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APPLE

WELL, A MORE ACCURATE
NAME WOULD BE
MACHINE GUESSING
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One-Slide Summary

« Many PL techniques require predicates describing
program behavior (pre- and post-conditions,
invariants, refinement types, etc.). LLMs can
statically generate candidate invariants from
program source code and comments.

« We can also use PL to address problems in LLMs. For
example, axiomatic semantics can be used to
predict hallucinations and increase trust. “Proving”
LLMs correct is a hot research topic that is not yet
solved; many proposed solutions do not scale.
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Reprise: Question Set #4
Wu et al.'s Lemur: Integrating
e Read Section 2 and 3.0 and discuss:
e Does Stable — Invariant? Invariant — Stable?
« When would the verifier return Unknown?

o Is an LLM used for Opropose, Orepair, neither, or
both?

e In the Propose rule in Figure 1, what do we
know about "V(P, A, q)? What do we suspect?

- Note: g is not a typo.
 How do they prove Theorem 3.1 and 3.27
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Does It Work? Quality

“We found that the LLM-based oracles can produce surprisingly
insightful loop invariants that are difficult for conventional formal
methods to synthesize. While predicate-abstraction-based
techniques typically generate predicates that involve only the
operators and values in the program and follow a particular
template, LLM is not constrained by these limitations. For

example, for the program in Fig. 4, GPT-4 can consistently
generate x%4==0 as the loop invariant although the modulo
operator is not present in the program.”

- How does this compare to Daikon? DIG? Newton from SLAM?

“There are also several cases where the LLM generates disjunctive
invariants that precisely characterize the behavior of the loops.”

- How does this compare to Daikon? DIG? Newton from SLAM?
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Does It Work? Quantity

o They outperform ESBMC (symbolic: bounded model
checker), Code2lnv (neural: reinforcement learning),
Uautomizer (symbolic: program analysis, prior
winner of SV-COMP)

Configurations Solved Time # proposal Configurations Solved Time # proposals
Code2Inv 92 - 20 UAUTOMIZER 0 - 0
ESBMC 68 0.34 0 ESBMC 0 — 0
LEMUR 107 249 4.7 LEMUR 26  140.7 9.1
(a) The Code2Inv benchmarks. (b) The 50 SV-COMP benchmarks.

o They are also the first approach to include learning

that can handle 2+ loops



Invariants and Assertions

e Many formal techniques require knowing a
predicate that describes program behavior

- Example Predicate: x <=5
_ Use: VCGen whileInv b doc

- Use: Axiomatic Inv1 => WP(c, Inv2)
- Use: Dependent Type Refinements { x | Inv }
- Use: Synthesis (write a function that Inv)

e Invariants, pre- and post-conditions and
refinements all need such predicates




Invariant Detection

e Classic invariant detection algorithms
(Daikon, DIG, etc.) are dynamic analyses:
they require that you can compile and run the
program and that you have indicate workloads

 What if we could generate candidate
invariants just from the “natural language” of
the program (e.g., comments, code)?

- This would be a static analysis (and thus more
broadly applicable)
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Reading and Understanding

e Once again we will discuss recent papers in

class, looking at
less-obvious imp

e This time the pa

direct descriptions and also
lications

Ders were assigned readings,

so you are all already familiar with them

- If this isn't true,
- If it turns out to

e | will call on you
loud and answer

we may have a reading quiz
be true, we may skip the quiz

to read short passages out
questions
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Let's Explore Together

Can Large Language Models Transform Natural Language
Intent into Formal Method Postconditions?

MADELINE ENDRES®, University of Michigan, USA
SARAH FAKHOURY, Microsoft Research, USA
SAIKAT CHAKRABORTY, Microsoft Research, USA
SHUVENDU K. LAHIRI, Microsoft Research, USA

(1,2,3,2,4] > [1,3.4] 1 def remove_duplicates(numbers: List[int]):
& 2 """ From a list of integers, remove all elements that occur more than

once. Keep order of elements left the same as in the input """
(a) Programmer intent for a func-

tion that removes all instances (b) Ambiguous natural language specification: it does not specify if all
of numbers that have duplicates copies or all but one copy of a duplicated element should be removed. In

from a list. this case, the programmer intends the former.
1 assert len(set(numbers)) == len(set(return_list)) X
1 assert all(numbers.count(i) == 1 for i in return_list) o

(c) Postconditions generated by GPT-4. Note that while both could be correct with a literal reading of the
natural language specification, only the second one is correct with respect to developer intent.
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Problem Framing

 Which two properties are implicitly claimed
to be necessary for a good solution?

