Automated Program Repair

GenProg

Evolutionary Program Repair

A Systematic Study of Automated Program Repair:
Fixing 35 out of 105 bugs for $8 Each

Defects Cost per Non-Repair Cost Per Repair

Program Repaired Hours US% Hours USs LOC Tests Defects
fbe LF 3 8.52 3.56 6.52 4.08 97000 TI3 3
gmp L.F:2 0.95 6.6 1.60 0.44 145,000 146 2
gzip 5 i 5.11 34 1.41 0.30 497,000 12 5
1ibtiff 17524 1.81 5.4 1.05 0.04 77,000 T8 24
lighttpd 5/ 9 10.79 1.25 1.34 0.25 62,000 295 9
php B 13.00 880 1.54 0.62 1046000 8471 44
python 1711 13.00 880 1.22 016 407 000 355 11
wireshark Lrd 13.00 8.80 1.23 017 2814000 63 T

total 55/ 105 1122h 1.60h 5130000 10,193 105

The Never-Ending Story

* Today we will use recent advances in
automated program repair to touch on all of
the lecture topics from this course

Speculative Fiction

* What if large, trusted companies paid
strangers online to find and fix their normal
and critical bugs?

ONLINE SHOPPING

webcomicname.com

Microsoft Security Response Center

HOME WHAT WE DO REPORT A VULNERABILITY

Microsoft Security Bounty Programs

crosoft is now offering direct cash payments in exchange for reporting certa
of vulnerabilities and exploitation techniques.

In '

doin .

since, we introduced the Security Development Lifecycle (SDL) process to build more secure
technologies. We also championed Coordinated Vulnerability Disclosure (CWVD), formed indus
collaboration programs such as MAPP and MSVR, and created the BlueHat Prize to encourage
research into defensive technologies. Our new bounty programs add fresh depth and flexibili
to our existing community cutreach programs. Having these bounty programs provides a wz
to harness the collective intelligence and capabilities of security researchers to help further
protect customers.

The following programs will launch on June 26, 2013:

1. Mitigation Bypass Bounty. Microsoft will pay up to $100,000 USD for truly novel
exploitation technigues against protections built into the latest version of our operating
system (Windows 8.1 Preview). Learning about new exploitation techniques earlier helps
Microsoft improve security by leaps, instead of capturing one vulnerability at a time as a
traditional bug bounty alone would. TIMEFRAME: ONGOING

2. BlueHat Bonus for Defense. Additionally, Microsoft will pay up to $50,000 UsD for
defensive ideas that accompany a gualifying Mitigation Bypass submission. Doing so
highlights our continued support of defensive technologies and provides a way for the
research community to help protect more than a billion computer systems worldwide.
TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty).

e] Weonlsmmeesanl Fersalouwsmseee 3 4 Fhemssnsesezas Eheonen KR annnmandes BRAcirerrvevevii 23208l vrvvr o v d=4 4 i L0 T Fru e

Microsoft Security Response Center

PayPal T | Buy v | Sell - Transfer ~

For Security Researchers Bug Bounty Wall of Fame

For Customers: Reporting Suspicious Emails

Customers who think they have received a Phishing email, please learn more about phishing at https:/lems.paypal.com/us/cgi-bin/marketingweb?cmd=_render-
content&content_ID=security/hot_security_topics, or forward it to: spoof@paypal.com

For Customers: Reporting All Other Concerns
Customers who have issues with their PayPal Account, please visit: https://'www.paypal.com/cgi-bin/helpscr?cmd=_help&t=escalate Tab
For Professional Researchers: Bug Bounty Program

Our team of dedicated security professionals works vigilantly to help keep customer information secure. We recognize the important role that security researchers and our
user community play in also helping to keep PayPal and our customers secure. If you discover a site or product vulnerability please notify us using the guidelines below.

Program Terms

Please note that your participation in the Bug Bounty Program is voluntary and subject to the terms and conditions set forth on this page (“Program Terms”). By submitting
a site or product vulnerability to PayPal, Inc. ("PayPal”) you acknowledge that you have read and agreed to these Program Terms.

These Program Terms supplement the terms of PayPal User Agreement, the PayPal Acceptable Use Policy, and any other agreement in which you have entered with
PayPal (collectively “PayPal Agreements”). The terms of those PayPal Agreements will apply to your use of, and participation in, the Bug Bounty Program as if fully set
forth herein. If there is any inconsistency exists between the terms of the PayPal Agreements and these Program Terms, these Program Terms will control, but only with
regard to the Bug Bounty Program.

You can jump to particular sections of these Program Terms by using the following links:
Responsible Disclosure Policy

Eligibility Requirements
THYrmgrits Ourn conunued sUuppuiL ol ueiciisve Lecimnmmoioyiss diid provides 4 wdy 1u1 Lie

research community to help protect more than a billion computer systems worldwide.
TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty). 5

— Weonlsmmeesanl Fersalouwsmsnee 3 1 Fhemsseseseszas Eheonen KR annnmandes BRAcirerrsrvevii 23208l v v o v d=4 4 i L0 TS Fru e

Microsoft Security Response Center

PayPa’” Buy ~ Sell ~ Transfer ~

For&T Bug Bounty Program

For Ct Rewards Report Bug Hall of Fame PRINT EMAIL

Custon
conter

ForCuFD Afread}' a Member?

