
1

Programming Languages
Topic of Ultimate Mastery

Wes Weimer
EECS 590

http://web.eecs.umich.edu/~weimerw/590/

http://web.eecs.umich.edu/~weimerw/590/

2

Reasonable Initial Skepticism

3

Today’s Class

•Vague Historical Context
•Goals For This Course
•Requirements and Grading
•Course Summary

•Where is PL most useful?

5

What Have You Done For Us Lately?
• PL is an old field within Computer Science

– 1920’s: “computer” = “person”
– 1936: Church’s Lambda Calculus (= PL!)
– 1937: Shannon’s digital circuit design
– 1940’s: first digital computers
– 1950’s: FORTRAN (= PL!)
– 1958: LISP (= PL!)
– 1960’s: Unix
– 1972: C Programming Language
– 1981: TCP/IP
– 1985: Microsoft Windows
– 1992: Ultima Underworld / Wolfenstein 3D
– 2001: 3G Cellphones

6

A Brief Tour

• … of PL research impact at companies

• Themes:
– Multiple types of companies make languages

– PL tools apply to many domains

– PL research is embedded in other hardware
and software

– PL is interdisciplinary

12

Apple

• LLVM. Objective-C (iOS, etc.).

13

Microsoft FlashFill

14

DARPA Cyber Grand Challenge

15

DARPA Cyber Grand Challenge

16

DARPA Cyber Grand Challenge

17

Microsoft

• (In addition to Visual Studio, MSVC++,
etc.) Software, Languages, Analysis and
Model Checking

18

Facebook: Infer and Sapienz

20

Wait, what? Embedded?

• Curiosity Mars Rover,
Cell Phones,
Satellites, Engine
Control Modules,
Computed Radiology,
Fighter Jets, Digital
Cameras, Turbines,
Anti-Lock Brakes,
Switch Game
Console, UAVs, ...

21

The Astrée Static Analyzer

• Astrée was able to prove, completely automatically,
the absence of any RTE in a C version of the
automatic docking software of the Jules Vernes
Automated Transfer Vehicle (ATV) enabling ESA to
transport payloads to the International Space
Station.

22

Adobe

• Photoshop contains interpreters

26

Ubiquity

• Your cellphones, browsers, games, PDF
files, spreadsheets, etc., all contain
interpreters for (or were built using
compilers for) specialized programming
languages

• These may be in places you would not
expect, using languages you may not
know, from companies you may not have
heard of … but PL is a big business.

27

Wait …

• But weren't most of those examples
mixtures of PL and some other discipline?
– Mars Rover, Intel = PL + Hardware

– FlashFill = PL + Machine Learning

– Cyber Grand Challenge = PL + Security

– Gaming Languages, PDF = PL + Graphics

– Codex, Sapienz = PL + AI

– SLAM = PL + Model Checking

• Yes! That's the point!

28

Parts of Computer Science

• CS = (Math £ Logic) + Engineering
– Science (from Latin scientia - knowledge)

refers to a system of acquiring knowledge -
based on empiricism, experimentation, and
methodological naturalism - aimed at finding
out the truth.

• We rarely actually do this in CS
– “CS theory” = Math (logic)

– “Systems” = Engineering (bridge building)

29

Programming Languages
• Best of both worlds: Theory and Practice!

– Only pure CS theory is more primal

• Touches most other CS areas
– Theory: DFAs, PDAs, TMs, language theory (e.g., LALR)
– Systems: system calls, assembler, memory management
– Arch: compiler targets, optimizations, stack frames
– Numerics: FORTRAN, IEEE FP, Matlab, loop nest optim.
– AI: theorem proving, machine learning, GenAI coding
– DB: SQL, persistent objects, modern linkers
– Networking: packet filters, protocols, even Ruby on Rails
– Graphics: OpenGL, LaTeX, PostScript, even Logo (= LISP)
– Security: buffer overruns, .net, bytecode, PCC, …
– Software Engineering: bug finding, refactoring, types, ...