The “"emergent abilities” of Large Language Models (LLMs) have the potential to facilitate the translation of
natural language intent to programmatically checkable assertions. However, it is unclear if LLMs can correctly
translate informal natural language specifications into formal specifications that match programmer intent.
Additionally, it is unclear if such translation could be useful in practice.

In this paper, we describe nl2postcond, the problem of leveraging LLMs for transforming informal natural
language to formal method postconditions, expressed as program assertions. We introduce and validate metrics
to measure and compare different nl2postcond approaches, using the correctness and discriminative power of
generated postconditions. We then use qualitative and quantitative methods to assess the quality of ni2postcond
postconditions, finding that they are generally correct and able to discriminate incorrect code. Finally, we find
that nl2postcond via LLMs has the potential to be helpful in practice; nl2postcond generated postconditions
were able to catch 64 real-world historical bugs from Defects47.

e Many researchers use the “Heilmeier
Catechism” to structure papers and proposals
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Concepts

First, the prompts should work with chat-based

models, and the generated postconditions should be symbolic (e.g., not point-wise tests), directly
executable, and side-effect free. Also, the prompt should encourage the LLM to produce expressions

However, we also

provide a prompt variant that includes the reference code r along with nl. This allows us to assess
if natural language alone can be as effective as code in conveying programming intent to an LLM.

When using the base prompt, LLMs have a tendency to construct complex postconditions,
often approaching a fully functional implementation of the problem. While useful, we observe

these postconditions are likely to be incorrect.

e Which quote is about each of: recall,
overfitting, type systems, neurosymbolic?
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Science Discussion

Several prdmpt iterations were considered until we observed safisfacior}; pefformance
on a subset of example problems, though we acknowledge further prompt tuning may result in
different outcomes.

 What is HARKing? What is False Discovery
Rate?

e Give one negative view of this aspect of the
paper. Give one positive or mitigating view of
this aspect of the paper.
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Correctness vs. Test Cases

Prompt has:

NL Only=X  Accept Accept Accept x/164
e Eroampt ref code=v @1 @5 @ 10  correct
GPT-3.5 base X 0.46 0.80 0.87 143
GPT-3.5 _base v 0.49 0.81 0.88 145
GPT-3.5 simple X 0.55 0.82 0.87 143
GPT-3.5 simple v 0.56 0.82 0.88 144
GPT-4 base X 0.63 0.83 0.88 144
GPT-4 _base v 0.71 0.89 0.91 150
GPT-4 simple X 0.77 0.94 0.96 158
GPT-4 simple V4 0.76 0.92 0.96 157
StarChat base X 0.21 0.61 0.82 134
StarChat base v 0.20 0.59 0.77 126
StarChat simple X 0.25 0.69 0.85 139
StarChat simple v/ 0.23 0.67 0.86 141

e What is ablation? What is Accept@1? (They
never actually define either before use.)

e “Did they win?”
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“Completeness”

Avg. Bug-

complete-score

Category Example Postconditon % Prevalent (Natural/All)
Type Check isinstance(return_val, int) 47.4 0.14/0.27
Format Check return_val.startswith("ab") 11.2 0.43 / 0.57
Arithmetic Bounds return_val >= 0 30.8 0.23/0.34
Arithmetic Equality return_val[@] == 2 x input_val 17.5 0.82/0.89
Container Property len(return_val) > len(input_val) 27.0 0.45/0.57
Element Property return_val[0] % 2 == 12.6 0.39/0.53
Forall-Element Property all(ch.isalpha() for ch in return_val) 8.3 0.23/0.44
Implication (return_val==False) if 'A'not in string 12.7 0.58 / 0.64
Null Check return_val is not None 44 0.40 / 0.50
Average 0.32/0.46

RQ1 summary: Postcondition Completeness on EvalPlus

We find that for the benchmark EvalPlus, nl2postcond postconditions generated by GPT-3.5
and GPT-4 can meaningfully capture program intent especially when using our base prompt:
the average correct postcondition generated by these models can discriminate three-quarters
of unique buggy code mutants depending on the prompt variation.

« What does “can discriminate X% of unique buggy code mutants” mean?

o Could Daikon/DIG make these postconditions? Did they? -



Qualitative Analysis

We did not observe a significant relation between postcondition type and correctness. However,
we do observe significant differences in bug-completeness across categories. For example, post-
conditions labeled as Type Checks, i.e. specifications enforcing the type of the return value, were
the weakest, only killing 27% of bugs on average. This difference was particularly pronounced for
natural bugs (see Sections 2.1 and 3.1.4), where Type Checkers only killed 14% of bugs on average.
Interestingly, Type Checks are also the most prevalent category, indicating LLM preference to-
wards generating such constraints. Low completeness scores indicate that, for the studied dataset,

On the other hand, Arithmetic Equality checks, i.e. specifications that assert that parts of the
return value must be equivalent to another expression, provide a strong postcondition. On average,
this category of postcondition kills 89% of all bugs and appears in 17.5% of labeled postconditions.

