
Pair Programming andPair Programming and
Skill-Based InterviewsSkill-Based Interviews

2

The Story So Far …
● We want to deliver and support a quality

software product
● We understand process and design
● We understand quality assurance
● We don't really understand humans

● How should we make process and design
designs the first time …

● … in light of how humans work?

3

One-Slide Summary
● There are many programming and development approaches

for improving aspects of software development

● Tackling abstraction, modularity, changing requirements,
and software quality

● Agile development focuses on reducing the cost to respond to
requirements change

● Pair programming is a well-studied technique within Agile
involving a driver and a navigator; it increases development
time but decreases defects.

● Skill-based interviews help companies rule out poor-fit
employees. They include both programming and behavioral
questions. Interviewees should show and communicate all
aspects of the software engineering process.

4

A Brief History of Time

● Structured Programming (1950-1960+)
● Structured Programming Theorem (1966)

● Object-oriented Programming (1970-1980+)
● Dominant in 1990+

● Aspect-oriented Programming (1997+)
● Iterative & Incremental Development (1960+)
● Agile Development (2001+)
● Scrum (1986+, 2001+)

5

And Many More

● Adaptive software development (1970)
● Rapid application development (1991)
● Unified Process (1994)
● Dynamic Systems Development Method (1994)
● Crystal Clear (1996)
● Extreme Programming (1996)
● Feature-Driven Development (1997)
● TDM TLA! “So what?”

6

● Raise hands?

7

Terms in One Sentence
● Structured: structure source code control flow to improve

clarity, quality, and development time

● OO: structure source code by encapsulating data and methods
to improve reusability and modularity

● AOP: structure source code by separating cross-cutting
concerns to increase modularity

● IID: develop software through repeated cycles in small
portions to improve user involvement, reduce variability and
development effort

● Agile: develop software through collaborating cross-functional
teams, small work increments and tight feedback loops to …

● Scrum: small teams complete work units in short sprints and
hold daily stand-up meetings to rapidly react to change

8

Common Threads (1/2)

● With respect to software source code
● Abstraction (e.g., inheritance, polymorphism)

allows the same code to be applied to
different data
● This saves development and QA effort

● Modularity (e.g., interfaces) permits a
separation of concerns, allowing code both
sides of the interface to be changed
independently
● This reduces maintenance (change) effort

9

Common Threads (2/2)

● With respect to software development
● Smaller work increments reduce the effort

lost to, and minimize risk from, changing
requirements

● Smaller teams and customer involvement
reduce risks from changing requirements and
align software with stakeholders

● Quality techniques (continuous integration,
unit testing, pair programming, design
patterns, refactoring, etc.) assure quality

10

Agile Development

● Software development is considered agile
when the team requires relatively little time,
cost, personnel, and resources to respond to a
requirement change

● Team autonomy: the extent to which the
software team has authority and control in
making decisions to carry out the project

● Team diversity: the extent to which team
members have different functional
backgrounds, skills, expertise and experience

11

Does Agile Work? (1/2)

● “A systematic review of empirical studies
of agile software development up to and
including 2005 was conducted. The search
strategy identified 1996 studies, of which 36
were identified as empirical studies. … We
identified a number of reported benefits and
limitations of agile development within each
of these themes. However, the strength of
evidence is very low, which makes it difficult
to offer specific advice to industry.”

[Dyba and Dingsoyr. Empirical studies of agile software
development: A systematic review.]

12

Does Agile Work? (2/2)

● “Using an integrated research approach that
combines quantitative and qualitative data
analyses … of survey responses of 399 software
project managers suggest … team autonomy
has a positive effect on response efficiency
[on-time completion] and a negative effect on
response extensiveness [software
functionality], and that team diversity has a
positive effect on response extensiveness.”
[Lee and Xia. Toward Agile: An Integrated Analysis of
Quantitative and Qualitative Field Data on Software
Development Agility.]

13

Extreme Programming

● Extreme programming (XP) is a software
development methodology for improving
software quality and responsiveness to
changing customer requirements
● It is one type of agile software development
● It advocates frequent "releases" in short

development cycles
● This improves productivity and introduces checkpoints

at which new customer requirements can be adopted

● It advocates pair programming, extensive code
review, unit testing, code readability, etc.

14

Pair Programming

● Pair programming refers to the practice
whereby two programmers work together at
one computer, collaborating on the same
design, algorithm, code, or test.