30

Overarching Theme

• I assert (and shall argue) that

• PL is one of the more vibrant and active
areas of CS research today
– It has theoretical and practical meatiness
– It intersects most other CS areas

• This course teaches you how to interpret
and conduct PL research in your own
projects

32

Useful Complex Knowledge

• A proof of the fundamental theorem of
calculus

• A proof of the max-flow min-cut theorem
• Nifty Tree node insertion (e.g., B-Trees,

AVL, Red-Black)
• The code for the Fast Fourier Transform
• And so on …

33

No Useless Memorization

• I will not waste your time with “useless”
memorization

• This course will cover complex subjects
• I will teach their details to help you

understand them the first time
• But you will not have to memorize

anything low-level
• Rather, learn to apply broad concepts

34

Goal #2
•When you design a
language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

35

Story 1: JavaScript Objects?

• JavaScript is object-oriented, but
originally (1995) it used Prototypes
– “The most controversial feature of the language is the way it

does inheritance, which is radically different than virtually all
other modern languages. Most languages use classes – I call them
‘classical languages’ – JavaScript does not. JavaScript is class
free. It uses prototypes. For people who are classically trained
who look at the language, they go: well, this is deficient. You
don’t have classes, how can you get anything done? How can you
have any confidence that the structure of your program’s going
to work? And they never get past that.”

• Douglas Crockford, inventor of JavaScript Object Notation

• It took 20 years to add Classes (2015)

36

Story 2: Java Saves Space?

• Java bytecode programs contain subroutines (jsr)
that run in the caller’s stack frame (why?)

• jsr complicates the formal semantics of bytecodes
– Several verifier bugs were in code implementing jsr
– 30% of typing rules, 50% of soundness proof due to jsr

• It is not worth it:
– In 650K lines of Java code, 230 subroutines, saving 2427

bytes, or 0.02%

– 13 times more space could be saved by renaming the
language back to Oak

• [In 1994], the language was renamed “Java” after a trademark
search revealed that the name “Oak” was used by a
manufacturer of video adapter cards.

37

Story 3: C++ Inheritance?
• C++ supports multiple inheritance (1983)

– “I think my most obvious mistake was not to introduce templates
before multiple inheritance”

– “One problem with introducing MI before templates was that it
encouraged further overuse of class hierarchies”

– “To get efficiency and type safety for containers, you need
templates (and I didn't have an implementation supporting
templates until 1988 or 1989). However, templates are not
enough, you also need a design for containers and uses of
containers that can deliver that safety. We didn't have such an
architecture until Alex Stepanov came along with the STL.”

• Bjarne Stroustrup, Designer of C++

• Stepanov introduced the Standard
Template Library in 1993

38

Recall Goal #2
•When (not if) you design
a language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

39

Goal #3
•Understand current PL
research (PLDI, POPL,
OOPSLA, TOPLAS, …) and
technology transfer (MS,
Intel, ...)

40

Final Goal: Fun

41

Changeups and Trivia

• “[Professors who] deliberately and
consistently interspersed their lectures
with … some other form of deliberate
break … usually commanded a better
attention span from the class, and these
deliberate variations had the effect of
postponing or even eliminating the
occurrence of an attention break”

[Johnstone and Percival. Attention breaks in lectures. Education in Chemistry,
13. 49-50, 1976.]

[Middendorf and Kalish. The “Change–up” in Lectures. TRC Newsletter, 8:1 (Fall
1996).]

43

Q: Books (730 / 842)

• This 1960 Daniel Keyes sci-fi novel
is told as a "progris riport" from the
point-of-view of Charlie Gordon as
he takes an experimental
intelligence-enhancing treatment.
The treatment is temporary. The
book won the Hugo and Nebula
awards.

44

Q: Computer Science

• This Sri Lanka-born, British computer scientist is
best known for his development of QuickSort, a logic
for verifying program correctness, the monitor
approach to mutual exclusion, and the formalism of
Communicating Sequential Processes. In 2009 he
apologized for inventing the null reference:
– I call it my billion-dollar mistake. It was the invention of the null

reference in 1965. At that time, I was designing the first comprehensive
type system for references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should be absolutely
safe, with checking performed automatically by the compiler. But I
couldn't resist the temptation to put in a null reference, simply because
it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty years.

45

How Hard Is This Class?

46

Prerequisites
• Undergraduate

PL/compilers
course?
– No

• “Mathematical
maturity”

48

Homework Problem Sets

• Some material can be “mathy”
• Much like Calculus, practice is handy
• Short: ~3 theory + 1 coding per HW
• You have one week to do each one

– Available in advance ...
• Long: analysis of real C programs
• We will review and comments on

your English prose.

