne naît 
pas femme, on le devient” (one is not born a 
woman, one becomes a woman), is viewed as 
one of the first articulations of a distinction 
between biological sex and socially-
constructed gender. 
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Q:  Movies  (292 / 842) 

•From the 1981 movie Raiders 
of the Lost Ark, give either 
the protagonist's phobia xor 
the composer of the musical 
score.  
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Sports
• Mountain climbing and carabiners are 

associated with this. In this common activity, 
tension and friction help ensure safety. These 
devices act as friction brakes, and allow the 
climber to easily vary the amount of friction 
on the rope by altering the rope's position. In 
one position, the rope runs freely through the 
device. In another position, it can be held 
(“locked off”) without the rope sliding 
through the device because of the friction on 
the rope. 
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Computer Science
• This Dutch Turing-award winner is famous for 

the semaphore, “THE” operating system, the 
Banker's algorithm, and a shortest path 
algorithm. He favored structured 
programming, as laid out in the 1968 article 
Go To Statement Considered Harmful. He was 
a strong proponent of formal verification and 
correctness by construction. He also penned 
On The Cruelty of Really Teaching Computer 
Science, which argues that CS is a branch of 
math and relates provability to correctness.



#28

Recall Opsem
• Operational semantics 

assigns meanings to 
programs by listing rules of 
inference that allow you to 
prove judgments by making 
derivations.

• A derivation is a tree-
structured object made up 
of valid instances of 
inference rules. 
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We Need Something New

• Some more powerful form of induction …
• With all the bells and whistles!
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Induction on the 
Structure of Derivations

• Key idea: The hypothesis does not just assume a c  
Comm but the existence of a derivation of <c, >  ’

• Derivation trees are also defined inductively, just like 
expression trees

• A derivation is built of subderivations:

• Adapt the structural induction principle to work on the 
structure of derivations

xi+1>  5 - i    5 - i  5

       <x  5, i+1>  true                          <x:=x+1; W, i+1>  0 

<while x  5 do x := x + 1, i+1>  0

<x:=x+1, i+1>  i               <W, i>  0 

x + 1i+1>  6 - i
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Induction on Derivations

• To prove that for all derivations D of a 
judgment, property P holds

• For each derivation rule of the form

• Assume P holds for derivations of Hi (i = 1..n)

• Prove the the property holds for the derivation 
obtained from the derivations of Hi using the 
given rule

 C 

H1 … Hn   
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New 
Notation

• Write D :: Judgment 
to mean “D is the 
derivation that 
proves Judgment”

• Example:

  D :: <x+1, >  2
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Induction on Derivations (2)
• Prove that evaluation of commands is deterministic:

       <c, >  ’  ’’  . <c, >  ’’  ’ = ’’

• Pick arbitrary c, , ’ and D :: <c, >  ’
• To prove: ’’  . <c, >  ’’  ’ = ’’ 

– Proof: by induction on the structure of the 
derivation D

• Case: last rule used in D was the one for skip

– This means that c = skip, and ’ = 
– By inversion <c, >  ’’ uses the rule for skip  
– Thus ’’ = 
– This is a base case in the induction

<skip, >  
D ::
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Induction on Derivations (3)
• Case: the last rule used in D was the one for 

sequencing

• Pick arbitrary ’’ such that D’’ :: <c1; c2, >  ’’.  
– by inversion D’’ uses the rule for sequencing
– and has subderivations D’’1 :: <c1, >  ’’1 and                   

D’’2 :: <c2, ’’1>  ’’ 

• By induction hypothesis on D1 (with D’’1): 1 = ’’1

– Now D’’2 :: <c2, 1>  ’’

• By induction hypothesis on D2 (with D’’2): ’’ = ’
• This is a simple inductive case

<c1; c2, >  ’
D ::

D1 :: <c1, >  1    D2 :: <c2, 1>  ’
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Induction on Derivations (4)
• Case: the last rule used in D was while true

• Pick arbitrary ’’ s.t. D’’::<while b do c, >  ’’
– by inversion and determinism of boolean expressions, D’’ 

also uses the rule for while true

– and has subderivations D’’2 :: <c, >  ’’1 and               
D’’3 :: <W, ’’1>  ’’ 

• By induction hypothesis on D2 (with D’’2): 1 = ’’1

– Now D’’3 :: <while b do c, 1>  ’’

• By induction hypothesis on D3 (with D’’3): ’’ = ’

<while b do c, >  ’
D ::

D1 :: <b, >  true    D2 :: <c, >  1      D3 :: <while b do c, 1>  ’
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What Do You, 
The Viewers At Home, Think?

