Programming Languages
Topic of Ultimate Mastery

Wes Weimer
EECS 590

http://web.eecs.umich.edu/~weimerw/590/

http://web.eecs.umich.edu/~weimerw/590/

Reasonable Initial Skepticism

il
¥

Today’s Class

e Vague Historical Context

e Goals For This Course

e Requirements and Grading
e Course Summary

e Where is PL most useful?

Meta-Level Information

o Please interrupt at any time!

o Completely reasonable questions:
- I don’t understand: please say it another way.
- Slow down, you talk too fast!
- Wait, | want to read that!

- | didn’t get joke X, please explain. -
['VE MISSED \ You SHOULDNT LOOK, T DONT THINK R‘NNGG I GO AHEAD, | I WAVE ALL THESE]

‘ NES
HALF OF MY | BE PLANNING TS TOO MUCH TO ASK DAD. I | GREAT GENES,
TV SHOW NOW. | YOUR LIFE HMPH.) THAT WE SIT TOGETHER BELIEVE | BUT THEYRE
I HOPE YW'RE / AROUND THE FOR 40 MINUTES WITH- TWL GET \TY [|YOU WERE | RECESSWE.
HAPPY TV ANYWAY. QUT DISTRACTIONS I'M EXPECTING | | SNING | THATS THE
' . B\ ACAL. ||SOMETHING
(.\:‘; \g"'":raa;"’
g P e
30 E SO o (/ 2N ..M.,:-
3570 YN0
; oM
g 13" ‘ ;“l' iy

What Have You Done For Us Lately?

o PL is an old field within Computer Science
- 1920’s: “computer” = “person”
- 1936: Church’s Lambda Calculus (= PL!)
- 1937: Shannon’s digital circuit design
- 1940’s: first digital computers
- 1950’s: FORTRAN (= PL!)
- 1958: LISP (= PL!)
- 1960’s: Unix
- 1972: C Programming Language
- 1981: TCP/IP
- 1985: Microsoft Windows
- 1992: Ultima Underworld / Wolfenstein 3D
- 2001: 3G Cellphones

A Brief Tour

e ... of PL research impact at companies

e« Themes:
- Multiple types of companies make languages
- PL tools apply to many domains

- PL research is embedded in other hardware
and software

- PL is interdisciplinary

OpenAl’'s Codex / Copilot

e (More detail on LLMs later in the course)

Codex is the model that powers GitHub Copilot, which we built and launched in partnership
with GitHub a month ago. Proficient in more than a dozen programming languages, Codex
can now interpret simple commands in natural language and execute them on the user’s
behalf—making it possible to build a natural language interface to existing applications. We
are now inviting businesses and developers to build on top of OpenAl Codex through

our APL.

OpenAl Codex is a descendant of GPT-3; its training data contains both natural language
and billions of lines of source code from publicly available sources, including code in public
GitHub repositories. OpenAl Codex is most capable in Python, but it is also proficient in
over a dozen languages including JavaScript, Go, Perl, PHP, Ruby, Swift and TypeScript, and
even Shell. It has a memory of 14KB for Python code, compared to GPT-3 which has only
4KB—so it can take into account over 3x as much contextual information while performing
any task.

Google

e Go, TensorFlow, Carbon, Dart, etc.

. Dart GET STARTED ~ FUNDAMENTALS + WEB~ SERVER ~ MORE ~ Search

Code Samples

Synonyms with Other Languages
Dart by Example

Scalable, productivejms

Language Specification

Dart is an open-source, scalable programming language, with robus
Who Uses Dart

FAQ
Logos and Colors

Documents

The Go Programming Language

// You can edit this code! efficit
// Click here and start typing.
package main

R W Y W

Carbon (programming language)

Article Talk @
From Wikipedia, the free encyclopedia

Try Go Pop-out l’ GO iS o.__/\.
that r

Carbon is an experimental programming language designed for connectiveness with

c++.11 The project is open-source and was started at Google. Google engineer Download Go

I Hello, World! LI ' Binary distributions available for
Run Share Tour Linux, Mac OS X, Windows, and more.

Oracle

« Java Compiler, Java Virtual Machine, ...