« Why might type-checking postconditions be so
weak?

- “ls Grad PL a lie?”
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Bug-Finding via Postconditions

Table 4. Table containing our Defects4] results for postconditions generated for 840 methods across 525
historical bugs. We report the likelihood of generated postconditions to compile, and the accept@k likelihood
that they pass all tests when instrumenting the fixed function (test-set correct columns). # distinguishable bugs
is the number of bugs for which at least one generated postcondition was discriminating (see Section 4.1.2).

Prompt has: C 1 Test-set L Number
Model NL Only = X ompries estmset correc distinguishable

buggy code = v/ @1 @5 @10 @1 @5 @10 bugs
GPT-4 X 065 086 089 | 032 057 0.66 35
GPT-4 o 0.73 090 093 | 039 0.66 0.75 47
StarChat X 025 068 083 | 011 038 0.55 19
StarChat v 029 072 084 | 0.12 039 0.56 24

e Is statically finding 19-47 of 525 bugs “good”?
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e This founder of the Persian Achaemenid
Empire conquered much of West and Central
Asia (~550 BCE). He gained respect for his
policy of respecting the customs and religions

of those he conquered. He is generally
recognized for achievements in human rights
(his cylinder is sometimes described as the
first human rights charter), politics (including
bureaucracy like a post office), and military
strategy (including an elite heavy infantry of
“Immortals”).




Film

e This English film directory is widely viewed as
one of the most influential. He is particularly
known for his mastery of suspense. The Birds,
Rope, North by Northwest, Rear Window and

Psycho are all associated with him.




Fine Arts

e This private performing arts conservatory in
New York City is a prestigious academy of
dance, drama, and especially music. It has
one of the lowest acceptance rates in the

United States. Alumni include Robin Williams,
Yo-Yo Ma, Philip Glass, and Wynton Marsalis.




Psychology

e This American Psychologist is associated with
behaviorism (~1950). The theory equates
behavior with the response to a stimulus. It
included a focus on operant conditioning and
has largely been dropped in favor of cognitive
psychology. P




Al for PL vs. PL for Al

e In conferences it is increasingly common to
see some papers use Al to solve PL problems
and a few papers use PL to solve Al problems

e We have predominantly consider using LLMs
to solve programming problems, but our final

paper uses PL techniques applied to LLMS “as
programs”

- “If you're worried about LLMs giving wrong
answers, why not check the LLM for correctness
with formal PL techniques?”
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Inferring Data Preconditions from Deep Learning Models for
Trustworthy Prediction in Deployment

Shibbir Ahmed Hongyang Gao Hridesh Rajan
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
Iowa State University Iowa State University Iowa State University
Ames, [A, USA Ames, [A, USA Ames, [A, USA
shibbir@iastate.edu hygao@iastate.edu hridesh@iastate.edu

In this work, we propose a novel technique that uses rules derived
from neural network computations to infer data preconditions for a
DNN model to determine the trustworthiness of its predictions. Our
approach, Deeplnfer involves introducing a novel abstraction for a
trained DNN model that enables weakest precondition reasoning
using Dijkstra’s Predicate Transformer Semantics. By deriving rules
over the inductive type of neural network abstract representation,
we can overcome the matrix dimensionality issues that arise from
the backward non-linear computation from the output layer to the
input layer. We utilize the weakest precondition computation using
rules of each kind of activation function to compute layer-wise
precondition from the given postcondition on the final output of a
deep neural network. We extensively evaluated DeepInfer on 29 real-
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The Cunning Plan (1/7)

correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (N) is fed to
the input of the next layer (N + 1) in a DNN, our approach then
uses the preconditions of the N + 1 layer as postconditions of the
previous layer N. The precondition of the first layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNE.
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The Cunning Plan (2/7)

correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (N) is fed to
the input of the next layer (N + 1) in a DNN, our approach then

uses the preconditions of the N + 1 layer as postconditions of the
previous layer N. The precondition of the first layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNE.