Custonjnag or Join Mow
. ign In

For pr 215 o
i & Conditions

Our tet
user cc

Programe to the AT&T Bug Bounty Program! This program encourages and rewards contributions by developers and security researcher
Pfease'E|p make ATE&T's online environment more secure. Through this program ATE&T provides monetary rewards and/or public
e cr'|itin::|r'| for security wvulnerabilities responsibly disclosed to us.

llowing explains the details of the program. To immediately start submitting your ATE&T security bugs, please wvisit the Bug Bount

These tal
PayPal =l page.

forth he _
regardElE lines

You capg Bug Bounty Program applies to security vulnerabilities found within AT&T's public-facing online environment. This includes,
ot limited to, websites, exposed APIs, and mobile applications.

urity bug is an error, flaw, mistake, failure, or fault in a computer program or system that impacts the security of a device,

m, network, or data. Any security bug may be considered for this program; howewver, it must be a new, previously unreported,
-ability in order to be eligible for reward or recognition. Typically the in-scope submissions will include high impact bugs; however,
ulnerability at any severity might be rewarded.

T Tl s e (T e el T I T e T T e (el ol o AT =T I Tl ol o T R e o o o e e g e e T [e = o=l e e (T =t =Tl Ta i = T T =T o e

Microsoft Security Response Center

Paypa} Buy Sell Transfer

For&‘l' Bug Bounty Program

For CU Rewards Report Bug Hall of Fame PRINT EMAIL

Custon
conter

For CUFG er?

CustoniHES

iions

(Raise hand if true)

Our tet
user cc

Programe to th by researcher

e | have used software produced by

Jllowing e ne Bug Bount

-~ Microsoft, PayPal, AT&T, Facebook,

forth he)
regardde line

Mozilla, Google or Youtube.

at limited

urity bug device,

m, network, or data. Any secunty bug may be considered for this program; however, 1t must be a new, previously unreported,
-ability in order to be eligible for reward or recognition. Typically the in-scope submissions will include high impact bugs; however,
ulnerability at any severity might be rewarded.

T Tl s e (T e el T I T e T T e (el ol o AT =T I Tl ol o T R e o o o e e g e e T [e = o=l e e (T =t =Tl Ta i = T T =T o e

Bug Bounties
(What’s the Trick?)

* |f you trust your triage and code review
processes, anyone can submit a candidate bug
report or candidate patch

* Bug Bounties combine defect reporting and
triage with pass-around code review

* Finding, fixing and ignoring bugs are all so
expensive that it is now (since 2013)
economical to pay untrusted strangers to
submit candidate defect reports and patches

Bug Bounties and Large Companies
(Big companies use bug bounties)

* “We get hundreds of reports every day. Many
of our best reports come from people whose
English isn't great - though this can be
challenging, it's something we work with just
fine and we have paid out over $1 million to
hundreds of reporters.”

* Matt Jones, Facebook Software Engineering

Bug Bounties and Small Companies
(It isn’t just big companies)

* Only 38% of the submissions were true
positives (harmless, minor or major): “Worth
the money? Every penny.” - Colin Percival, Tarsnap

For this reason, Tarsnap has a series of bug bounties. Similar to the bounties offered by Mozilla and Google, the Tarsnap bug bounties
provide an opportunity for people who find bugs to win cash. Unlike those bounties, the Tarsnap bug bounties aren't imited to secunty bugs.
Depending on the type of bug and when it is reported, different bounties will be awarded:

el |bounty value |19P° 9109

$1000 |$2000 A bug which allows someone intercepting Tarsnap traffic to decrypt Tarsnap users' data.

$500 $1000 A bug which allows the Tarsnap service to decrypt Tarsnap users' data.

$500 $1000 A bug which causes data corruption or loss.

$100 $200 A l_:rug which causes Tarsnap to crash (without corrupting data or losing any data other than an archive currently
being written).

$50 $100 Any other non-harmless bugs in Tarsnap.

520 |40 Build breakage on a platform where a previous Tarsnap release worked.

$10 £20 "Harmless" bugs, e.q., cosmetic errors in Tarsnap output or mistakes in source code comments.

A patch which significantly improves the clarity of source code (e.g., by refactoring), source code comments (e.q.,
$5 $10 by rewording or adding text to clarify something), or documentation. (Merely pointing to something and saying "this
Is unclear” doesn't qualify; you must provide the improvement.)

Cosmetic errors in the Tarsnap source code or website, e.g., typos in website text or source code comments. Style
51 £2 i i)))
errors in Tarsnap code qualify here, but usually not style errors in upstream code (e.g., libarchive).

* Using techniques from this class (YAY) ...
* We can automatically find and fix defects

* Rather than, or in addition to, paying strangers
* Given a program ...

* Source code, binary code, etc.
* ... and evidence of a bug ...

* Passing and failing tests, crashes, etc.
e ... fix that bug.

* Create a textual patch (pull request)

11

How could this possibly work?