0O
lIn

@ View Accounts ‘QJ Contact Sales

Products Industries Resources Customers Partners Developers Company

Java

— : . !
|

Oracle Java is the #1 programming language and development platform. - N~
It reduces costs, shortens development timeframes, drives innovation, Ve

and improves application services. With millions of developers running s Ne”
more than 60 billion Java Virtual Machines worldwide, Java continues to o ;) N N\
be the development platform of choice for enterprises and developers. 7) N - ——

Assess the health of your Java environment Download Java A —— _

Intel

e Intel's C++ Compiler

PRODUCTS SUPPORT SOLUTIONS DEVELOPERS PARTNERS FOUNDRY 8 @ENGUEH Q Search Intel.com

Developers Tools v oneAPI v Components v All Components Intel® oneAPI DPC++/C++ Compiler

Intel® one AP| DPC++/C++ Compiler

A Standards-Based, Cross-architecture Compiler

Having a SYCL* 2020-conformant compiler means you can have confidence that your code is future-proof—it's portable and
reliably performant across the diversity of existing and future-emergent architectures and hardware targets, including GPUs

Find Out Why It's Important

10

Facebook

Docs Try APl Community Blog A® English Q Search GitHub

[2AsoN

type schoolPerson = Teacher | Director | Student(string);

let greeting = person =>

Student(anyOtherName) => "Hey, " ++ anyOtherName ++ "."

it Reason lets you write simple, fast and quality type
| Teacher => "Hey Professor!” safe code while leveraging both the JavaScript &
| Director => "Hello Director.”

| Student("Richard”) => "Still here Ricky?" OCaml ecosystems.

|

b

11

Apple

e LLVM. Objective-C (i0S, etc.).

Mac Developer Library

LLVM Compiler Overview

LLVM Compiler Overview

The LLVM compiler is the next-generation compiler, introduced in Xcode 3.2 for Snow Leopard, based on the open source LLVM.org project. The
LLVM.org project employs a unique approach of building compiler technologies as a set of libraries. Capable of working together or independently, these

libraries enable rapid innovation and the ability to attack problems never before solved by compilers. Multiple technology groups within Apple are active
contributors within the LLVM.org community, and they use LLVM technology to make Apple platforms faster and more secure.

In Xcode, the LLVM compiler uses the Clang front end (a C-based languages project on LLVM.org) to parse source code and turn it into an interim format.
Then the LLVM code generation layer (back end) turns that interim format into final machine code. Xcode also includes the LLVM GCC compiler, which
uses the GCC compiler front end for maximum compatibility, and the LLVM back end, which takes advantage of LLVM's advanced code generator. This

shows the flexibility of a library-based approach to compiler development. There are many other features, such as link-time optimization, more detailed
diagnostic information, and even static analysis, that are made available to Xcode due to the adoption of LLVM.

About Objective-C

Objective-C is the primary programming language you use when writing software for OS X and iOS. It's a superset
of the C programming language and provides object-oriented capabilities and a dynamic runtime. Objective-C
inherits the syntax, primitive types, and flow control statements of C and adds syntax for defining classes and
methods. It also adds language-level support for object graph management and object literals while providing
dynamic typing and binding, deferring many responsibilities until runtime.

12

Microsoft FlashFill

as part of the Flash Fill feature in Excel in Office 2013. Here's a small video illustrating this feature. Here's another
small video illustrating potential extensions.

Here's the inside story of how it came about: Flash Fill Gives Excel a Smart Charge

Here are some other videos on FlashFill

® You-tube: Excel 2013 Flash Fill: 23 Amazing Examples, Excel 2013- Flash Fill, Meet new Excel's Flash Fill, Dutch
video, French Video, German video, Japanese video, Polish video, Romanian video, Urdu video, Musical

® Microsoft: Rick Rashid on FlashFill (in conversation with John Markoff of New York Times), Office Blog, Customer
Preview Video (See the video segment from 0:35-0:40), Peter Lee on FlashFill (in his Keynote Speech on the 14th
Computing in the 21st Century Conference — See the video segment from 22:22-27:20)

® CNet: Microsoft gives new Office a Windows 8 look (This video is at the bottom of the page. See the video
segment from 2:00-3:01)

Here is what popular media says about this feature

s ® PC Magazine: My favorite new feature, because it saves a tremendous amount of time-wasting effort, is called
Flash Fill, and it's one of many features where Excel acts as it it's using its brain, not just its raw number-crunching
ower. With some experimentation, you may find that Flash Fill is smarter than you expect.

B2

W oo Ny WU b WIN =

Dur programming by example work (POPL 207T), also recognized as CACM Research Highlights (CACM 2012), ships

People

Sumit Gulwani
Partner Research Manager|

VIEW QUICK CODE

>
542368978 542-36-8978 | Cirl-E 2 |542368978
123145542 3 123145542
121247543 4 121247543
454545465 5 454545465
642548745 6 642548745
514852145 7 514852145
152358834 8 152358834
642974682 Q RAIQT7ARQ)

542-36-8978

123-14-5542
121-24-7543
454-54-5465
642-54-8745
514-85-2145

152-35-8834
AA7-Q7-ARR)

13

DARPA Cyber Grand Challenge

The ultimate test of wits in computer security occurs through open competition on the global
Capture the Flag [CTF) tournament circuit. In CTF contests, experts reverse-engineer software,
probe its weaknesses, search for deeply hidden flaws and create securely patched replacements.

