THIS 1S WHAT T
LIKE ABOUT

\gﬁ S | PUOTOGRAPHY.

= L PEOPLE THINK

CAMERAS ALWAIS
TELL THE TRUTH.

THEY THINK THE CAMERS, FOR BXAMPLE, I'VE CLEARED | IS THIS BVEN WAIT, LET
IS A DISPASSIONATE
MACHINE THAT RECORDS TAKE A PICTURE OF ME HERE,
ONLY FACTS, BUT REAUM, | |BUT CROP OUT ALL THE MESS
CAMERAS LIE ALL ARUND WIE, S0 1T LookS LIkE
THE TIME/ SELECT] | T KEEP W RoOM TIDY.

THE FACTS AND
You MANIPULKTE

OFF THIS CORNER oF MY BED. LEGALT ME COMR
MY HAIR

AND PUT O
A TIE.

SN

¥ ANIOME HITS ME WITH
A SHOWEBARLL, T'U WiT MM
— WiTH 250

—

WHAT 'F SOMERDIM HITS
Yo Wit 250 SHOWRALLST

—l'.'.

14

Topic:
Software Model Checking via
Counter-Example Guided

Abstraction Refinement

e There are dozens of CEGAR papers; | will
skim.

#2

SLAM Overview

e INPUT: Program and Specification
- Standard C Program (pointers, procedures)

- Specification = Partial Correctness
« Given as a finite state machine (typestate)
o “l use locks correctly”, not “lI am a webserver”

« OUTPUT: Verified or Counterexample

- Verified = program does not violate spec
« Can come with proof!

- Counterexample = concrete bug instance
o A path through the program that violates the spec

#3

Take-Home Message

« SLAM is a software model checker. It
abstracts C programs to boolean
programs and model-checks the boolean
programs. CEGAR is a common method.

e No errors in the boolean program implies
no errors in the original.

e An error in the boolean program may be a
real bug. Or SLAM may refine the
abstraction and start again.

#4

Property 1: Double Locking

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

#5

Property 2: Drop Root Privilege

setuid(1)

setuid(‘l)l

R=0E=1,8=0)) setuid(1) @

setuid(0) setwd

R=0,E=0,S= setuid(0) i setuid(1)

[Chen-Dean-Wagner '02]

“User applications must not run with root
privilege”

When execyv is called, must have suid = 0

#6

Property 3 : IRP Handler

start NP

allDrive

completion

no prop
completion

CallDriver

Complete

Mark Pending

Skip

CallDriver,

CallDriver

: synch

<«

QaIIDrive'

. o“‘ed

MPR
completion

DIOP
ompletio

no prop
completion

_ CallDriver

Complete
equest

CallDriver

[Fahndrich]

#7

Example SLAM Input

Example () {
1l: dof{
lock() ; lock
old = new;
g = g->next;
2: if (g != NULL) { unloc
3: g->data = new;
unlock () ; unloc lock
new ++; '
}
4: } while(new != old);
5: unlock ()
return;

#8

SLAM in a Nutshell

SLAM(Program p, Spec s) = // program
Program q = incorporate_spec(p,Ss); /] slic
mutable PredicateSet abs = { };
while true do
BooleanProgram b = abstract(q,abs); /]l c2bp
match model_check(b) with // bebop
| No_Error — printf(“no bug”); exit(0)
| Counterexample(c) —

if is_valid_path(c, p) then // newton
printf(“real bug”); exit(1)

else
abs + abs U new_preds(c) // newton

done

#9

Incorporating Specs

Example () {
1l: dof
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4: } while(new != old);
5: wunlock ()
return;

unlock

unlock . lock

Example () {

1: dof
if L=1 goto ERR;
else L=1;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
if L=0 goto ERR;
else L=0;
new ++;
}
4: } while(new != old);
5: 1if L=0 goto ERR;
else L=0; riginal program
return; violates spec iff

