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The Never-Ending Story
● Today we will use recent advances in 

automated program repair to touch on all of 
the lecture topics from this course 
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Speculative Fiction

● What if large, trusted companies paid 
strangers online to find and fix their normal 
and critical bugs?
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(Raise hand if true)

I have used software produced by 
Microsoft, PayPal, AT&T, Facebook,

Mozilla, Google or Youtube.
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Bug Bounties
(What’s the Trick?)

● If you trust your triage and code review 
processes, anyone can submit a candidate bug 
report or candidate patch 

● Bug Bounties combine defect reporting and 
triage with pass-around code review

● Finding, fixing and ignoring bugs are all so 
expensive that it is now (since 2013) 
economical to pay untrusted strangers to 
submit candidate defect reports and patches
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Bug Bounties and Large Companies
(Big companies use bug bounties)

● “We get hundreds of reports every day. Many 
of our best reports come from people whose 
English isn't great – though this can be 
challenging, it's something we work with just 
fine and we have paid out over $1 million to 
hundreds of reporters.”
● Matt Jones, Facebook Software Engineering
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Bug Bounties and Small Companies
(It isn’t just big companies)

● Only 38% of the submissions were true 
positives (harmless, minor or major): “Worth 
the money? Every penny.” - Colin Percival, Tarsnap
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A Modest Proposal

● Using techniques from this class (YAY) ...
● We can automatically find and fix defects 

● Rather than, or in addition to, paying strangers
● Given a program … 

● Source code, binary code, etc. 
● … and evidence of a bug …

● Passing and failing tests, crashes, etc. 
● … fix that bug.  

● Create a textual patch (pull request)
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How could this possibly work?
● Many faults can be localized to a small area

● Even if your program is a million lines of code, fault 
localization can narrow it to 10-100 lines

● Many defects can be fixed with small changes
● Mutation (test metrics) can generate candidate 

patches from simple edits
● A search-based software engineering problem

● Can use regression testing (inputs and oracles, 
continuous integration) to assess patch quality
[ Weimer et al. Automatically Finding Patches Using Genetic Programming. Best Paper Award. IFIP 
TC2 Manfred Paul Award. SIGEVO “Humies” Gold Award. Ten-Year Impact Award. ] 
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Minimizing Patches

● A GenProg patch may contain extraneous edits
    Patch 1: “close();” vs. Patch 2: “close(); x = x + 0;” 

● Both pass all tests, but … 
● Longer patches are harder to read
● Extraneous edits may only appear safe because 

of weak test suites: avoid unneeded churn
● After the repair search, use delta debugging 

(hypothesis testing) to find a passing 1-minimal 
edit subset
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Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + –  Identifies workarounds

Axis 13 progs. – –  Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. –  17 Buffer overflows
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How Can We Minimize Costs?

● We can parallelize this in the cloud, then stop 
generating candidate mutants when a valid 
repair is found
[ Le Goues et al. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs 
for $8 Each. ] 

● Each repair must pass the entire test suite
● Running tests is the dominant cost of automated 

program repair
● Use test suite prioritization and minimization

● (Which HW did we do this on again?)

● Stop evaluating as soon as a single test fails
● Even one failure  Not a valid repair!→
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Can We Avoid Testing?

● If P1 and P2 are semantically equivalent they 
must have the same functional test behavior

● Suppose I am considering this insertion:

 A = 1;

 B = 2;

 C = 3;

 D = 4;

 print(A,B,C,D);

C=99;
With your partner: 
How many semantically 
different patches are 
there?
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Static Analysis

● If we had a cheap way to approximately 
decide if two programs are equivalent
● We wouldn't need to test any candidate patch that 

is equivalent to a previously-tested patch

(Math: Cluster or quotient the search space into 
equivalence classes with respect to this relation)

● We use static analysis (like a dataflow analysis 
for dead code or constant propagation) to 
decide this: 10x reduction in search space
[ Weimer et al. Leveraging Program Equivalence for Adaptive Program Repair: Models and 
First Results. ] 
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Design Patterns