What if a purpose-built computer systems could compete against the CTF circuit’s greatest
experts? DARPA has modeled the Cyber Grand Challenge on today’s CTF tournaments to pave the
way toward that future.

On August 4th, 2016, DARPA will hold the world’s first all-computer Capture the Flag tournament
in Las Vegas. Seven prototype systems will square off against each other, competing for nearly $4
million in prizes in a live network competition. The CGC Final Event will take place in conjunction
with DEF CON, home of the longest-running annual CTF competition.

To learn more about the Cyber Grand Challenge, explore this site and visit DARPA's official CGC

homepage, CGC Final Event announcement and CGC news articles.

14

DARPA Cyber Grand Challenge

The ultimate test of wits in computer security occurs through ¢
Capture the Flag [CTF) tournament circuit. In CTF contests, ex
probe its weaknesses, search for deeply hidden flaws and cre3

What if a purpose-built computer systems could compete agai
experts? DARPA has modeled the Cyber Grand Challenge on t¢
way toward that future.

On August 4th, 2016, DARPA will hold the world's first all-com
in Las Vegas. Seven prototype systems will square off against §
million in prizes in a live network competition. The CGC Final £
with DEF CON, home of the longest-running annual CTF comp

To learn more about the Cyber Grand Challenge, explore this s|

homepage, CGC Final Event announcement and CGC news art
1

Abstract

The automatic exploit generation challenge is given
a program, automatically find vulnerabilities and gener-
ate exploits for them. In this paper we present AEG, the
first end-to-end system for fully automatic exploit gener-
ation. We used AEG to analyze 14 open-source projects
and successfully generated 16 control flow hijacking ex-
ploits. Two of the generated exploits (expect-5.43 and
htget-0.93) are zero-day exploits against unknown vul-
nerabilities. Our contributions are: 1) we show how
exploit generation for control flow hijack attacks can be
modeled as a formal verification problem, 2) we pro-
pose preconditioned symbolic execution, a novel tech-
nique for targeting symbolic execution, 3) we present a
general approach for generating working exploits once
a bug is found, and 4) we build the first end-to-end sys-
tem that automatically finds vulnerabilities and gener-
ates exploits that produce a shell.

15

DARPA Cyber Grand Challenge

Abstract

AEG searches for bugs at the source code level Jploit generation challenge is given

; » . cally find vulnerabilities and gener-
by exploring execution paths. Specifically, AEG R} " ner we present aEG, the

executes iwconfig using symbolic arguments [¥m for fully automatic exploit gener-
: : to analyze 14 open-source projects
and successfully generated 16 control flow hijacking ex-

e F S]

' . . _ enerated exploits (expect-5.43 and
AEG performs dynamic analysis on the 1wconf ig Wday exploits against unknown vul-

binary using the concrete input generated in step 2. Wpniributions are: 1) we show how
r control flow hijack attacks can be

modeled as a formal verification problem, 2) we pro-

reamsanandicanyd symbolic execution, a novel tech-
AEG generates the constraints descrlbmg the ex- ymbolic execution, 3) we present a

ploit using the runtime information generated [’ generating working exploits once

. .) we build the first end-to-end sys-
lly finds vulnerabilities and gener-
ates exploits that produce a shell.

16

Microsoft

e (In addition to Visual Studio, MSVC++,

etc.) Software, Languages, Analysis and
Model Checking

SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses and to aid
software engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver
Verifier is a tool in the Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of
computer science for many decades but now in some very key areas, for
example, driver verification we're building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.”
Bill Gates, April 18, 2002. Keynote address at WinHec 2002

iI=noda.x); | ++ VIS igcs end() 10ue){

17

Facebook: Infer and Sapienz

(=3 SRC/APK

Facebook’s static analyser is called Infer. The company open-sourced the tool in 2013, and a lot of
big names (Uber, Spotify, Mozilla) use it. There isn't a whole lot to say about it, other than it
seems to be very popular and effective; download it today!

SAPIENZ |---

]

Instrumented APK [<— Multi-level Instrumenter Decompiler [

Device

Static Strings

5 E @ Android | I e i e Logger :)E DB >

———————————————————————————— MOTIFCORE

i]

Gene Interpreter [<] Test Replayer

Facebook’s evolutionary search for
crashing software bugs

Ars gets the first look at Facebook's fancy new dynamic analysis tool.

SEBASTIAN ANTHONY - 22/8/2017, 02:52

Figure 1:

Report Generator

Rl
<
€

Initialiser |

0O
Dol |2 o
2E([83] |53
35| |38 |2
®
Solutions
(Test Suites)

Sapienz workflow.