* Many faults can be localized to a small area

* Even if your program is a million lines of code, fault
localization can narrow it to 10-100 lines

* Many defects can be fixed with small changes

* Mutation (test metrics) can generate candidate
patches from simple edits

* A search-based software engineering problem

* Can use regression testing (inputs and oracles,
continuous integration) to assess patch quality

[Weimer et al. Automatically Finding Patches Using Genetic Programming. Best Paper Award. IFIP
TC2 Manfred Paul Award. SIGEVO “Humies” Gold Award. Ten-Year Impact Award.]

12

COMPILE AND TEST
(EVALUATE FITNESS)

i - T
vl - ol = .
e =, 4. 480 - e
: o, - - :r"
v [l e dcmn I o el iy Ny St
| - = . .
v e s s, i #
EILLIRE PR, £ < :II. g, gy s - L 3 F o
1 it 1 iy N - £
i iy s g s g
() s g, A
B : "y i i
5

x & e 'I
PR————

C
V7944

OUTPUT

GenProg

Minimizing Patches

* A GenProg patch may contain extraneous edits

Patch 1: “close () ;” vs. Patch 2: “close(); x = x + 0;”

* Both pass all tests, but ...
* Longer patches are harder to read

* Extraneous edits may only appear safe because
of weak test suites: avoid unneeded churn

* After the repair search, use delta debugging
(hypothesis testing) to find a passing 1-minimal
edit subset

14

Name

Subjects

Notes

AFix

2 Mloc

Concurrency, guarantees

ARC

Concurrency, SBSE

ARMOR

6 progs.

|dentifies workarounds

AVAES

13 progs.

Concurrency, guarantees, Petri nets

AutoFix-E

21 Kloc

Contracts, guarantees

CASC

1 Kloc

Co-evolves tests and programs

ClearView

Firefox

Red Team quality evaluation

Coker Hafiz

15 Mloc

Integer bugs only, guarantees

Debroy Wong

76 Kloc

Mutation, fault localization focus

Demsky et al.

3 progs.

Data struct consistency, Red Team

FINCH

13 tasks

Evolves unrestricted bytecode

GenProg

5 Mloc

Human-competitive, SBSE

Gopinath et al.

2 methods.

Heap specs, SAT

Jolt

S progs.

Escape infinite loops at run-time

Juzi

7 progs.

Data struct consistency, models

PACHIKA

110 Kloc

Differences in behavior models

PAR

480 Kloc

Human-based patches, quality study

SemFix

12 Kloc

Symex, constraints, synthesis

Sidiroglou et al.

17 progs.

Buffer overflows

Name

AFix

Subijects

Notes

2 Mloc

Concurrency, guarantees

ARC

Concurrency, SBSE

ARMOR

6 progs.

|dentifies workarounds

AVAES

13 progs.

Concurrency, guarantees, Petri nets

AutoFix-E

21 Kloc

Contracts, guarantees

CASC

1 Klan

Co-evolves tests and programs

ClearView

Firefox

Red Team quality evaluation

Coker Hafiz

15 Mloc

Integer bugs only, guarantees

Debroy Wong

10 nu0C

Mutation, fault localization focus

Demsky et al.

3 progs.

Data struct consistency, Red Team

FINCH

13 tasks

Evolves unrestricted bytecode

GenProg

5 Mloc

Human-competitive, SBSE

Gopinath et al.

2 methods.

Heap specs, SAT

Jolt

S progs.

Escape infinite loops at run-time

Juzi

7 progs.

Data struct consistency, models

PACHIKA

110 Kloc

Differences in behavior models

PAR

480 Kloc

Human-based patches, quality study

SemFix

12 Kloc

Symex, constraints, synthesis

Sidiroglou et al.

17 progs.

Buffer overflows

Name

Subjects

Notes

AFix

2 Mloc

Concurrency, guarantees

ARC

Concurrency, SBSE

ARMOR

6 progs.

|dentifies workarounds

AVAES

13 progs.

Concurrency, guarantees, Petri nets

AutoFix-E

21 Kloc

Contracts, guarantees

CASC

1 Kloc

Co-evolves tests and programs

ClearView

Firefox

Red Team quality evaluation

Coker Hafiz

15 Mloc

Integer bugs only, guarantees

Debroy Wong

76 Kloc

Mutation, fault localization focus

Demsky et al.

3 progs.

Data struct consistency, Red Team

FINCH

13 tasks

Evolves unrestricted bytecode

GenProg

5 Mloc

Human-competitive, SBSE

Gopinath et al.

2 methods.

Heap specs, SAT

Jolt

S progs.

Escape infinite loops at run-time

Juzi

7 progs.

Data struct consistency, models

PACHIKA

110 Kloc

Differences in behavior models

PAR

480 Kloc

Human-based patches, quality study

SemFix

12 Kloc

Symex, constraints, synthesis

Sidiroglou et al.

17 progs.

Buffer overflows

Name

Subjects

Notes

AFix

2 Mloc

Concurrer <y, guarantees

ARC

Concurrency, SBSE

ARMOR

6 progs.

|dentifies work=ar~iinds

AVAES

13 progs.