ERR: abort()c

: new program

#10

Program As
Labeled Transition System

T _.o_:\g/':ﬁ St(: Transition N ‘

pc 3 3: unlock(); pPc P4
lock > @ new++; lock QO
old —5 4:} .. old —5

new — 5 new — 6

/ \ q > 0x133a q > 0x133a
(o—9
Example () {
1: do {
® /@) T o lock () ;
old = new;
q = g->next;
l v\\\ 2: if (g != NULL) {
—® [] [® 3: g->data = new;

unlock () ;

}
4: } while(new != old);
5: unlock ()
return; }

#11

The Safety Verification Problem

° ° [o o [Error

* T%—‘ T T T (e.g., states with

° I ° '—-o—»l ° o .\ PC = Err)

: Safe States
(never reach

: Error)
([O——: 170\.—'.—'.
Is there a path from an to an error state ?

Problem: Infinite state graph (old=1, old=2, old=...)
Solution : Set of states ~ logical formula

#12

Representing
[Sets of States] as Formulas

[F] F

states satisfying F {s | sEF }| FO fmla over prog. vars
[F 1N [F.] FiNF,
[F1UIF.] F,VF,

[F] - F

[F:] € [F,] F,=F,

i.e. F,A=F, unsatisfiable
#13

ldea 1: Predicate Abstraction

Rl Rl D B
s e e R
e
L
g
BB ./
B RN

Predicates on program state:
lock (i.e., lock=true)
old = new

States satisfying same predicates

are equivalent
- Merged into one abstract state

#abstract states is finite

- Thus model-checking the
abstraction will be feasible!

#14

Abstract States and Transitions

S

State

@ - @

3: unlock () ;
new++,;
4:1 ..

>
Theorem Prover

lock — lock
old=new — old=new

Abstraction

M A i U State
0 e Y Y Y ,
7 R .
—— —
A A A 3: unlock() ;
I I * new++;
e —— 4:} ..
T NN
LT NN
f I f A l A A,
I/ | e L / >
T T -—— T Theorem Prover
lock — lock
Existential Lifting old=new -~ old=new

(i.e., A,—A, iff Ic.€A,. Jc,€A,. c,—c,) #16

Abstraction

. State

HH @ - @

3: unlock () ;

i new++,;
4:} ..

lock — lock
old=new — old=new

#17

Analyze Abstraction

Analyze finite graph
Over Approximate:
I Safe = System Safe

No false negatives

4
. |
ot
?il__ﬁ __:{_’} Problem

Spurious counterexamples

#18

ldea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples

4 to refine abstraction!

#19

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
states across cut
2. Build refined abstraction

Imprecision due to merge

#20

lterative Abstraction-Refinement

Solution
Use spurious counterexamples

to refine abstraction

T/ 1. Add predicates to distinguish

7
\1\‘ states across cut
S — _IFI> 2. Build refined abstraction
—|————|>®
/ -eliminates counterexample

3. Repeat search

[Kurshan et al 93] [Clarke et al 00] Untill real counterexample

[Ball-Rajamani 01] or system proved safe

#21

Problem: Abstraction is Expensive

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

1/

—

Reachable

Observe

Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2190
#Reach ~ 1000’s

#22

olution1: Only Abstract Reachable States

|/

—
Safe

Problem Solution

#abstract states = 2#predicates Build abstraction during search

Exponential Thm. Prover queries

#23

on2: Don’t Refine Error-Free Regions

T

ror
! 1
e

Problem Solution

#abstract states = 2#predicates Don’t refine error-free regions
Exponential Thm. Prover queries

#24

Sanskrit Epics

e The Ramayana (JIHYUH) consists of over
20,000 Sanskrit verses speaking of
virtue, relationships, life and culture. It
is a significant text in the Hindu
tradition with a large influence on
classical poets. This character is
associated with sacrifice, love and
purity. She chooses her husband in a
heroic contest from among many others
and follows him into exile in the forest.