Wind River, Green Hills

« Embedded Systems

Wind River Diab
Compiler: Optimize :‘
Your Code d

Now you can buy Wind River Diab Compiler online in)
the U.S., Canada, Europe, and Japan, starting at
$2,700. Log in or create an account to get started.

v

Buy Now

Safety-Compliant Technical Resources

Code Specifications

What's New? Key Features

Big Performance. Tiny Footprint.

Boost application performance, reduce memory footprint, and produce high-

quality, standards-compliant code for with Wind River®

]

Diab Compiler. It's backed by an award-winning global support organization that Safety

Reliability

Support
 Tiny footprint
* Big performance

draws on 35+ years of compiler experience and hundreds of millions of
successfully deployed devices.

5 reasons
will help you build better intelligent systems software

Founded 1981; 1,800+ employees;
$400M+ revenue/year

Green Hills

_~s s
- INTEGRITY.

GLOBAL SECURITY

Leading the Embedded World

SOFTWARE

Benefits | Services | Support | Partners

Markets

" QCAREER

Products

TC00 «

m_ -+

On-Campus Recruiting | Career Opportunities To Apply

Hiring top engineers and more

At Green Hills Software, our mission is to make computers safe for humanity. We make software that never fails and cannot be hacked, and we

y. We develop novel solutions to replace the insecure software that is currently running the world's

do this by using the t
critical infrastructure with our secure, safe, and reliable software

Our software is the heart of airline flight systems, secure smartphones, automotive systems, rockets, and more. Green Hills Software is the
leading provider of software used to build high-reliability systems that millions of people depend on every day. When you drive a car, send a
message, or board a plane, you rely on the work of thousands of programmers and designers who use our solutions.

QOur hiring process is intense and selective, resulting in elite teams of top engineers who can change the world. We know creativity cannot be

scheduled, which is why we highly value open communication and flexible hours.

19

Wait, what? Embedded?

e Curiosity Mars Rover,

Cell Phones,
Satellites, Engine
Control Modules,

Computed Radiology,
Fighter Jets, Digital

Cameras, Turbines,
Anti-Lock Brakes,
Switch Game
Console, UAVs, ...

PLAY VIDEO

Eight years ago, NASA Jet
on Laboratory (JPL) first
began its work on the Mars

Propuls

Science Laboratory rover,
Curiosity. Because of its long
record of success with Wind
River® on more than 20 JPL
missions, NASA chose
VxWorks® for the most
technologically advanced
autonomous robotic spacecraft
and geologist set ever to be
deployed by any space venture
Wind River rks powered the
201, toits

sful landing in the Gale Crater on Mars on August 5, 2012, and will support

craft's controls from the second the rocket |eft Earth on November 26

sSuc

Curiosity's exploratory capability throughout the life of the mission
Stay tuned for future updates
NASA's groundbreaking mi
of supporting life and to a

as
n to determine whether Mars is or has ever been capable

Wind River VxWorks continues to play a strategic role in

55 the planet's habitability for future human missions

The Astrée Static Analyzer

« Astree was able to prove, completely automatically,
the absence of any RTE in a C version of the
automatic docking software of the Jules Vernes
Automated Transfer Vehicle (ATV) enabling ESA to
transport payloads to the International Space
Station. ™

separatlon seen by
onboard cameras

21

Adobe

e Photoshop contains interpreters

y. Photoshop Scripting Basics

This chapter provides an overview of scripting for Photoshop, describes scripting support for the scripting
languages AppleScaipt, VBScript, and JavaScript, how to execute scripts, and covers the Photoshop object
model. It provides a simple example of how to write your first Photoshop script.

If you are familiar with scripting or programming languages, you most likely will want to skip much of this
chapter. Use the following list to locate information that is most relevant to you.

» For more information on the Photoshop object model, see “Photoshop Object Model” on page 11.

» Forinformation on selecting a scripting language, refer to the Introduction to Scripting guide.

» For examples of scripts created specifically for use with Photoshop, see Chapter 3, “Scripting
Photoshop” on page 21.

» Fordetailed information on Photoshop objects and commands, please use the reference information
in the three reference manuals provided with this installation: Adobe Photoshop CC 2015 AppleScript
Scripting Reference, Adobe Photoshop CC 2015 Visual Basic Scripting Reference, and Adobe Photoshop CC
2015 JavaScript Scripting Reference.

NoTE: You can also view information about the Photoshop objects and commands through the object
browsers for each of the three scripting languages. See “Viewing Photoshop Objects, Commands, and
Methods” on page 21.