Concurrs.ncy, guarantees, Petri nets

AutoFix-E

21 Kloc

Contracw.> guarantees

CASC

1 Kloc

Co-evolves tests and programs

ClearView

Firefox

57

Red Team quality evaluation

Coker Hafiz

15 Mloc

Integer bugs ot 1y, guarantees

Debroy Wong

76 Kloc

Demsky et al.

3 progs.

122,500

Mutation, fault localization tocus

Data struct consistency, Red Team

FINCH

13 tasks

GenProg

5 Mloc

Gopinath et al.

2 methods.

10,000

Evolves unrestricted bytecode

Human-competitive, SBSE

Heap specs, SAT

Jolt

S progs.

Escape infinite loops at run-time

Juzi

7 progs.

Data struct consistency, models

PACHIKA

110 Kloc

Differences in behavior models

PAR

480 Kloc

Human-based patches, quality study

SemFix

12 Kloc

Symex, constraints, synthesis

Sidiroglou et al.

17 progs.

Buffer overflows

Name

Subjects

Notes

AFix

2 Mloc

Concurrency, guarantees

ARC

Concurrency, SBSE

ARMOR

6 progs.

|dentifies workarounds

AVAES

13 progs.

Concurrency, guarantees, Petri nets

AutoFix-E

21 Kloc

Contracts, guarantees

CASC

1 Kloc

ClearView

Firefox

Coker Hafiz

15 Mloc

Co-evolves tests and programs

Red Team qu .lity evaluation

Integer bugs only, guarantees

Debroy Wong

76 Kloc

Mutation, fault localization focus

Demsky et al.

3 progs.

Data struct consiste icy, Red Team

FINCH

13 tasks

Evolves unrestricted bytecode

GenProg

5 Mloc

' Human-ce npetitive, SBSE

Gopinath et al.

2 methods.

Heap specs, SAT

Jolt

S progs.

Escape infinite loops at run-time

Juzi

7 progs.

Data struct consistency, models

PACHIKA

110 Kloc

Differences in behavior models

PAR

480 Kloc

'Human-b~ sed patches, quality study

SemFix

12 Kloc

Symex, constraints, synthesis

Sidiroglou et al.

17 progs.

Buffer overflows

How Can We Minimize Costs?

* We can parallelize this in the cloud, then stop
generating candidate mutants when a valid
repair is found

[Le Goues et al. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs
for $8 Each.]

* Each repair must pass the entire test suite

* Running tests is the dominant cost of automated
Drogram repair

* Use test suite prioritization and minimization
* (Which HW did we do this on again?)

* Stop evaluating as soon as a single test fails

* Even one failure — Not a valid repair! 20

Can We Avoid Testing? ‘&

<1 YOU HAVE NO TESTS AT ALL

* |If P1 and P2 are semantically equivalent they
must have the same functional test behavior

* Suppose | am considering this insertion:

A=1;
L With your partner:
C=99; B 2’ How many semantically
C = 3: different patches are
- there?
D = 4;

print(A,B,C,D);

21

Can We Avoid Testing?

* |If P1 and P2 are semantically equivalent they
must have the same functional test behavior

* Suppose | am considering this insertion:

A=1;
— 7. With your partner:
C=99; ¢ B 2’ How many semantically

\ C =3 different patches are
‘. - there?

N D=4

\‘ print(A,B,C,D);

22

Static Analysis

* |f we had a cheap way to approximately
decide if two programs are equivalent

* We wouldn't need to test any candidate patch that
is equivalent to a previously-tested patch

(Math: Cluster or quotient the search space into
equivalence classes with respect to this relation)

* We use static analysis (like a dataflow analysis
for dead code or constant propagation) to
decide this: 10x reduction in search space

[Weimer et al. Leveraging Program Equivalence for Adaptive Program Repair: Models and
First Results.]

23

Design Patterns

:
* |n mutation testing, the mutation operators
are based on common human mistakes

* Instead, use human edits or design patterns
* “Add a null check” or “Use a singleton pattern”

* Mine 60,000 human-written patches to learn
the 10 most common fix templates

* Resulting approach fixes 70% more bugs

* Human study of non-student developers (n=68):
such patches are 20% more acceptable

[Kim et al. Automatic Patch Generation Learned from Human-Written Patches. Best paper
award.] 24

Not Trivial: Agronomy and Genetics

* This Nobel Peace Prize winner is described as
the father of modern agriculture and the
green revolution. Bruce Alberts, National
Academy of Sciences President, said of him:
“Some credit him with saving more human
lives than any other person in history.” He is
credited with saving over a billion people
worldwide from starvation.

Not Trivial: Death

 Rank these causes of death in the US for 2018
(most recent CDC data available):

* Accidents (unintentional injuries)
* Assault (homicide)

* Heart disease

* Influenza and pneumonia

* Extra credit: One of these is about 20-100x
more common than another. ldentify that
pairing.