Musical Theater

e This 2003 solo is sung by the main character,
Elphaba, with two small duets at the
beginning and the middle of the song (with
Glinda) and a chorus at the end. It capstones
the play's first act, in which Elphaba realizes
the truth about the Wizard of Oz and vows to
fight him, beginning her evolution into the
"Wicked Witch of the West".

Textiles

o This twill fabric was originally made
from pure cotton. It is commonly
used in trousers. Pants of this fabric
gained popularity in the U.S. when
Spanish-American War veterans

returned from the Philippines with
their twill military trousers. The
American Heritage Dictionary says
that the word is from American

Spanish for "toasted”, in reference
to its usual color, but this is not a |
usual meaning of that Spanish word. |

Q: Computer Science

e This American Turing award winner is
sometimes called the “father” of analysis of
algorithms, and is known for popularizing
asymptotic notation, creating TeX, and co-
developing a popular a string search
algorithm. His most famous work is The Art of
Computer Programming. :

Reachability Tree

Initj .
I, ol Unroll Abstraction

e 1. Pick tree-node (=abs. state)

2 2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

#29

Reachability Tree

"": ol Unroll Abstraction
1. Pick tree-node (=abs. state)
2 2. Add children (=abs. successors)
_/ 3. On re-visiting abs. state, cut-off
< \5 ; / Find min infeasible suffix

- Learn new predicates
Ll [l - Rebuild subtree with new preds.

Error Free

#30

Initial

Reachability Tree

Z \
5
N
LEL1h B
Error Free
S1:

SAFE

Unroll

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix

- Learn new predicates
- Rebuild subtree with new preds.

Only Abstract Reachable States

S2: Don’t refine error-free regions

#31

Build-and-Search

Example () {
1: dof{
lock () ;
old = new; 1| - LOCK
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock ()
}

1

Reachability Tree

Predicates: Lock #32

Build-and-Search

Example () {
1: dof{
lock () ;
old = SGW;t lock () 1| - LOCK
g = g—>next; _
2: if (q != NULL){ OLE = HE o
3: g->data = new; q=q->next 2| LOCK
unlock () ;
new ++;
}
4:}while (new != o0ld);

5: unlock ()
}

1—12

Reachability Tree

Predicates: Lock #33

Build-and-Search

Example () {
1: dof{
lock () ;
old = new; 1| - LOCK
g = g—>next;
|_2: if (g != NULL) { ®
3. g->data = new; yJ LOCK
unlock () ; [q!=NULL]
new ++;
}
4:}while (new != o0ld); 3 LOCK
5: unlock ()

}

112713

Reachability Tree

Predicates: Lock #34

Build-and-Search

Example () {
1: do{
lock () ;
old = new; 1| - LOCK

g = g->next;

2. 1 f (~ 1= NIIT.T\) ! .

3: g->data = new; 2 LOCK

unlock () ;

new ++; __1/////

)
4:}while (new != old); _ _ 3 LOCK
5: unlock () ; g->data new
) unlock () O
new++
4 - LOCK

112713

Reachability Tree

Predicates: Lock #35

Build-and-Search

Example () {
1: dof{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}

Lf:}while(new = o0ld) ;

5: unlock ()
}

]
1
|
3

1—+—2 1

Predicates: Lock

1| - LOCK
2 LOCK
3 LOCK
4 - LOCK
[new==01d]
5 - LOCK

Reachability Tree

#36

Build-and-Search

Example () {
1: dof{
lock () ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:lwhile (new != old);

5: unlock ()

}

]
1
|
3

1—1—2 1

Predicates: Lock

unlock ()

Reachability Tree

1| - Lock
o
2| Lock
LOCK
- LOCK
- LOCK
- LOCK

#37

Analyze Counterexample

Example () {
1: dof
lock () ;

old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock ()
}

?
1
|
3

1—1+—2 1

Predicates: Lock

1| —LOCK lock ()