Scripting Overview

A scriptis a series of commands that tells Photoshop to perform a set of specified actions, such as applying
different filters to selections in an open document. These actions can be simple and affect only a single
object, or they can be complex and affect many objects in a Photoshop document. The actions can call
Photoshop alone or invoke other applications.

Mozilla

e SpiderMonkey JavaScript / WebAssembly
¥piderMonkey

Welcome!

SpiderMonkey is Mozilla’s JavaScript and WebAssembly Engine, used in Firefox, Servo and various other projects. It is written in

C++, Rust and JavaScript. You can embed it into C++ and Rust projects, and it can be run as a stand-alone shell. It can also be
compiled to WASI; see our online demo.

> Nov 27, 2024 SpiderMonkey Newsletter (Firefox 132-134)
> Oct 16, 2024 75x faster: optimizing the lon compiler backend

Epic Games

Developer / Doc... / Unreal Engine Vv / Unreal Engin... / Programm... / Blueprints... / Introducti...

Introduction to Blueprints

[]
. B l l I e p r] I I tS l | n rea l Introduction to visual scripting with Blueprints.

e Verse

&

FORTNITE

& pEv communiTY

F UEFN & Creative

Jocumentation

Learning

Discover

t? Sign up

ON THIS PAGE

Fortnite e |

How Do Blueprints Work

! Commonly Used Blueprint

The Blueprint Visual Scripting system in Unreal Engine is a visual programming
language that uses a node-based interface to create gameplay elements. The node-
based workflow provides designers with a wide range of scripting concepts and tools
n, Blueprint-specific
My Library Create ~ Item Shop Battle Pass News More ~ Q ovides programmers with a

2 system to define object-
| along with the objects you

Whatls Verse?

Verse is a programming language developed by Epic Games that you can use to
create your own gameplay in Unreal Editor for Fortnite, including customizing your

devices for Fortnite Creative. . anpe .
Fortnite has over 650 million registered

Verse's primary design goals: players.

« Simple enough to learn as a first-time programmer.

The player base grew by 150 million from 2022

« Productive in the context of building, iterating, and shipping a projed (500 million) to 2023 (650 million), ShOWIhg a
setting, and integrating code and content. substantial surge in engagement. From 2017 to

« General enough for writing any kind of code and data.

« Statically verified to catch as many categories of runtime problems as possible at
compile time.

« Performant for writing real-time, open-world, multiplayer games.

24

Surprise: PDF Files

PostScript (PS) is a page description language and dynamically typed, stack-based PostScript
programming language. It is most commonly used in the electronic publishing and

desktop publishing realm, but as a Turing complete programming language, it can be ‘(‘
used for many other purposes as well. PostScript was created at Adobe Systems by Adobe’ PostScript 3"
John Warnock, Charles Geschke, Doug Brotz, Ed Taft and Bill Paxton from 1982 to PostScript 3 logo
1984. The most recent version, PostScript 3, was released in 1997. Paradigm Multi-paradigm:

History [edit

The concepts of the PostScript language were seeded in 1976 by John Gaffney at

Evans
John'\

concatenative (stack-based),
procedural

Designed by John Warnock, Chuck
Geschke, Doug Brotz, Ed
Taft, Bill Paxton

The development of PDF began in 1991 when John Warnock wrote a paper for a project or P

then code-named Camelot, in which he proposed the creation of a simplified versionof _____ ., .;;c; wa. o .
PostScript called Interchange PostScript (IPS).°! Unlike traditional PostScript, which
was tightly focused on rendering print jobs to output devices, IPS would be optimized for

displaying pages to any screen and any platform.[©]

PostScript language | edit]

PostScript is a page description language run in an interpreter to generate an image. (6!
It can handle graphics and has standard features of programming languages such as
branching and looping.l®! PDF is a subset of PostScript, simplified to remove such

25

Ubiquity

e Your cellphones, browsers, games, PDF
files, spreadsheets, etc., all contain
interpreters for (or were built using
compilers for) specialized programming
languages

e These may be in places you would not
expect, using languages you may not
know, from companies you may not have
heard of ... but PL is a big business.

26

Wait ...

e But weren't most of those examples
mixtures of PL and some other discipline?

- Mars Rover, Intel = PL + Hardware
- FlashFill = PL + Machine Learning
- Cyber Grand Challenge = PL + Security
- Gaming Languages, PDF = PL + Graphics
- Codex, Sapienz = PL + Al
- SLAM = PL + Model Checking

e Yes! That's the point!