Not Trivial: Death Details

2017 CDC (Table D, Page 12, extract)
https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

Cause of death (based on ICD-10) Rank! Deaths

All causes ... 21793857

Diseases of heart (100-109,111,113,120-151) 508,485
Malignant neoplasms (C00-C97) 465,679
Chronic lower respiratory diseases (J40-J47) 139,833
Accidents (unintentional injuries) (V01-X59,Y85-Y86) 127,029
Cerebrovascular diseases (160-169) 110,038
Alzheimer disease (G30) 101,876
Diabetes mellitus (E10-E14) 95,116
Influenza and pneumonia (J09-J18) 43,397
Intentional self-harm (suicide) (*U03,X60-X84,Y87.0) 38,106
Nephritis, nephrotic syndrome and

nephrosis (NOO-NO7,N17-N19,N25-N27) 35,191
Chronic liver disease and cirrhosis (K70,K73—K74) 30,223
Septicemia (A40-A41) 30,198
Essential hypertension and hypertensive renal disease (110,112,115) 24,465
Assault (homicide) (*U01-*U02,X85-Y09,Y87.1) 5,747

27

1
2
3
4
9
6
7
8
9

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

Not Trivial: World History

* This world leader is alleged to have said “A
single death is a tragedy; a million deaths is a
statistic” during the 1943 Tehran conference
when Churchill objected to an early opening of
a second front in France.

Psychology: Emotions vs. Math

* N=1111 (!) adult participants were shown math
problems to assess their numeracy

(half were shown the numbers flipped) Result

Rash Got Better Rash Got Worse
Patients who did use
the new skin cream 2 2 3 7 5

Patients who did not
use the new skin cream 1 07 2 1

What result does the study support?

) People who used the skin cream were more likely to get better than those who didn't.

) People who used the skin cream were more likely to get worse than those who didn't.

ldentity-Protection Cognition Thesis

* First, 59% of participants got it wrong
* Second, they tracked political beliefs

* Third, they also gave the same math problems
(same numbers, etc.), but reworded the
treatment as a city passing a gun ban and the
effect as crime decreasing (or not)

* Spoiler: highly-numerate people end up more
vulnerable to bias

[Kahan et al. Motivated Numeracy and Enlightened Self-
Government. Behavioral Public Policy.]

Liberal Democrat (-1 SD on Conservrepub)

Conservative Republican (+1 SD on Conservrepub)

low numeracy = 3 correct/ high numeracy =7 correct

Low nhumeracy High numeracy
rash !ncreasﬁs rash decreases
rash mcrea;_és
f \':.
H rash decreases
Skin treatment
il
il
Ji
—
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% A40% 50% 60% 70% 20% 90% 100%
probabilityof correct interpretation of data probability of correctinterpretation of data
crime decreases
. . crime increases
crime increases -
s crime decreases . I
i EAUN crime decreases R
i / icrimeincreases . Fo
!’y crime decreases! |
crime increases f
Gun ban

|

!

!
\

a—

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

probability of correctinterpretation of data

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

probability of correctinterpretation of data

* Risk is “likelihood
of P happening” *
“cost if P happens”

« Amhdalh's Law is

“time spent on P” *
“improvement
possible to P”

But we can't do
math ...

[https://www.smbc-comics.com/?id=2305]

https://www.smbc-comics.com/?id=2305

Super
Opportunity Cost

* |f you are really interested
in the greatest good for
the greatest number, don't
focus on muggings

* Dually, focus on muggings
if you like, but don't lie to
yourself about what you
are doing

* Local importance to you vs.
global importance overall

INSTEAD OF STOPPING
CRIMINALS, How ABOUT NOL

TRANSRORT LOPDS OF GRMN7
. O STARVING PEOPLE

w‘@\ OH.

[——}

NEW PLAN: USE YOUR STRENGTH TO

PLOW FARMLAND N \MPOVERIGHED

CONTRIES. ECONOMISTS THINK
THXT'S BETIER LONGTERM,

EVERY SECOND
OF QU\BBLING \S
ANQOTHER DEAD
2ZhaY.

WE NEED YOU TO CRBNK TW\S MAGNET AS FAST
pS POSS\BLE. THE ENSRGY \T CENERMIES WL

BE SO CHEAD Tkt EVERYWE CAN ENJOY A
WESTERN STANDARD OF LWING.

SEEMS... B B\T
MONGTONOUS ...

OM, TUKRT REMINDS
ME. KEEP YOURSPEED

CONSTANT KT ALV |
T\MES. ﬁ

WHERE WE DONATE VS. DISEASES THAT KILL US

.Breast Cancer

W
N
un
o

2
[
(=]
o

.Prustate Cancer

W
=
un
o

N
=
(=
o

_Heart Disease

—
W
==

O
=

=

o
Q

-+
M

o
>
v
-
o

=

W
U
o

.Motor Neuron Disease (including ALS)

HIV/ADS® D iabetes chronic Obstructive Pulmonary Disease
Suicide 100k 200k 300k 400k 500k 600k

Total Deaths (US)

Sources: CDC, 2011; Komen Race for the Cure, 2012; Movember, 2013; Jump Rope for
Heart, 2013; ALS Ice Bucket Challenge, 2014; Ride to End Aids, 2013; Fight for Air Climb,
2013; Step Out: Walk to Stop Diabetes, 2013; Out of Darkness Overnight Walk, 2014.

Aside: Metrics

* But perhaps we have fewer deaths due to X
because we are spending money to ameliorate
X (e.g., diabetes, malaria, etc.)

* Can we do “lives saved vs. money spent”?