● In mutation testing, the mutation operators 
are based on common human mistakes

● Instead, use human edits or design patterns
● “Add a null check” or “Use a singleton pattern”

● Mine 60,000 human-written patches to learn 
the 10 most common fix templates 
● Resulting approach fixes 70% more bugs
● Human study of non-student developers (n=68): 

such patches are 20% more acceptable
[ Kim et al. Automatic Patch Generation Learned from Human-Written Patches. Best paper 
award.] 
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Not Trivial: Agronomy and Genetics

● This Nobel Peace Prize winner is described as 
the father of modern agriculture and the 
green revolution. Bruce Alberts, National 
Academy of Sciences President, said of him: 
“Some credit him with saving more human 
lives than any other person in history.” He is 
credited with saving over a billion people 
worldwide from starvation.
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Not Trivial: Death

● Rank these causes of death in the US for 2018 
(most recent CDC data available):
● Accidents (unintentional injuries)
● Assault (homicide)
● Heart disease
● Influenza and pneumonia

● Extra credit: One of these is about 20-100x 
more common than another. Identify that 
pairing. 
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Not Trivial: Death Details
2017 CDC (Table D, Page 12, extract)

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf
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Not Trivial: World History

● This world leader is alleged to have said “A 
single death is a tragedy; a million deaths is a 
statistic” during the 1943 Tehran conference 
when Churchill objected to an early opening of 
a second front in France.
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Psychology: Emotions vs. Math

● N=1111 (!) adult participants were shown math 
problems to assess their numeracy
(half were shown the numbers flipped)
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Identity-Protection Cognition Thesis

● First, 59% of participants got it wrong
● Second, they tracked political beliefs
● Third, they also gave the same math problems 

(same numbers, etc.), but reworded the 
treatment as a city passing a gun ban and the 
effect as crime decreasing (or not)

● Spoiler: highly-numerate people end up more 
vulnerable to bias
[ Kahan et al. Motivated Numeracy and Enlightened Self-
Government. Behavioral Public Policy. ] 
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● Risk is “likelihood 
of P happening” * 
“cost if P happens”

● Amhdalh's Law is 
“time spent on P” * 
“improvement 
possible to P” 

● But we can't do 
math …
[ https://www.smbc-comics.com/?id=2305 ]

https://www.smbc-comics.com/?id=2305
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Super 
Opportunity Cost

● If you are really interested 
in the greatest good for 
the greatest number, don't 
focus on muggings

● Dually, focus on muggings 
if you like, but don't lie to 
yourself about what you 
are doing
● Local importance to you vs. 

global importance overall
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Aside: Metrics

● But perhaps we have fewer deaths due to X 
because we are spending money to ameliorate 
X (e.g., diabetes, malaria, etc.)
● Can we do “lives saved vs. money spent”? 

● Yes! Large organizations use metrics such as 
the disability-adjusted life year (DALY), a 
measure of overall disease burden, expressed 
as the number of years lost due to ill-health, 
disability or early death
● See effective altruism and similar movements
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Cognitive Bias
Conclusion

● I am not saying you should not 
fight cancer or that you should 
not be liberal or conservative
● All have good points

● I am saying that you should 
figure out what you want and 
then correctly evaluate 
candidate actions in that light
● Do things because you want to, 

not because you made a mistake
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Relationship with Mutation Testing

● This program repair approach is a dual of 
mutation testing
● This suggests avenues for cross-fertilization and 

helps explain some of the successes and failures of 
program repair.

● Very informally:
● PR Exists M in Mut. Forall T in Tests.       M(T)
● MTForall M in Mut. Exists T in Tests. Not M(T)
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Idealized Formulation

Ideally, mutation 
testing takes a 
program that passes 
its test suite and 
requires that all 
mutants based on 
human mistakes from 
the entire program 
that are not 
equivalent fail at 
least one test. 