27

Parts of Computer Science

e CS = (Math x Logic) + Engineering
- Science (from Latin scientia - knowledge)
refers to a system of acquiring knowledge -
based on empiricism, experimentation, and
methodological naturalism - aimed at finding
out the truth.
 We rarely actually do this in CS
- “CS theory” = Math (logic)
- “Systems” = Engineering (bridge building)

28

Programming Languages

e Best of both worlds: Theory and Practice!
- Only pure CS theory is more primal

o Touches most other CS areas
- Theory: DFAs, PDAs, TMs, language theory (e.g., LALR)
- Systems: system calls, assembler, memory management
- Arch: compiler targets, optimizations, stack frames
- Numerics: FORTRAN, IEEE FP, Matlab, loop nest optim.
- Al: theorem proving, machine learning, GenAl coding
- DB: SQL, persistent objects, modern linkers
- Networking: packet filters, protocols, even Ruby on Rails
- Graphics: OpenGL, LaTeX, PostScript, even Logo (= LISP)
- Security: buffer overruns, .net, bytecode, PCC, ...

- Software Engineering: bug finding, refactoring, types, ...,

Overarching Theme

e | assert (and shall argue) that

e PL is one of the more vibrant and active
areas of CS research today

- It has theoretical and practical meatiness
- It intersects most other CS areas

e This course teaches you how to interpret
and conduct PL research in your own
projects

30

Goal #1

el earn to use advanced

PL techniques
| 1

Useful Complex Knowledge

e A proof of the fundamental theorem of
calculus

e A proof of the max-flow min-cut theorem

e Nifty Tree node insertion (e.g., B-Trees,
AVL, Red-Black)

e The code for the Fast Fourier Transform
e And so on ...

32

No Useless Memorization

e | will not waste your time with “useless”
memorization

e This course will cover complex subjects

e | will teach their details to help you
understand them the first time

e But you will not have to memorize
anything low-level

e Rather, learn to apply broad concepts

33

Goal #2

When you design a
language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

Story 1: JavaScript Objects?

e JavaScript is object-oriented, but
originally (1995) it used Prototypes

- “The most controversial feature of the language is the way it
does inheritance, which is radically different than virtually all
other modern languages. Most languages use classes - | call them
‘classical languages’ - JavaScript does not. JavaScript is class
free. It uses prototypes. For people who are classically trained
who look at the language, they go: well, this is deficient. You
don’t have classes, how can you get anything done? How can you
have any confidence that the structure of your program’s going
to work? And they never get past that.”

« Douglas Crockford, inventor of JavaScript Object Notation

e It took 20 years to add Classes (2015)

35

Story 2: Java Saves Space?

» Java bytecode programs contain subroutines (jsr)
that run in the caller’s stack frame (why?)
« jsr complicates the formal semantics of bytecodes
- Several verifier bugs were in code implementing jsr
- 30% of typing rules, 50% of soundness proof due to jsr

e |t is not worth it:
- In 650K lines of Java code, 230 subroutines, saving 2427
bytes, or 0.02%
- 13 times more space could be saved by renaming the
language back to Oak

e [In 1994], the language was renamed “Java” after a trademark
search revealed that the name “Oak” was used by a
manufacturer of video adapter cards.

36

Story 3: C++ Inheritance?

o C++ supports multiple inheritance (1983)

- “l think my most obvious mistake was not to introduce templates
before multiple inheritance”

- “One problem with introducing MI before templates was that it
encouraged further overuse of class hierarchies”

- “To get efficiency and type safety for containers, you need
templates (and | didn't have an implementation supporting
templates until 1988 or 1989). However, templates are not
enough, you also need a design for containers and uses of
containers that can deliver that safety. We didn't have such an
architecture until Alex Stepanov came along with the STL.”

o Bjarne Stroustrup, Designer of C++

e Stepanov introduced the Standard
Template Library in 1993

37

Recall Goal #2

«When (not if) you design
a language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

Goal #3

eUnderstand current PL
research (PLDI, POPL,
OOPSLA, TOPLAS, ...) and
technology transfer (MS,
Intel, ...)

Final ol: Fun

gy

Changeups and Trivia

“[Professors who] deliberately and
consistently interspersed their lectures
with ... some other form of deliberate
break ... usually commanded a better
attention span from the class, and these
deliberate variations had the effect of
postponing or even eliminating the
occurrence of an attention break”

[Johnstone and Percival. Attention breaks in lectures. Education in Chemistry,
13. 49-50, 1976.]

[Middendorf and Kalish. The “Change-up” in Lectures. TRC Newsletter, 8:1 (Fall
1996).]

Q: Popular Media

e This Korean dystopian survival thriller
involves hundreds of contestants playing
fatal children's games for a chance at a
large payout. The name is based on 20
(0jingo), a game in which the playing field
is said to resemble an animal. TN

1 |

Q: Books (730 / 842)

e This 1960 Daniel Keyes sci-fi novel
is told as a “progris riport” from the
point-of-view of Charlie Gordon as
he takes an experimental

intelligence-enhancing treatment.
The treatment is temporary. The
book won the Hugo and Nebula
awards.