* Yes! Large organizations use metrics such as
the disability-adjusted life year (DALY), a
measure of overall disease burden, expressed
as the number of years lost due to ill-health,
disability or early death

e See effective altruism and similar movements

Cognitive Bias
Conclusion

* | am not saying you should not
fight cancer or that you should
not be liberal or conservative

* All have good points

* | am saying that you should
figure out what you want and
then correctly evaluate
candidate actions in that light

* Do things because you want to,
not because you made a mistake

Relationship with Mutation Testing

* This program repair approach is a dual of
mutation testing

* This suggests avenues for cross-fertilization and
helps explain some of the successes and failures of
program repair.

* Very informally:

« PR Exists M in Mut. Forall T in Tests. M(T)
e MT Forall M in Mut. Exists T in Tests. Not M(T)

37

|dealized Formulation

|ldeally, mutation By contrast, program
testing takes a repair takes a
program that passes program that fails its
its test suite and test suite and
requires that all requires that one
mutants based on mutant based on
human mistakes from human repairs from
the entire program the fault localization
that are not only be found that
equivalent fail at passes all tests.

least one test.

38

No Source Code Needed

(This approach can be extended)
* Can repair assembly or binary programs to

support multi-language projects

Original Resull

movq 8(jrdx), frdi movq 8(krdx), frdi
zor] Yeax, feax ror] Yeax, Yeax
movq srdx, -BO(Arbp))

addl $1, %ridd addl §1, Jridd
call atol call atoi

movq -80 (Yrbp), Yrdx movy firdx, -B0Ckrbp)

Original Result
movq 8(frdx) , Jrdi movq 8(krdx), rdi
zorl Jeax, Yeax yor] fieax, Jieax

call ated call atoi

movq -80(Arbp) , drdx movq -80(frbp) , frdx
addl $1, %irldd : addl $1, Yr14d

e Use sampling-based profiling for fault localization

Sample

Raw Sample
Program Counter Counts

"
- — |
e

memory addr.
- —>
to instruction

CPU

[Schulte et al. Automated Program Repair of
Binary and Assembly Programs for Cooperating
Embedded Devices. |

Smoothed Sample

Jounts

movg B{irdx), ¥rdi
zorl Yeax, Yeax
movl ¥eax, (Hris)
addl $1, Yriad

—
= | call atoi

= mavg ED[ﬁth}, Yrdx
3 —i movq frdx, -80(Kcbp)
- addg $4, Jris
mave B(Yredx) 5 Yrdi
xorl Feax, feax
movl Feax, (Hrils)
addl $1, Eridd

WWM

-

Machine-code
Instructions

39

Can Humans Use These Patches?

* Synthesize “What” comments for generated

Percent Change in Correct Answers
When Compared with Original Code

-10

patches (design for maintainability)

* Test input generation constraints — English
 Human study (N=150): “With docs — Yes!”

6

4

2 I
0

2

15

=
[%)) =] w =

i
o

-4

|
=
(%3}

-6

o
=

-8

When Compared with Original Code

i
(2
(%3]

Percent Time Saved for Correct Answers

Human Human Machine Machine+Doc AH m y Machine RH m y Machine+Doc
Reverted Accepted ccepte everte
Patch Type Patch Type
40

[Fry et al. A Human Study of Patch Maintainability.]

Human-Machine Partnerships

* What if your partner in pair programming
were a machine that suggested patches?
* Machine is driver, you are navigator/observer

* |In response to your feedback and characterization
of program state, it suggests new patches

* You note “checkpoints” where at point X, test
Y is running correctly (or variable Z is wrong)

 Human study of first-year grads (N=25):

* Reduces debugging on 14/15 scenarios compared
to singleton (~60% reduction over all 15)

[Xinrui Guo. SmartDebug: An Interactive Debug Assistant for Java. |

41

Concurrency Bugs

* So far we have required deterministic tests

 We can use a dynamic analysis like CHESS or
Eraser to detect concurrency bugs

* Look for two threads accessing X, one is a write

* Use special repair templates (e.g., always add
paired lock()/unlock() calls)

* Fixes 6/8 historical single-variable atomicity
violations in Apache, MySQL, Mozilla, etc.
* Devs fixed 6/8 in 11 days each, on average
* Union of humans and devs fixes all 8/8

[Jin et al. Automated Atomicity-Violation Fixing.]

42

Quality Defects

* What if the bug is that your program is too
slow or too big or uses too much energy?

* We can also improve and trade-off verifiable
quality properties (requirements)

e cf. MP3 or JPG lossy compression: space vs. quality

* Candidates must pass all functional tests

* But we also measure quality properties of all
passing candidates

* Present a Pareto frontier to help user explore
alternative solutions to requirement conflicts ,,

Automatically Exploring Tradeoffs
In Conflicting Requirements

4———-‘-“

G0
PN

2% -

E p—T"

\—

0%
qw 50% 100%
Ene reductio

WO FBO

44

Can you spot the difference?

Can you spot the difference?

65% lpwer energy

[Dorn et al. Automatically exploring tradeoffs between software output fidelity and energy costs.4f)

Code Inspection

* What if we want to improve code inspection?