‘ old = new

2 LOCK g=g->next
_/ [q!=NULL]
3 LOCK g->data = new
O unlock ()
new++
4 - LOCK
[new==01d]
5 - LOCK
unlock ()
- LOCK

Reachability Tree

#38

Analyze Counterexample

Example ()

1: dof{

{

lock () ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock ()

}

1—

— —

—

?
1
|
3

Predicates: Lock

2
__1/////
3 LOCK
O
4 - LOCK
5 ~ LOCK
i O
- LOCK

- LOCK
‘ old = new
LOCK

new++

[new==01d]

Inconsistent

new == old

Reachability Tree

#39

Repeat Build-and-Search

Example () {
1: dof{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock () ;
}

1

Predicates: LOCK, new==old

1| - LOCK

Reachability Tree

#40

Repeat Build-and-Search

Example () {
1: dof
lock () ;
old = new; 1| - LOCK
g = g->nexty;
2: if (g != NULL) { . lock ()
3: g->data = new; 2 old = new
e (1) ¢ LOCK , new==old B
g=g->next
new ++;
}
4:}while (new != old);

5: unlock ()
}

1__>2

Reachability Tree

Predicates: Lock, new==old #41

Repeat Build-and-Search

Example () {
1: do{
lock () ;
old = new;t 1| - Lock
q = g->next;
2. it (ol NIITT) L .
3: g->data = new; 2
unlock () ; LOCK , new==old
new ++;
)
4:}while(new != old); —
5: unlock () : LOCK , new==old | 3 SRR
} (:) unlock ()
4 new++
- LOCK , = new = old
41&
11,3

Reachability Tree

Predicates: Lock, new==old #42

Repeat Build-and-Search

Example () {
1: dof
lock () ;
old = new; 1 L LOCK
g = g->next;
2: if (g != NULL) { o
3: g->data = new; 2
unlock () ; LOCK , new==old
new ++;
!
| 4:)while(new != old); LOCK , new==old | 3

5: unlock () ;
) O

- LOCK , = new = old 4

‘//%//}new==old]

4Ak

1+ PF3

Reachability Tree

Predicates: Lock, new==old #43

Repeat Build-and-Search

Example () {
1: dof{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}

Lﬁ:}while(new !'= old);
5: unlock ()
}

- LOCK , = new = old 4

144
—

1+ PF3

Predicates: Lock, new==old

1| - LOCK

LOCK , new==old 2

LOCK , new==old | 3

O

[new!=0l1ld]

A/~/1

- LOCK,
- new == old

Reachability Tree

#44

Repeat Build-and-Search

Example () {
1: dof{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock () ;
}

1 54
a: [4
1+ F3

Predicates: Lock, new==old

LOCK , new==old

LOCK , new==old | 3

O

- LOCK , = new = old 4

1

- LOCK,
- new == old

O]

- LOCK

SAFE

LOCK , new=old

- LOCK , new==old

Reachability Tree

#45

Initial

Reachability Tree

Z \
5
N
LEL1h B
Error Free
S1:

SAFE

Unroll

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix

- Learn new predicates
- Rebuild subtree with new preds.

Only Abstract Reachable States

S2: Don’t refine error-free regions

#46

Two handwaves

#47

Two handwaves

Q. How to compute “successors” ?

LOCK , new==old | 3

g->data = new
unlock ()
4 new++

- LOCK , = new = old

#48

Two handwaves

Q. How to compute “successors” ?

Q. How to find predicates ?
Refinement

Predicates: Lock, new==old 245

Two handwaves

Q. How to compute “successors” ?

50

Weakest Preconditions

WP(P,0P)
Weakest formula P’ s.t.
if P’ is true before OP
then P is true after OP

[WP(P, OP)]

#51

Weakest Preconditions

WP(P,0P)
Weakest formula P’ s.t.
if P’ is true before OP
then P is true after OP

Ple/x]

Assign
X=e

>

new+1 = old

new = old

new = new+1l

m [WP(P, OP)]
I\
G T [P

#52

How to compute successor ?