By contrast, program 
repair takes a 
program that fails its 
test suite and 
requires that one 
mutant based on 
human repairs from 
the fault localization 
only be found that 
passes all tests.
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No Source Code Needed
(This approach can be extended)

● Can repair assembly or binary programs to 
support multi-language projects

● Use sampling-based profiling for fault localization

[ Schulte et al. Automated Program Repair of 
Binary and Assembly Programs for Cooperating 
Embedded Devices. ] 



40

Can Humans Use These Patches?
● Synthesize “What” comments for generated 

patches (design for maintainability)
● Test input generation constraints  English→
● Human study (N=150): “With docs  Yes!”→

[ Fry et al. A Human Study of Patch Maintainability. ] 
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Human-Machine Partnerships

● What if your partner in pair programming 
were a machine that suggested patches?
● Machine is driver, you are navigator/observer
● In response to your feedback and characterization 

of program state, it suggests new patches
● You note “checkpoints” where at point X, test 

Y is running correctly (or variable Z is wrong)
● Human study of first-year grads (N=25): 

● Reduces debugging on 14/15 scenarios compared 
to singleton (~60% reduction over all 15)
[ Xinrui Guo. SmartDebug: An Interactive Debug Assistant for Java. ] 
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Concurrency Bugs
● So far we have required deterministic tests
● We can use a dynamic analysis like CHESS or 

Eraser to detect concurrency bugs
● Look for two threads accessing X, one is a write

● Use special repair templates (e.g., always add 
paired lock()/unlock() calls) 

● Fixes 6/8 historical single-variable atomicity 
violations in Apache, MySQL, Mozilla, etc.
● Devs fixed 6/8 in 11 days each, on average 
● Union of humans and devs fixes all 8/8

[ Jin et al. Automated Atomicity-Violation Fixing. ] 
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Quality Defects

● What if the bug is that your program is too 
slow or too big or uses too much energy?

● We can also improve and trade-off verifiable 
quality properties (requirements)
● cf. MP3 or JPG lossy compression: space vs. quality

● Candidates must pass all functional tests
● But we also measure quality properties of all 

passing candidates
● Present a Pareto frontier to help user explore 

alternative solutions to requirement conflicts
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Automatically Exploring Tradeoffs
In Conflicting Requirements
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Can you spot the difference?
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Can you spot the difference?

65% lower energy65% lower energy

[ Dorn et al. Automatically exploring tradeoffs between software output fidelity and energy costs. ] 
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Code Inspection

● What if we want to improve code inspection?
● Make many Randoop-generated unit tests
● Use a learned readability metric to rank them

● Given two tests with equal coverage, humans 
agree with readability ranking 69% of the time 

● Recall difficulties with normative models
● Humans (n=30) are 14% faster when answering  

maintenance questions on readability-
optimized tests (same level of accuracy)

[ Daka et al. Modeling Readability to Improve Unit Tests. Best paper award. ] 
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Human Brains and Subjectivity

● Trust is sometimes defined as a willingness to take on 
risk. How do human brains perceive and trust code 
from unknown sources? [ Walter et al. Developing a mechanism to study 
code trustworthiness. ] 

● Cognitive Task Analysis of how readability and 
provenance (who wrote it) relate to human trust 
(n=12 grads)
● Take same code and degrade readability, etc.
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“Gender” Bias
● What if we take the same human-written 

patch but deceptively tell people it was 
written by a man, a woman, or a machine? 

● Machine-written Pull Requests have a lower acceptance 
rate (78.03%) comparing to man-written (79.68%) and 
woman-written Pull Requests (84.36%) (p < 0.05).

● “Participant self-reports acknowledge the bias against 
machines but do not acknowledge a gender bias. When 
Pull Request author information changes, participants 
report seeing quality differences where none exist.”