* Make many Randoop-generated unit tests
* Use a learned readability metric to rank them

* Given two tests with equal coverage, humans
agree with readability ranking 69% of the time

 Recall difficulties with normative models

* Humans (n=30) are 14% faster when answering

maintenance questions on readability-
optimized tests (same level of accuracy)

[Daka et al. Modeling Readability to Improve Unit Tests. Best paper award. | 47

* Trust is sometimes defined as a willingness to take on
risk. How do human brains perceive and trust code
from unknown sources? [Walter et al. Developing a mechanism to study

code trustworthiness.]

* Cognitive Task Analysis of how readability and

provenance (who wrote it) relate to human trust
(n=12 grads)

* Take same code and degrade readability, etc.

ol
w

4.3

Trustworthiness

04
00

T

4.8 -

|

High

[¢

Medium
Readability

Trustworthiness

5 |
4.5 A

4 -
5 1

T
2

Reputable

m

Unknown

48
Source

“Gender” Bias

 What if we take the same human-written
patch but deceptively tell people it was
written by a man, a woman, or a machine?

* Machine-written Pull Requests have a lower acceptance
rate (78.03%) comparing to man-written (79.68%) and
woman-written Pull Requests (84.36%) (p < 0.05).

« “Participant self-reports acknowledge the bias against
machines but do not acknowledge a gender bias. When
Pull Request author information changes, participants
report seeing quality differences where none exist.”

* Also: Can distinguish women and men conducting code
review at a neurological level (BAC = 68.59%, p = 0.016).

[Huang, Leach et al.: Biases and Differences in Code Review using Medical Imaging and
Eye-Tracking: Genders, Humans, and Machines.]
49

“Wishes Come True, Not Free”

* Automated program repair, the whiny child:

* “You only said | had to get in to the bathtub, you
didn't say | had to wash.”

* The specification (tests) must encode
requirements (cf. conflicts)

* GenProg's first webserver defect repair

* 5 regression tests (GET index.html, etc.)

* 1 bug (POST — remote security exploit)

* GenProg's fix: remove POST functionality

e (Adding a 6 test yields a high-quality repair.)

50

Requirements and Testing

* MIT Lincoln Labs evaluation of GenProg: sort

» Tests: “the output of sort is in sorted order”
* GenProg's fix: “always output the empty set”

* (More tests yield a higher-quality repair. cf.
design-by-contract pre- and post-conditions)

* Existing human-written tests suites implicitly
assume the developers are reasonable humans

* Unless you are outsourcing, you rarely test against
“creative” for “adversarial” solutions or bugs

* cf. “we're already good at this” denials,

terminology conflicts
51

Measuring Quality via Tests

* Another GenProg example:

* Tests: “compare yours.txt to trusted.txt”
* GenProg's fix: “delete trusted.txt, output nothing”

* Canonical perverse incentives situation

* Automated program repair optimizes the metric
* “What you said” not “What you meant”

* Sleep forever to avoid CPU-usage penalties
* Always segfault to avoid bad output checks

[Weimer. Advances in Automated Program Repair and a Call to Arms.] >2

The Future

* Despite quality and trust concerns, some form
of this is coming in the future (10-20 years?)

* Already-demonstrated productivity gains

* What if “solve this one-line bug” became an
atomic action in your lexicon?

* The same way “complete this method call” or
“sort” or “rename this variable” is today

53

Productive Imposters

* Old adage: What do you call someone who
graduates last in a medical school class?

* Many worry: “I'm not as fast at coding”

* |f most of SE is maintenance and 33-50% of
bugs can be fixed automatically, the real in-
demand skills are evaluating candidate fixes
and eliciting and encoding requirements

* The future of productivity: reading and talking
* True for bug bounties or automated repair
* This isn't really news (cf. first lectures ...)

54

Should My Company Use It?

* As with any other software development
process option (e.g., pair programming, Infer,
100% coverage goals, etc.) we estimate (or
measure) costs and benefits

» 2012: fix 50% of bugs, S8 each (vs. $20 for humans)
* 2013: 3x cheaper, not counting cloud reductions

* Does not have to be used exclusively

* Tools generate patches for simple bugs, freeing up
creative human developer time for tougher issues

* Afault tree analysis is possible, etc.

55

Fixing Bugs in Your Sleep: How Genetic Improvement Became
an Overnight Success

Saemundur O. Haraldsson®
University of Stirling

Stirling, United Kingdom FK9 4LA
soh(@cs.stir.ac.uk

Alexander E.I. Brownlee

University of Stirling
Stirling, United Kingdom FK9 4LA
sbr@cs.stir.ac.uk

ABSTRACT

We present a bespoke live system in commercial use with self-

improving capability. During daytime business hours it provides
an overview and control for many specialists to simultaneously
schedule and observe the rehabilitation process for multiple clients.
However in the evening, after the last user logs oul, it starts a
self-analysis based on the day’s recorded interactions. It generates
test data from the recorded interactions for Genetic Improvement
to fix any recorded bugs that have raised exceptions. The system
has already been under test for over 6 months and has in that time
identified, located, and fixed 22 bugs. No other bugs have been
identified by other methods during that time. It demonstrates the
effectiveness of simple test data generation and the ability of GI for
improving live code.