Q: Computer Science

« This Sri Lanka-born, British computer scientist is
best known for his development of QuickSort, a logic
for verifying program correctness, the monitor
approach to mutual exclusion, and the formalism of
Communicating Sequential Processes. In 2009 he
apologized for inventing the null reference:

- | call it my billion-dollar mistake. It was the invention of the null
reference in 1965. At that time, | was designing the first comprehensive
type system for references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should be absolutely
safe, with checking performed automatically by the compiler. But |
couldn't resist the temptation to put in a null reference, simply because
it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty years.

How Hard Is This Class?

S~
< | H

Prerequ151tes

. Undergraduate
PL/compilers
course?

- No

e “Mathematical % /
maturity”

Assignments

« Homework Assignments (6+1)

e Peer Review Activities (6)

e Daily Reading (1-2 papers per class)
e Quizzes and Participation

. Einal Proiect

I CANT BELIEVE IT! | I WNE TOWRTEA [TIL NMEFER BE ABLE | |7
HOMEWORK_ ALREADY | | PARAGRAPR ON WHAT 11 [wow:
I JUSTGOT BACK TO | T DID OVER THE SUMMER! | | RITE AT MUGHT | HOWS 1T

N\ SHROL T A WOLE POARAPLY Lﬁm@

\(\/‘% \

NOT SO GOQD.
WHAT DID YOU
DO BESIDES
WATCH TV ?

L~

Homework Problem Sets

 Some material can be “mathy”
e Much like Calculus, practice is handy
e Short: ~3 theory + 1 coding per HW

e YOUu have one week to do each one
- Available in advance ...

e Long: analysis of real C programs

« We will review and comments on
your English prose.

48

Peer Review Motivation

e A key outcome of this class is being able to
interpret PL research and papers
- You may have to read through a few PL papers

to decide which one to cite for a related work
section, for example

- You may have to convince your manager to
use tool X instead of tool Y based on claims

e You write your own homeworks, but we
also want more practice reading

49

Anonymous Peer Review

e For the formal written homeworks
- 1** page: your name, email, etc.
- Other pages: no name, no email, just text

 We will take the anonymous parts of
submissions and shuffle them around

e On some days (see schedule) we will go
over the “answer key” together

e You will then write up feedback via
Gradescope within 48 hours

50

Peer Review

e | believe in feedback for X before X+1 is
due (both peer review and grades)

e Assignments are all due Day X at midnight
- Sometimes a Friday!

e Peer review is 1 or 2 lectures later

e Implication —we can't accept late
homework once we've gone over the
answer key

51

Reading Quizzes

e A key problem:

- If | never check, graduate students will not do
the reading.

e A related desire:

- Graduate students often wish that someone
would make them do the reading.

e Implementation:
- Very short answer or multiple choice quizzes

- Mostly to keep you on track
- (Who benefits if you Ctrl-F instead of reading?)

Participation

e It is easier for engaged students to retain
the formal material in this class

- Some classes: just watch recordings at 1.5x
- This may not be one of those classes
- You'll want to be able to ask questions, etc.

e We will record attendance in class

- Typically via writing your UM email on a
notecard

53

Piazza Forum

e Ask questions about assignments
« Compare concerns about papers

e Ask for more details about references from
class

e Previous years: fun papers, memes, moral
quandaries, etc.

K3 question @106s

How do you know you've found the one?

asking for a friend

o4

Who Benefits?

e This research-focused class is most useful
to students who will be reading and
writing formal PL research papers

- Ph.D. students in PL
- Master's degree students pursuing PL work

e If you signed up because the name made it
look like a Programming course or because
you needed credits, email me and I'll help
you find a better-fitting elective based on
your interests

99

Key Features of PL

Now that the NDA Alright, dungeons.

is up, we're seeing a lot
oF people ovt there unhappy
with the DED Online Mjﬂnﬂs & Dmﬂﬂhﬁ
experience we've

delivered. Online kciﬂ Features:
Let's take a look R
at our key Peatures list, =~

see iFf we didn't miss
something.

Where are we at?
-‘-/

Good. Glad
to hear it. And
dragons?

Dragons? Come on,
guys. Don't tell me we
Forgot dragons.

I Ghink...
Jim was on

No,no — I was
on Pungeons.

L]

ik Gt Jﬂﬁgﬂa

56

Programs and Languages

e Programs
- What are they trying to do?
- Are they doing it?
- Are they making some other mistake?
- Were they hard to write?
- Could we make it easier?

=S
- F

nould you run them?
ow should you run them?

