

#2

One-Slide Summary

• Many PL techniques require predicates describing
program behavior (pre- and post-conditions,
invariants, refinement types, etc.). LLMs can
statically generate candidate invariants from
program source code and comments.

• We can also use PL to address problems in LLMs. For
example, axiomatic semantics can be used to
predict hallucinations and increase trust. “Proving”
LLMs correct is a hot research topic that is not yet
solved; many proposed solutions do not scale.

#3

Reprise: Question Set #4
Wu et al.'s Lemur: Integrating

• Read Section 2 and 3.0 and discuss:
• Does Stable Invariant? Invariant Stable?→ →
• When would the verifier return Unknown?

• Is an LLM used for O
propose

, O
repair

, neither, or

both?
• In the Propose rule in Figure 1, what do we

know about V(P,A,q)? What do we suspect?
– Note: q is not a typo.

• How do they prove Theorem 3.1 and 3.2?

#4

Does It Work? Quality

• “We found that the LLM-based oracles can produce surprisingly
insightful loop invariants that are difficult for conventional formal
methods to synthesize. While predicate-abstraction-based
techniques typically generate predicates that involve only the
operators and values in the program and follow a particular
template, LLM is not constrained by these limitations. For
example, for the program in Fig. 4, GPT-4 can consistently
generate x%4==0 as the loop invariant although the modulo
operator is not present in the program.”

– How does this compare to Daikon? DIG? Newton from SLAM?

• “There are also several cases where the LLM generates disjunctive
invariants that precisely characterize the behavior of the loops.”

– How does this compare to Daikon? DIG? Newton from SLAM?

#6

Invariants and Assertions

• Many formal techniques require knowing a
predicate that describes program behavior
– Example Predicate: x <= 5

– Use: VCGen while
Inv

 b do c

– Use: Axiomatic Inv1 => WP(c, Inv2)

– Use: Dependent Type Refinements { x | Inv }

– Use: Synthesis (write a function that Inv)

• Invariants, pre- and post-conditions and
refinements all need such predicates

#7

Invariant Detection

• Classic invariant detection algorithms
(Daikon, DIG, etc.) are dynamic analyses:
they require that you can compile and run the
program and that you have indicate workloads

• What if we could generate candidate
invariants just from the “natural language” of
the program (e.g., comments, code)?
– This would be a static analysis (and thus more

broadly applicable)

#8

Reading and Understanding

• Once again we will discuss recent papers in
class, looking at direct descriptions and also
less-obvious implications

• This time the papers were assigned readings,
so you are all already familiar with them
– If this isn't true, we may have a reading quiz

– If it turns out to be true, we may skip the quiz

• I will call on you to read short passages out
loud and answer questions

#21

AI for PL vs. PL for AI

• In conferences it is increasingly common to
see some papers use AI to solve PL problems
and a few papers use PL to solve AI problems

• We have predominantly consider using LLMs
to solve programming problems, but our final
paper uses PL techniques applied to LLMS “as
programs”
– “If you're worried about LLMs giving wrong

answers, why not check the LLM for correctness
with formal PL techniques?”

#32

Did It Work?

• “DeepInfer implies that data precondition violations
and Incorrect model prediction are highly correlated
(0.88) between prediction ground truth and
violation. Also, the precondition satisfaction and
correct model prediction are strongly correlated
(0.98).”

• “DeepInfer effectively implies the correct and
incorrect prediction of higher accuracy models with
recall (0.98) and F-1 score (0.84), compared to
SelfChecker with recall (0.59) and F-1 score (0.52).”

#33

Time Permitting

• In-Class HW6 Discussion

#34

Homework

• HW6
• Reading Quiz?

	Proof Techniques for Operational Semantics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

