
Advanced Programming Languages
Homework Assignment 2F and 2C

EECS 590

Logistics. You must work alone. Your name and Michigan email address must appear on
the first page of your PDF submission but may not appear anywhere else. This is to protect
your identity during peer review. The first page of your submission is not shared during
peer view but all subsequent pages are.

Exercise 2F-1. Bookkeeping [2 points]. These answers should appear on the first page
of your submission and are kept private.

1. Indicate in a sentence or two how much time you spent on this homework.

2. Indicate in a sentence or two how difficult you found it subjectively.

I’ve just sucked one year of your life away. I might one day go as high as five,
but I really don’t know what that would do to you. So, let’s just start with what
we have. What did this do to you? Tell me. And remember, this is for posterity,
so be honest — how do you feel? – Count Rugen, The Princess Bride

All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f ∈ F .
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F is countable. Let the property P (n) mean that all subsets of F of size
at most n contain flowers that smell the same.

P (n)
def
= ∀X ∈ P(F). |X|≤n =⇒ (∀f, f ′ ∈ X. smells(f) = smells(f ′))

(the notation |X| denotes the number of elements of X)
One way to formulate the statement to prove is ∀n ≥ 1.P (n). We’ll prove this by

induction on n, as follows:

1

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P (n)).

Induction Step: Let n be arbitrary and assume that all subsets of F of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that |X| = n+1. Pick two distinct flowers
f, f ′ ∈ X and let’s show that smells(f) = smells(f ′). Let Y = X − {f} and Y ′ = X − {f ′}.
Obviously Y and Y ′ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x ∈ Y ∩ Y ′. Obviously, x 6= f and x 6= f ′. We have that
smells(f ′) = smells(x) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y ′). Hence smells(f) = smells(f ′), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:

For any BExp b and any initial state σ such that σ(x) is even, if

〈while b do x := x+ 2, σ〉 ⇓ σ′

then σ′(x) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n ∈ Z):

T ::= σ “normal termination”
| σ exc n “exceptional termination”

We use t to range over possible terminations T . We then redefine our operational semantics
judgment:

〈c, σ〉 ⇓ T

The interpretation of
〈c, σ〉 ⇓ σ′ exc n

is that command c terminated abruptly by throwing an exception with value n ∈ Z at a
point in c’s execution when the state was σ′. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

2

Note that our previous command rules must be updated to account for exceptions, as in:

〈c1, σ〉 ⇓ σ′ exc n

〈c1; c2, σ〉 ⇓ σ′ exc n
seq1

〈c1, σ〉 ⇓ σ′ 〈c2, σ′〉 ⇓ t
〈c1; c2, σ〉 ⇓ t

seq2

We also introduce three additional commands:

throw e
try c1 catch x c2
after c1 finally c2

• The throw e command raises an exception with argument e.

• The try command executes c1. If c1 terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If c1 raises an exception with
value e, the variable x ∈ L is assigned the value e and then c2 is executed.

• The finally command executes c1. If c1 terminates normally, the finally command ter-
minates by executing c2. If instead c1 raises an exception with value e1, then c2 is
executed:

– If c2 terminates normally, the finally command terminates by throwing an excep-
tion with value e1. (That is, the original exception e1 is re-thrown at the end of
the finally block, as in Java.)

– If c2 throws an exception with value e2, the finally command terminates by throw-
ing an exception with value e2. (That is, the new exception e2 overrides the
original exception e1, also as in Java.)

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to x, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x := 0 ;

{ try

if x <= 5 then throw 33 else throw 55

catch x

print x } ;

while true do {

x := x - 15 ;

print x ;

if x <= 0 then throw (x*2) else skip

}

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for

the three new commands presented here. You should present six (6) new rules total.

3

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something_else using n

end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

4