- F

ow can | run them faster?

o7

Programs and Languages

e Languages
- Why are they annoying?
- How could we make them better?
- What tasks can they make easier?
- What cool features might we add?
- Can we stop mistakes before they happen?
- Do we need new paradigms?
- How can we help out My Favorite Domain?

58

Common PL Research Tasks

Design a new language feature

Design a new type system / checker
Design a new program analysis

Find bugs in programs

(Help people to) Fix bugs in programs
Transform programs (source or assembly)
Interpret and execute programs

Prove things about programs

Optimize programs

59

Grand Unified Theory

e Design a new type system

e Your type-checker becomes a bug-finder
- No type errors = proof that program is safe

- Type error = bug may exist in program
 Fault localization and automated program repair

e Design a new language feature
- To prevent the sort of mistakes you found

e Write a source-to-source transform
- Your new feature now works on existing code

60

EECS 590 - Core Topics
e Model checking

« Operational semantics |
e Neurosymbolic approacheks/,,";’

e Provers and proofs /- ﬁﬁ
» Verification conditions ‘ =N\ A
7 DIRS &= ,,'\\g_
e Type theory /4 @*% INE AW

.] ’ ("\ -
e Symbolic execution s (S o7 é, ~
. . D RS
e Abstract interpretation YEIN |
® Inval‘lant deteCt]On “SS\S' &Y A VOTe oF R v 2 WE paC DECIDED To
\P INDUSTRIAL KevoLUTioN Comeretel ND
 Lambda calculus Q0K 1 T Bt e K

First Topic: Model Checking

o Verify critical properties of software or find bugs
o Take an important program (e.g., a device driver)

o Merge it with a property (e.g., no deadlocks, asynchronous
IRP handling, BSD sockets, database transactions, ...)

« Transform the result into a boolean program
- Same control flow, but only boolean variables

o Use a model checker to explore the resulting state space
- Result 1: program provably satisfies property

- Result 2: program violates property right here on line 92,376!

HEY DAD, 1L [MM 0K, =R} B Gauy,
EUESS AN IVE GOT (T, | |92, 376,051 7 ITis!
MUMBER YOUTRE
THINLING OF !
G0 AHERD, PICL
A NUMBER!

Example Program

E 1 1
S5) Is this program correct?

lock () ;
old = new;
q = g->next;
1f (g !'= NULL) {
g->data = new;
unlock () ;
new ++;
}
} while(new != old);
unlock () ;
return;

63

Example Program

Example () { . 5
do | Is this program correct?
lock () ;
old = new;
ETE I What does correct
1f (g !'= NULL) {
g->data = new; mean?
unlock () ; . .
new ++; Doing no evil?
) . ,
} while(new != old); Doing some good:?
unlock () ;
return;
} How do we determine if

a program is correct?
64

Verification by Model Checking

Example () {

T gl 1. (Finite State) Program
lock () ; 2. State Transition Graph
old = new;

q = qg->next; 3. Reachability
2: 1if (g !'= NULL) {
3: g->data = new;
unlock () ; - Pgm — Finite state model
new ++; .
} - State explosion
4: } while(new != old); .
5: unlock(): + State Exploration
return; + Counterexamples

Precise [SPIN, SMV, Bandera, JPF]

65

For Our Next Exciting Episode
e See webpage under “Lectures”
e Read the two articles
e Peruse the HW page and details
") STAR WARS

Fresh tonight at 8/7 c TUESDAY

P Katya, we're rebels. katya... I just got Next week, New Found Glory

I won't have you dating 0P the comlink with Medical guest stars on a very special

You're just a clone killed in a speeder - Star Wars...

il i)
of My dad — I don't have JINE Sccidtle
bo do what you say! And §
Brian and I are going

Y On Corvacant,
\ capital of the
Empire!

	Programming Languages Topic of Ultimate Mastery
	Reasonable Initial Skepticism
	Today’s Class
	Meta-Level Information
	What Have You Done For Us Lately?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Parts of Computer Science
	Programming Languages
	Overarching Theme
	Goal #1
	Useful Complex Knowledge
	No Useless Memorization
	Goal #2
	Slide 35
	Story: Java Bytecode Subroutines
	Slide 37
	Recall Goal #2
	Goal #3
	Final Goal: Fun
	Slide 41
	Slide 42
	Q: Books (730 / 842)
	Slide 44
	How Hard Is This Class?
	Prerequisites
	Assignments
	Homework Problem Sets
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Key Features of PL
	Programs and Languages
	Slide 58
	Common PL Research Tasks
	Grand Unified Theory
	CS 615 - Core Topics
	Big Example #X: SLAM
	Verification by Model Checking
	Slide 64
	Slide 65
	For Our Next Exciting Episode