● Also: Can distinguish women and men conducting code 
review at a neurological level (BAC = 68.59%, p = 0.016).
[ Huang, Leach et al.: Biases and Differences in Code Review using Medical Imaging and 
Eye-Tracking: Genders, Humans, and Machines. ] 
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“Wishes Come True, Not Free”

● Automated program repair, the whiny child:
● “You only said I had to get in to the bathtub, you 

didn't say I had to wash.”
● The specification (tests) must encode 

requirements (cf. conflicts)
● GenProg's first webserver defect repair

● 5 regression tests (GET index.html, etc.)
● 1 bug (POST  remote security exploit)→
● GenProg's fix: remove POST functionality
● (Adding a 6th test yields a high-quality repair.)
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Requirements and Testing
● MIT Lincoln Labs evaluation of GenProg: sort

● Tests: “the output of sort is in sorted order”
● GenProg's fix: “always output the empty set”
● (More tests yield a higher-quality repair. cf. 

design-by-contract pre- and post-conditions)
● Existing human-written tests suites implicitly 

assume the developers are reasonable humans 
● Unless you are outsourcing, you rarely test against 

“creative” for “adversarial” solutions or bugs
● cf. “we're already good at this” denials, 

terminology conflicts
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Measuring Quality via Tests

● Another GenProg example:
● Tests: “compare yours.txt to trusted.txt”
● GenProg's fix: “delete trusted.txt, output nothing”

● Canonical perverse incentives situation
● Automated program repair optimizes the metric
● “What you said” not “What you meant”

● Sleep forever to avoid CPU-usage penalties
● Always segfault to avoid bad output checks

[ Weimer. Advances in Automated Program Repair and a Call to Arms. ] 
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The Future

● Despite quality and trust concerns, some form 
of this is coming in the future (10-20 years?)
● Already-demonstrated productivity gains

● What if “solve this one-line bug” became an 
atomic action in your lexicon?
● The same way “complete this method call” or 

“sort” or “rename this variable” is today



54

Productive Imposters

● Old adage: What do you call someone who 
graduates last in a medical school class?

● Many worry: “I'm not as fast at coding”
● If most of SE is maintenance and 33-50% of 

bugs can be fixed automatically, the real in-
demand skills are evaluating candidate fixes 
and eliciting and encoding requirements
● The future of productivity: reading and talking 
● True for bug bounties or automated repair
● This isn't really news (cf. first lectures …)
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Should My Company Use It?

● As with any other software development 
process option (e.g., pair programming, Infer, 
100% coverage goals, etc.) we estimate (or 
measure) costs and benefits
● 2012: fix 50% of bugs, $8 each (vs. $20 for humans)
● 2013: 3x cheaper, not counting cloud reductions

● Does not have to be used exclusively
● Tools generate patches for simple bugs, freeing up 

creative human developer time for tougher issues
● A fault tree analysis is possible, etc.
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Facebook's SapFixhttps://code.fb.com/developer-tools/finding-and-fixing-software-

bugs-automatically-with-sapfix-and-sapienz/  

“... the tool has successfully generated patches that 
have been accepted by human reviewers and pushed 
to production …”

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
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SapFix: Automated End-to-End 
Repair at Scale

● “We report our experience with SapFix: the 
first deployment of automated end-to-end 
fault fixing, from test case design through to 
deployed repairs in production code. We have 
used SapFix at Facebook to repair 6 production 
systems, each consisting of tens of millions of 
lines of code, and which are collectively used 
by hundreds of millions of people worldwide.”

https://ieeexplore.ieee.org/document/8804442 

https://ieeexplore.ieee.org/document/8804442
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Fujitsu Laboratories: AI Based 
Automatic Patch Generation 

https://www.fujitsu.com/us/about/resources/news/press-releases/2017/fla-20171011-02.html 

https://www.fujitsu.com/us/about/resources/news/press-releases/2017/fla-20171011-02.html


60https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie_IEEE_Software_Revisions.pdf 

https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie_IEEE_Software_Revisions.pdf
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Questions

● Exam 2
● Homework 6b
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