49

Peer Review Motivation

• A key outcome of this class is being able to
interpret PL research and papers
– You may have to read through a few PL papers

to decide which one to cite for a related work
section, for example

– You may have to convince your manager to
use tool X instead of tool Y based on claims

• You write your own homeworks, but we
also want more practice reading

50

Anonymous Peer Review

• For the formal written homeworks
– 1st page: your name, email, etc.

– Other pages: no name, no email, just text

• We will take the anonymous parts of
submissions and shuffle them around

• On some days (see schedule) we will go
over the “answer key” together

• You will then write up feedback via
Gradescope within 48 hours

51

Peer Review

• I believe in feedback for X before X+1 is
due (both peer review and grades)

• Assignments are all due Day X at midnight
– Sometimes a Friday!

• Peer review is 1 or 2 lectures later
• Implication we can't accept late →

homework once we've gone over the
answer key

52

Reading Quizzes

• A key problem:
– If I never check, graduate students will not do

the reading.

• A related desire:
– Graduate students often wish that someone

would make them do the reading.

• Implementation:
– Very short answer or multiple choice quizzes

– Mostly to keep you on track

– (Who benefits if you Ctrl-F instead of reading?)

53

Participation

• It is easier for engaged students to retain
the formal material in this class
– Some classes: just watch recordings at 1.5x

– This may not be one of those classes

– You'll want to be able to ask questions, etc.

• We will record attendance in class
– Typically via writing your UM email on a

notecard

55

Who Benefits?

• This research-focused class is most useful
to students who will be reading and
writing formal PL research papers
– Ph.D. students in PL

– Master's degree students pursuing PL work

• If you signed up because the name made it
look like a Programming course or because
you needed credits, email me and I'll help
you find a better-fitting elective based on
your interests

56

Key Features of PL

57

Programs and Languages

• Programs
– What are they trying to do?
– Are they doing it?
– Are they making some other mistake?
– Were they hard to write?
– Could we make it easier?
– Should you run them?
– How should you run them?
– How can I run them faster?

58

Programs and Languages

• Languages
– Why are they annoying?

– How could we make them better?

– What tasks can they make easier?

– What cool features might we add?

– Can we stop mistakes before they happen?

– Do we need new paradigms?

– How can we help out My Favorite Domain?

59

Common PL Research Tasks

• Design a new language feature
• Design a new type system / checker
• Design a new program analysis
• Find bugs in programs
• (Help people to) Fix bugs in programs
• Transform programs (source or assembly)
• Interpret and execute programs
• Prove things about programs
• Optimize programs

60

Grand Unified Theory
• Design a new type system
• Your type-checker becomes a bug-finder

– No type errors) proof that program is safe

– Type error) bug may exist in program
• Fault localization and automated program repair

• Design a new language feature
– To prevent the sort of mistakes you found

• Write a source-to-source transform
– Your new feature now works on existing code

62

First Topic: Model Checking
• Verify critical properties of software or find bugs
• Take an important program (e.g., a device driver)
• Merge it with a property (e.g., no deadlocks, asynchronous

IRP handling, BSD sockets, database transactions, …)
• Transform the result into a boolean program

– Same control flow, but only boolean variables

• Use a model checker to explore the resulting state space
– Result 1: program provably satisfies property
– Result 2: program violates property right here on line 92,376!

66

For Our Next Exciting Episode
• See webpage under “Lectures”
• Read the two articles
• Peruse the HW page and details

	Programming Languages Topic of Ultimate Mastery
	Reasonable Initial Skepticism
	Today’s Class
	Meta-Level Information
	What Have You Done For Us Lately?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Parts of Computer Science
	Programming Languages
	Overarching Theme
	Goal #1
	Useful Complex Knowledge
	No Useless Memorization
	Goal #2
	Slide 35
	Story: Java Bytecode Subroutines
	Slide 37
	Recall Goal #2
	Goal #3
	Final Goal: Fun
	Slide 41
	Slide 42
	Q: Books (730 / 842)
	Slide 44
	How Hard Is This Class?
	Prerequisites
	Assignments
	Homework Problem Sets
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Key Features of PL
	Programs and Languages
	Slide 58
	Common PL Research Tasks
	Grand Unified Theory
	CS 615 - Core Topics
	Big Example #X: SLAM
	Verification by Model Checking
	Slide 64
	Slide 65
	For Our Next Exciting Episode