Example () {
1: dof{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock () ;
}

Predicates: Lock, new==old

LOCK , new==old

O

- LOCK , = new = old

For each p

OP

. Check if p is true (or false) after OP

Q: When is p true after OP ?
- If WP(p, OP) is true before OP !
- We know F is true before OP
- Thm. Pvr. Query: F = WP(p, OP)

#53

How to compute successor ?

Example () {
1: dof{
lock () ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock () ;
}7

Predicates: Lock, new==old

LOCK , new==old | 3 F

O OP

For each p
. Check if p is true (or false) after OP

Q: When is p false after OP ?

- If WP(-p, OP) is true before OP !
- We know F is true before OP

- Thm. Pvr. Query: F = WP(-p, OP)

#54

How to compute successor ?

Example () {
1: dof{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != o0ld);

5: unlock () ;
}

Predicate: new==old

LOCK , new==old

O

- LOCK , = new = old

For each p
Check if p is true (or false) after OP

True ? (LOCK , new==old) = (new + 1 = old)

False? (1 0CK , new==o0ld) = (new + 1 =old)

OP

#55

Advanced SLAM/BLAST

Too Many Predicates

- Use Predicates Locally
Counter-Examples

- Craig Interpolants
Procedures

- Summaries
Concurrency

- Thread-Context Reasoning

#56

SLAM Summary

Instrument Program With Safety Policy
Predicates = { }

Abstract Program With Predicates

- Use Weakest Preconditions and Theorem Prover Calls
Model-Check Resulting Boolean Program
- Use Symbolic Model Checking

Error State Not Reachable?

- Original Program Has No Errors: Done!
Check Counterexample Feasibility

o Use Symbolic Execution

Counterexample Is Feasible?

- Real Bug: Done!

Counterexample Is Not Feasible?

1) Find New Predicates (Refine Abstraction)
2) Goto Line 3

#57

1:
2
3
4
5:
6
7
8

)

Optional: SLAM Weakness

F()

:int x=0;
: lock();

: do x++;
while (x # 88);
s if (x < 77)

lock();

Preds = {}, Path = 234567
[X=0, —x+1£88, x+1<77]
Preds = {x=0}, Path = 234567
[X=0, —x+1%£88, x+1<77]
Preds = {x=0, x+1=88}

Path = 23454567

[X=0, —x+2#88, x+2<77]
Preds = {x=0,x+1=88,x+2=88}
Path = 2345454567

Result: the predicates “count”
the loop iterations 458

Homework

e Read Henzinger's Lazy Abstraction
e Optional Reading
« HWO Due Friday

#59

	Having a BLAST with SLAM
	Topic: Software Model Checking via Counter-Example Guided Abstraction Refinement
	SLAM Overview
	Take-Home Message
	Property 1: Double Locking
	Property 2: Drop Root Privilege
	Property 3 : IRP Handler
	Example SLAM Input
	SLAM in a Nutshell
	Incorporating Specs
	Program As Labeled Transition System
	The Safety Verification Problem
	Representing [Sets of States] as Formulas
	Idea 1: Predicate Abstraction
	Abstract States and Transitions
	Abstraction
	Slide 17
	Analyze Abstraction
	Idea 2: Counterex.-Guided Refinement
	Slide 20
	Iterative Abstraction-Refinement
	Problem: Abstraction is Expensive
	Slide 23
	Slide 24
	Q: Books (704 / 842)
	Slide 26
	Slide 27
	Slide 28
	Key Idea: Reachability Tree
	Slide 30
	Slide 31
	Build-and-Search
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Analyze Counterexample
	Slide 39
	Repeat Build-and-Search
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Two handwaves
	Slide 48
	Slide 49
	Slide 50
	Weakest Preconditions
	Slide 52
	How to compute successor ?
	Slide 54
	Slide 55
	Advanced SLAM/BLAST
	SLAM Summary
	Optional: SLAM Weakness
	Homework

