
Automated Program RepairAutomated Program Repair

2

The Never-Ending Story
● Today we will use recent advances in

automated program repair to touch on all of
the lecture topics from this course

3

Speculative Fiction

● What if large, trusted companies paid
strangers online to find and fix their normal
and critical bugs?

4

5

6

7

(Raise hand if true)

I have used software produced by
Microsoft, PayPal, AT&T, Facebook,

Mozilla, Google or Youtube.

8

Bug Bounties
(What’s the Trick?)

● If you trust your triage and code review
processes, anyone can submit a candidate bug
report or candidate patch

● Bug Bounties combine defect reporting and
triage with pass-around code review

● Finding, fixing and ignoring bugs are all so
expensive that it is now (since 2013)
economical to pay untrusted strangers to
submit candidate defect reports and patches

9

Bug Bounties and Large Companies
(Big companies use bug bounties)

● “We get hundreds of reports every day. Many
of our best reports come from people whose
English isn't great – though this can be
challenging, it's something we work with just
fine and we have paid out over $1 million to
hundreds of reporters.”
● Matt Jones, Facebook Software Engineering

10

Bug Bounties and Small Companies
(It isn’t just big companies)

● Only 38% of the submissions were true
positives (harmless, minor or major): “Worth
the money? Every penny.” - Colin Percival, Tarsnap

11

A Modest Proposal

● Using techniques from this class (YAY) ...
● We can automatically find and fix defects

● Rather than, or in addition to, paying strangers
● Given a program …

● Source code, binary code, etc.
● … and evidence of a bug …

● Passing and failing tests, crashes, etc.
● … fix that bug.

● Create a textual patch (pull request)

12

How could this possibly work?
● Many faults can be localized to a small area

● Even if your program is a million lines of code, fault
localization can narrow it to 10-100 lines

● Many defects can be fixed with small changes
● Mutation (test metrics) can generate candidate

patches from simple edits
● A search-based software engineering problem

● Can use regression testing (inputs and oracles,
continuous integration) to assess patch quality
[Weimer et al. Automatically Finding Patches Using Genetic Programming. Best Paper Award. IFIP
TC2 Manfred Paul Award. SIGEVO “Humies” Gold Award. Ten-Year Impact Award.]

13

INPUT

OUTPUT

COMPILE AND TEST
(EVALUATE FITNESS)

DISCARD

ACCEPT

MUTATE

 X

GenProg

14

Minimizing Patches

● A GenProg patch may contain extraneous edits
 Patch 1: “close();” vs. Patch 2: “close(); x = x + 0;”

● Both pass all tests, but …
● Longer patches are harder to read
● Extraneous edits may only appear safe because

of weak test suites: avoid unneeded churn
● After the repair search, use delta debugging

(hypothesis testing) to find a passing 1-minimal
edit subset

15

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

16

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

17

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

18

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

19

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

20

How Can We Minimize Costs?

● We can parallelize this in the cloud, then stop
generating candidate mutants when a valid
repair is found
[Le Goues et al. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs
for $8 Each.]

● Each repair must pass the entire test suite
● Running tests is the dominant cost of automated

program repair
● Use test suite prioritization and minimization

● (Which HW did we do this on again?)

● Stop evaluating as soon as a single test fails
● Even one failure Not a valid repair!→

21

Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same functional test behavior

● Suppose I am considering this insertion:

 A = 1;

 B = 2;

 C = 3;

 D = 4;

 print(A,B,C,D);

C=99;
With your partner:
How many semantically
different patches are
there?

22

Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they
must have the same functional test behavior

● Suppose I am considering this insertion:

 A = 1;

 B = 2;

 C = 3;

 D = 4;

 print(A,B,C,D);

C=99;
With your partner:
How many semantically
different patches are
there?