John R. Woodward
University of Stirling
Stirling, United Kingdom FK9 4LA
jrw@cs.stir.ac.uk

Kristin Siggeirsdottir
Janus Rehabilitation Centre
Reykjavik, Iceland
kristin@janus.is

1 INTRODUCTION

Genetic Improvement (GI) [38] is a growing area within Search
Based Software Engineering (SBSE) [23, 24] which uses computa-
tional search methods to improve existing software. Despite its
growth within academic research the practical usage of GI has not
yet followed. Like with many SBSE applications, the software in-
dustry needs an incubation period for new ideas where they come
to trust in outcomes and see those ideas as cost effective solutions.
Gl is in the ideal position to shorten that period for the latter as
it presents a considerable cost decrease for the software life cy-
cle’s often most expensive part: maintenance [18, 34]. There are
examples of software improved by GI being used and publicly avail-
able [31] which is impressive considering how young GI is as a
field. In time it can be anticipated that we will see tools emerging

56

] []
Fa Ce b OO k S S a p F] Xhttps://code.fb.com/developer-tools/ﬁnding-and-fixing-software-

; bugs-automatically-with-sapfix-and-sapienz/ u 2 2 :
Finding and fixing software bugs automatically with SapFix and Sapienz

When previously used human-designed templates don’t fit, SapFix will attempt a mutation-based fix, whereby it performs small code modifications to the abstract syntax tree (AST) of the crash-causing

statement, making adjustments to the patch until a potential solution is found.

Workflow (Generation)

% Bug Detected @ Triggers

Sapienz Trigger Patch Fix Patch Validated
Auto Triage Generator Generator Revision

l

! ' ' }

5

:ﬁ:"gr;f Pa':tei\::)tiff Template ‘ Mutation
0 O
- “... the tool has successfully generated patches that
o have been accepted by human reviewers and pushed

to production ...”
57

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

SapFix: Automated End-to-End
Repair at Scale

* “We report our experience with SapFix: the
first deployment of automated end-to-end
fault fixing, from test case design through to
deployed repairs in production code. We have
used SapFix at Facebook to repair 6 production
systems, each consisting of tens of millions of
lines of code, and which are collectively used
by hundreds of millions of people worldwide.”

https://ieeexplore.ieee.org/document/8804442

58

https://ieeexplore.ieee.org/document/8804442

Fujitsu Laboratories: Al Based
Augomatic Patch Generation

Commit

|[Ueveloper

Developer

Review

Patch Generation Al Engine
Generation Phase

= B (&
Target 4 : :
Buggy Source Code } - Bug Patch Candidate | |Ranking | Test Validation Euggeited
Input Localization Generation]‘f“ [atr:.
e ! ’_% __} — Ranked Patch
Bug Location [Patch _Can.a_:hdatesn Candidates
5 . % 2 Fujitsu Laboratories Introduces Al Based Automatic Patch
[| Generation Technology
‘;B = 4 Tty Phee Enhances efficiency of business application software development by
ug Corpus IfH i (] e . .
[Bugggy Szum Code) +[Leaming}- :‘5::.»;2'._ ol learning from a corpus of all archived bug reports and bug patches
Input /—-,. R P
Bug Report - &= -
: = Logistic Regression FUjitsu Laboratories of America Inc.,Fujitsu Laboratories Ltd.

Mountain View, CA, October 11, 2017 — At the Fujitsu Laboratories Advanced Technology
Symposium, Fujitsu Laboratories of America, Inc. (FLA) and Fujitsu Laboratories Limited (FLL) today
announced the availability of new technology to automatically generate patches for bugs in object-
oriented programs, which are typically used for business application software development. This
technology uses machine learing on a corpus of all archived bug reports and bug patches to reduce
the average time to diagnose and fix single-fault-location bugs by 28.8% compared to the
conventional heuristic-search-based patch generation technology and manual patching.

https://www.fujitsu.com/us/about/resources/news/press-releases/2017/fla-20171011-02.html

59

https://www.fujitsu.com/us/about/resources/news/press-releases/2017/fla-20171011-02.html

On the Introduction of
Automatic Program Repair in

Bloomberg

Serkan Kirbas, Etienne Windels, Olayori M
Szalanski,
Bloomberg, London, UK & New York, USA

Vesna Nowack', Emily Winter?, Steve Cour
Haraldsson*, John Woodward'

https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie |IEEE_Software Revisions.pdf

control. In a recent migration of build systems in
Bloomberg, software engineers around the world
got a chance to verify and apply Fixie-suggested
code change instead of applying them manually.
This led to an acceptance rate of 48% (61/127)
and very positive feedback. The general opinion
now is that the tool is easy to use and helpful.
The tool has also helped software engineers with
ideas on how to re-engineer areas of code close to
the fix and for promoting a heightened awareness
of practices for preventing bugs arising in the first
place.

As an interesting side-effect, the language and
terminology for describing bugs and their fixes
have become more widely understood by software
engineers using the tool, aiding software engineer
inter-communication. Finally, the tool has freed
up time for software engineers to work on other

aspects of the code that they would not usually
have the time for, such as keeping code clean.

60

https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie_IEEE_Software_Revisions.pdf

e Exam 2
* Homework 6b

Questions

61

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