• Let’s do if true together!
• Case: the last rule in D was if true

• Try to do this on a piece of paper. In a 
few minutes I’ll have some lucky winners 
come on down.

<if b do c1 else c2, >  1

D ::
D1 :: <b, >  true                             D2 :: <c1, >  1
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Induction on Derivations (5)

• Case: the last rule in D was if true

• Pick arbitrary ’’ such that     
D’’ :: <if b do c1 else c2, >  ’’
– By inversion and determinism, D’’ also uses if true

– And has subderivations D’’1 :: <b, >  true and 

D’’2 :: <c1, >  ’’

• By induction hypothesis on D2 (with D’’2): ’ = ’’

<if b do c1 else c2, >  ’
D ::

D1 :: <b, >  true                             D2 :: <c1, >  ’
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Induction on Derivations
Summary

• If you must prove x  A. P(x)  Q(x)
– with A inductively defined and P(x) rule-defined

– we pick arbitrary x  A and D :: P(x)

– we could do induction on both facts
• x  A         leads to induction on the structure of x

• D :: P(x) leads to induction on the structure of D

– Generally, the induction on the structure of the 
derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
– choosing the right one is a trial-and-error process

– a bit of practice can help a lot



#39

Equivalence

• Two expressions (commands) are equivalent if 
they yield the same result from all states

e1  e2 iff 

   n  N. 

<e1, >  n iff <e2, >  n
   and for commands

c1  c2 iff

’   
<c1, >  ’ iff <c2, >  ’

Starting here, the material
is not covered in lecture 

but is referenced in the HW.
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Notes on Equivalence

• Equivalence is like logical validity 
– It must hold in all states (= all valuations)
– 2  1 + 1 is like “2 = 1 + 1 is valid”
– 2  1 + x might or might not hold. 

• So, 2 is not equivalent to 1 + x

• Equivalence (for IMP) is undecidable
– If it were decidable we could solve the halting problem 

for IMP. How?

• Equivalence justifies code transformations
– compiler optimizations
– code instrumentation
– abstract modeling

• Semantics is the basis for proving equivalence
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Equivalence Examples
• skip; c  c 
• while b do c  

if b then c; while b do c else skip
• If e1  e2 then x := e1  x := e2

• while true do skip  while true do x := x + 1
• Let c be

while x  y do
     if x  y then x := x - y else y := y - x

    then   
(x := 221; y := 527; c) (x := 17; y := 17)



#42

Potential Equivalence

•(x := e1; x := e2)  x := e2

•Is this a valid equivalence?

`
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Not An Equivalence

• (x := e1; x := e2) ¿ x := e2

• Iie. Chigau yo. Dame desu!

• Not a valid equivalence for all e1, e2.

• Consider:
– (x := x+1; x := x+2) ¿ x := x+2

• But for n1, n2 it’s fine:

– (x := n1; x := n2)  x := n2
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Proving An Equivalence

• Prove that “skip; c    c” for all c
• Assume that D :: <skip; c, >  ’
• By inversion (twice) we have that

• Thus, we have D1 :: <c,>  ’

• The other direction is similar

<skip; c, >  ’
D ::

   <skip, >      D1 :: <c, >  ’
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Proving An Inequivalence

• Prove that x := y ¿ x := z when yz

• It suffices to exhibit a  in which the two 
commands yield different results

• Let (y) = 0 and (z) = 1
• Then 

<x := y, >  [x := 0]
<x := z, >  [x := 1] Special

Material
Ends
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Summary of 
Operational Semantics

• Precise specification of dynamic semantics
– order of evaluation (or that it doesn’t matter)
– error conditions (sometimes implicitly, by rule 

applicability; “no applicable rule” = “get stuck”)

• Simple and abstract (vs. implementations)
– no low-level details such as stack and memory 

management, data layout, etc.

• Often not compositional (see while)
• Basis for many proofs about a language

– Especially when combined with type systems!

• Basis for much reasoning about programs
• Point of reference for other semantics
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Homework

• Don't Neglect Your Homework
• Read DPLL(T) and Simplex
• Peer Review for HW1
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