23

Static Analysis

● If we had a cheap way to approximately
decide if two programs are equivalent
● We wouldn't need to test any candidate patch that

is equivalent to a previously-tested patch

(Math: Cluster or quotient the search space into
equivalence classes with respect to this relation)

● We use static analysis (like a dataflow analysis
for dead code or constant propagation) to
decide this: 10x reduction in search space
[Weimer et al. Leveraging Program Equivalence for Adaptive Program Repair: Models and
First Results.]

24

Design Patterns

● In mutation testing, the mutation operators
are based on common human mistakes

● Instead, use human edits or design patterns
● “Add a null check” or “Use a singleton pattern”

● Mine 60,000 human-written patches to learn
the 10 most common fix templates
● Resulting approach fixes 70% more bugs
● Human study of non-student developers (n=68):

such patches are 20% more acceptable
[Kim et al. Automatic Patch Generation Learned from Human-Written Patches. Best paper
award.]

25

Not Trivial: Agronomy and Genetics

● This Nobel Peace Prize winner is described as
the father of modern agriculture and the
green revolution. Bruce Alberts, National
Academy of Sciences President, said of him:
“Some credit him with saving more human
lives than any other person in history.” He is
credited with saving over a billion people
worldwide from starvation.

26

Not Trivial: Death

● Rank these causes of death in the US for 2018
(most recent CDC data available):
● Accidents (unintentional injuries)
● Assault (homicide)
● Heart disease
● Influenza and pneumonia

● Extra credit: One of these is about 20-100x
more common than another. Identify that
pairing.

27

Not Trivial: Death Details
2017 CDC (Table D, Page 12, extract)

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

28

Not Trivial: World History

● This world leader is alleged to have said “A
single death is a tragedy; a million deaths is a
statistic” during the 1943 Tehran conference
when Churchill objected to an early opening of
a second front in France.

29

Psychology: Emotions vs. Math

● N=1111 (!) adult participants were shown math
problems to assess their numeracy
(half were shown the numbers flipped)

30

Identity-Protection Cognition Thesis

● First, 59% of participants got it wrong
● Second, they tracked political beliefs
● Third, they also gave the same math problems

(same numbers, etc.), but reworded the
treatment as a city passing a gun ban and the
effect as crime decreasing (or not)

● Spoiler: highly-numerate people end up more
vulnerable to bias
[Kahan et al. Motivated Numeracy and Enlightened Self-
Government. Behavioral Public Policy.]

31

32

● Risk is “likelihood
of P happening” *
“cost if P happens”

● Amhdalh's Law is
“time spent on P” *
“improvement
possible to P”

● But we can't do
math …
[https://www.smbc-comics.com/?id=2305]

https://www.smbc-comics.com/?id=2305

33

Super
Opportunity Cost

● If you are really interested
in the greatest good for
the greatest number, don't
focus on muggings

● Dually, focus on muggings
if you like, but don't lie to
yourself about what you
are doing
● Local importance to you vs.

global importance overall

34

35

Aside: Metrics

● But perhaps we have fewer deaths due to X
because we are spending money to ameliorate
X (e.g., diabetes, malaria, etc.)
● Can we do “lives saved vs. money spent”?

● Yes! Large organizations use metrics such as
the disability-adjusted life year (DALY), a
measure of overall disease burden, expressed
as the number of years lost due to ill-health,
disability or early death
● See effective altruism and similar movements

36

Cognitive Bias
Conclusion

● I am not saying you should not
fight cancer or that you should
not be liberal or conservative
● All have good points

● I am saying that you should
figure out what you want and
then correctly evaluate
candidate actions in that light
● Do things because you want to,

not because you made a mistake

37

Relationship with Mutation Testing

● This program repair approach is a dual of
mutation testing
● This suggests avenues for cross-fertilization and

helps explain some of the successes and failures of
program repair.

● Very informally:
● PR Exists M in Mut. Forall T in Tests. M(T)
● MTForall M in Mut. Exists T in Tests. Not M(T)

38

Idealized Formulation

Ideally, mutation
testing takes a
program that passes
its test suite and
requires that all
mutants based on
human mistakes from
the entire program
that are not
equivalent fail at
least one test.