#24



The Cunning Plan (3/7)

correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (N) is fed to
the input of the next layer (N + 1) in a DNN, our approach then
uses the preconditions of the N + 1 layer as postconditions of the
previous layer N. The precondition of the first layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNE.

def bar(z):
assert(___)
c=5-2*z
assert(___)
return c

def foo(y):
assert(___)
b = bar(len(y))-1
assert(___)
return b

def main(x):
assert(___)

a = foo(x+”w”)

assert(a>0) # post

return a
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The Cunning Plan (4/7)

correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (N) is fed to
the input of the next layer (N + 1) in a DNN, our approach then
uses the preconditions of the N + 1 layer as postconditions of the
previous layer N. The precondition of the first layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNE.

e Starting from the postcondition,
what are the first three we
compute?

def main(x):

def bar(z): »
assert(___)
c=5-2*z
assert(___)
return c

def foo(y): 2"
assert(___)
b = bar(len(y))-1
assert(___)
return b

assert(___)

assert(a>0) # post

return a #26



The Cunning Plan (5/7)

correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (N) is fed to
the input of the next layer (N + 1) in a DNN, our approach then
uses the preconditions of the N + 1 layer as postconditions of the
previous layer N. The precondition of the first layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNE.

def bar(z):

assert(5-z°>1)
c=5-27*z
assert(c>1)

return c

def foo(y):

assert(___)
b = bar(len(y))-1
assert(b>0)

return b

def main(x):

assert(___)
a = foo(x+”w”)
assert(a>0) # post

return a H#27



The Cunning Plan (6/7)

correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (N) is fed to
the input of the next layer (N + 1) in a DNN, our approach then
uses the preconditions of the N + 1 layer as postconditions of the
previous layer N. The precondition of the first layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNE.

e Continuing down from the top,
what are final conditions?

def bar(z):
assert(5-z°>1)
c=5-27*z
assert(c>1)
return c

def foo(y):
assert(___)
b = bar(len(y))-1
assert(b>0)
return b

def main(x):
assert(___)
a = foo(x+”’w”)
assert(a>0) # post

return a #28



The Cunning Plan (7/7)

correct or incorrect prediction. Starting with the conditions that def bar(z);
should hold on the output of the DNN (postconditions), our wp rules

. : assert(5-z">1
provide mechanisms to compute conditions on the input of that ( )

layer (preconditions). Since the output of one layer (N) is fed to c=5-2z
the input of the next layer (N + 1) in a DNN, our approach then assert(c>1)
uses the preconditions of the N + 1 layer as postconditions of the return c
previous layer N. The precondition of the first layer, also called the '
input layer, in the DNN are data preconditions. The challenge in def foo(y):
formulating wp rules lies in handling multiple layers with hidden assert(5-len’(y)>1)
non-linearities due to the architecture of the DNNSs. b = bar(len(y))-1

o o >
« Example data precondition: esert®=0)

return b

5 - (len(X)+1 )2 > 1 def main(x):
assert(5-len*(x+”w”)>1)
a = foo(x+”w”
assert(a>0) # post

return a 429



Figure 4: Rules for computing wp

e Recall that « is “also” wp in their paper

(WP)
wp(No, 8') = 8" & = wp(Ny, ) a(&, Bla(f(x)))) =& a(é1, pla(f(x)))) = &

wp(No.Ny, 8) = 8” a(do A 81, Bla(f(x)))) = 8, A 5

e Fill in this totally unrelated wp rule:

wp(___,bafx)=__ wp(__,___)=___
wp(if * then sO else s1, bafx) = p0 A p1
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Experiments

e Which of these aspects are good? Bad?

4.1.1 Benchmark. We have gathered four canonical real-world
datasets from Kaggle competitions [41]. The train and test datasets

Dataset # Features Model Source # Layers # Neurons
PD1 Kaggle 3 221

. . PD2 Kaggle 3 221
Pima Diabetes [61] 8 D3 Kaggle 3 551

puting power or memory, it is crucial to ensure that models are
suitable for deployment in safety-critical scenarios to prevent acci-
dents or mitigate risks. For instance, a self-driving Uber car struck
and killed a woman in March 2018 as an investigation [3] revealed
that the model couldn’t correctly predict her path and it needed to
brake just 1.3 seconds before it struck her. Therefore, it is important
to measure the runtime of such techniques.

Time (sec)

0.67

0.66

0.65

0.65

0.86
0.83
0.97
0.87

3.42

3.48

3.78

3.78

3.39

3.48

3.40
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Did It Work?

“Deeplnfer implies that data precondition violations
and Incorrect model prediction are highly correlated
(0.88) between prediction ground truth and
violation. Also, the precondition satisfaction and
correct model prediction are strongly correlated
(0.98).”

“Deeplnfer effectively implies the correct and
incorrect prediction of higher accuracy models with
recall (0.98) and F-1 score (0.84), compared to
SelfChecker with recall (0.59) and F-1 score (0.52).”
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Time Permitting

e In-Class HW6 Discussion
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Homework

e HW6
e Reading Quiz?
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