By contrast, program
repair takes a
program that fails its
test suite and
requires that one
mutant based on
human repairs from
the fault localization
only be found that
passes all tests.

39

No Source Code Needed
(This approach can be extended)

● Can repair assembly or binary programs to
support multi-language projects

● Use sampling-based profiling for fault localization

[Schulte et al. Automated Program Repair of
Binary and Assembly Programs for Cooperating
Embedded Devices.]

40

Can Humans Use These Patches?
● Synthesize “What” comments for generated

patches (design for maintainability)
● Test input generation constraints English→
● Human study (N=150): “With docs Yes!”→

[Fry et al. A Human Study of Patch Maintainability.]

41

Human-Machine Partnerships

● What if your partner in pair programming
were a machine that suggested patches?
● Machine is driver, you are navigator/observer
● In response to your feedback and characterization

of program state, it suggests new patches
● You note “checkpoints” where at point X, test

Y is running correctly (or variable Z is wrong)
● Human study of first-year grads (N=25):

● Reduces debugging on 14/15 scenarios compared
to singleton (~60% reduction over all 15)
[Xinrui Guo. SmartDebug: An Interactive Debug Assistant for Java.]

42

Concurrency Bugs
● So far we have required deterministic tests
● We can use a dynamic analysis like CHESS or

Eraser to detect concurrency bugs
● Look for two threads accessing X, one is a write

● Use special repair templates (e.g., always add
paired lock()/unlock() calls)

● Fixes 6/8 historical single-variable atomicity
violations in Apache, MySQL, Mozilla, etc.
● Devs fixed 6/8 in 11 days each, on average
● Union of humans and devs fixes all 8/8

[Jin et al. Automated Atomicity-Violation Fixing.]

43

Quality Defects

● What if the bug is that your program is too
slow or too big or uses too much energy?

● We can also improve and trade-off verifiable
quality properties (requirements)
● cf. MP3 or JPG lossy compression: space vs. quality

● Candidates must pass all functional tests
● But we also measure quality properties of all

passing candidates
● Present a Pareto frontier to help user explore

alternative solutions to requirement conflicts

44

Automatically Exploring Tradeoffs
In Conflicting Requirements

45

Can you spot the difference?

46

Can you spot the difference?

65% lower energy65% lower energy

[Dorn et al. Automatically exploring tradeoffs between software output fidelity and energy costs.]

47

Code Inspection

● What if we want to improve code inspection?
● Make many Randoop-generated unit tests
● Use a learned readability metric to rank them

● Given two tests with equal coverage, humans
agree with readability ranking 69% of the time

● Recall difficulties with normative models
● Humans (n=30) are 14% faster when answering

maintenance questions on readability-
optimized tests (same level of accuracy)

[Daka et al. Modeling Readability to Improve Unit Tests. Best paper award.]

48

Human Brains and Subjectivity

● Trust is sometimes defined as a willingness to take on
risk. How do human brains perceive and trust code
from unknown sources? [Walter et al. Developing a mechanism to study
code trustworthiness.]

● Cognitive Task Analysis of how readability and
provenance (who wrote it) relate to human trust
(n=12 grads)
● Take same code and degrade readability, etc.

49

“Gender” Bias
● What if we take the same human-written

patch but deceptively tell people it was
written by a man, a woman, or a machine?

● Machine-written Pull Requests have a lower acceptance
rate (78.03%) comparing to man-written (79.68%) and
woman-written Pull Requests (84.36%) (p < 0.05).

● “Participant self-reports acknowledge the bias against
machines but do not acknowledge a gender bias. When
Pull Request author information changes, participants
report seeing quality differences where none exist.”

● Also: Can distinguish women and men conducting code
review at a neurological level (BAC = 68.59%, p = 0.016).
[Huang, Leach et al.: Biases and Differences in Code Review using Medical Imaging and
Eye-Tracking: Genders, Humans, and Machines.]

50

“Wishes Come True, Not Free”

● Automated program repair, the whiny child:
● “You only said I had to get in to the bathtub, you

didn't say I had to wash.”
● The specification (tests) must encode

requirements (cf. conflicts)
● GenProg's first webserver defect repair

● 5 regression tests (GET index.html, etc.)
● 1 bug (POST remote security exploit)→
● GenProg's fix: remove POST functionality
● (Adding a 6th test yields a high-quality repair.)

51

Requirements and Testing
● MIT Lincoln Labs evaluation of GenProg: sort

● Tests: “the output of sort is in sorted order”
● GenProg's fix: “always output the empty set”
● (More tests yield a higher-quality repair. cf.

design-by-contract pre- and post-conditions)
● Existing human-written tests suites implicitly

assume the developers are reasonable humans
● Unless you are outsourcing, you rarely test against

“creative” for “adversarial” solutions or bugs
● cf. “we're already good at this” denials,

terminology conflicts

52

Measuring Quality via Tests

● Another GenProg example:
● Tests: “compare yours.txt to trusted.txt”
● GenProg's fix: “delete trusted.txt, output nothing”

● Canonical perverse incentives situation
● Automated program repair optimizes the metric
● “What you said” not “What you meant”

● Sleep forever to avoid CPU-usage penalties
● Always segfault to avoid bad output checks

[Weimer. Advances in Automated Program Repair and a Call to Arms.]

53

The Future

● Despite quality and trust concerns, some form
of this is coming in the future (10-20 years?)
● Already-demonstrated productivity gains

● What if “solve this one-line bug” became an
atomic action in your lexicon?
● The same way “complete this method call” or

“sort” or “rename this variable” is today

54

Productive Imposters

● Old adage: What do you call someone who
graduates last in a medical school class?

● Many worry: “I'm not as fast at coding”
● If most of SE is maintenance and 33-50% of

bugs can be fixed automatically, the real in-
demand skills are evaluating candidate fixes
and eliciting and encoding requirements
● The future of productivity: reading and talking
● True for bug bounties or automated repair
● This isn't really news (cf. first lectures …)

55

Should My Company Use It?

● As with any other software development
process option (e.g., pair programming, Infer,
100% coverage goals, etc.) we estimate (or
measure) costs and benefits
● 2012: fix 50% of bugs, $8 each (vs. $20 for humans)
● 2013: 3x cheaper, not counting cloud reductions

● Does not have to be used exclusively
● Tools generate patches for simple bugs, freeing up

creative human developer time for tougher issues
● A fault tree analysis is possible, etc.

56

57

Facebook's SapFixhttps://code.fb.com/developer-tools/finding-and-fixing-software-

bugs-automatically-with-sapfix-and-sapienz/

“... the tool has successfully generated patches that
have been accepted by human reviewers and pushed
to production …”

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

58

SapFix: Automated End-to-End
Repair at Scale

● “We report our experience with SapFix: the
first deployment of automated end-to-end
fault fixing, from test case design through to
deployed repairs in production code. We have
used SapFix at Facebook to repair 6 production
systems, each consisting of tens of millions of
lines of code, and which are collectively used
by hundreds of millions of people worldwide.”

https://ieeexplore.ieee.org/document/8804442

https://ieeexplore.ieee.org/document/8804442

59

Fujitsu Laboratories: AI Based
Automatic Patch Generation

https://www.fujitsu.com/us/about/resources/news/press-releases/2017/fla-20171011-02.html

https://www.fujitsu.com/us/about/resources/news/press-releases/2017/fla-20171011-02.html

60https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie_IEEE_Software_Revisions.pdf

https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie_IEEE_Software_Revisions.pdf

61

Questions

● Exam 2
● Homework 6b

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