● The pair is made up of a driver, who actively
types at the computer or records a design; and
a navigator (or observer), who watches the
work of the driver and attentively identifies
problems, asks clarifying questions, and makes
suggestions. Both are also continuous
brainstorming partners.

15

One Thousand Words

16

Pair Programming and
Programmers

● Surveys of professional programmers
● 90+% “enjoyed collaborative programming more

than solo programming”
● 95% were “more confident in their solutions” when

they pair programmed

● Increases development cost by 15% to 100%

17

Pair Programming and
Program Quality

● Reduces defects by 15%
● Reduces code size by 15%

[Cockburn and Williams. The Costs and Benefits of Pair
Programming.]

18

Example Process Decision
(suppose 15% slower coding total, 15% fewer bugs total)

● 50,000 LOC program
● Coding at 50 LOC/hour (wait, what?)
● Defect rate of 10 defects / KLOC
● Defect fix time of 10 hours /defect
● As Individuals:

● 1,000 hr coding + 5,000 hr fixing defects = 6,000

● As Pairs:
● 1,150 hr coding + 4,250 hr fixing defects = 5,400

● Do these numbers match your project?

19

Important Math Note

● The total “costs” and “benefits” of pair programming are
already included in the numbers quoted to you

● For example, when we say pair programming increases
costs by 15% to 100%, if it's 15%, you do not first multiply
by 2 (for the pair) and then calculate the 15%

● The cost of having two people work is already factored in
to the 15% to 100% overhead. So the 100% worst-case is the
“multiply by 2”, but the 15% case is “we are magically
much faster working together”. That's the pair benefit!

● Similarly, we do not both say “the code is 15% smaller and
then the 15% smaller code has 15% fewer defects on top of
that” – the 15% fewer defects is already the total benefit.
No double counting (pro or con)!

20

Pair Programming vs. Education

● North Carolina State University and the
University of California at Santa Cruz, did
extensive pair programming studies with ~1200
beginning computer science students (CS1) and
with ~300 third/fourth year software
engineering students over three year periods
● Students who paired in CS1 were more likely to

attempt CS2 (77% vs. 62%)
● Students who paired in CS1 were more likely to

major in CS (57% vs. 34% at NCSU, 25% vs. 11% at
UCSC, p < 0.01)

21

Pair Programming vs. Outcomes
(Laurie Williams et al., p < 0.018)

23

Agile Criticism
● “The agile movement is in some ways a bit like

a teenager: very self-conscious, checking
constantly its appearance in a mirror,
accepting few criticisms, only interested in
being with its peers, rejecting en bloc all
wisdom from the past, just because it is from
the past, adopting fads and new jargon, at
times cocky and arrogant. But I have no doubts
that it will mature further, become more open
to the outside world, more reflective, and
therefore, more effective.”

— Philippe Kruchten, 2011

24

Trivia: Books and Magic

● Each one of these is either a Magic: The
Gathering card or a Romance book available
on Amazon. Identify four.
● “Unlikely Alliance”
● “Dangerous Curves”
● “Lay Bare the Heart”
● “Honor's Price”
● “Blazing Hope”
● “Desert Rogues”
● “Rogue's Passage”

25

Trivia: International Business and
Social Media

● Zhang “Nancy” Zetian (章泽天), born in 1993,
is a Chinese businesswoman and investor
credited with becoming China's youngest
female billionaire ($8.2B USD in 2015). She
initially rose to fame from the popularity of a
wholesome photograph posted to Baidu Tieba.
Give her nickname (奶茶妹妹).

26

Trivia: US Political Commentary

● This Jon Stewart protege started in
improvisational theater, worked at Second
City, and is a fan of Catholicism and Tolkein.
Associated with a Bump, a Rally, a SuperPAC,
and a White House Correspondent's Association
Dinner, this comedian and commentator has
received nine Emmies, two Grammies, two
Peabodies, and has written a #1 best-selling
book.

27

Trivia: Geography

● This northeastern Italian city is situated across
a group of over 100 islands. The land areas are
separated by canals and linked by hundreds of
bridges. Once the capital of its own Republic,
it is also home to the Bridge of Sighs.

28

Psychology: Intelligence?

● In psychology, g (general intelligence factor) is a
variable that summarizes positive correlations among
cognitive tasks. It typically accounts for 40-50% of
between-individual performance on many different
cognitive tests. The most widely-accepted modern
theories of intelligence incorporate it.

● Problem: if you are not careful, you mistakenly
measure socioeconomic status (etc.) instead of
intelligence.

● Interestingly, g is highly heritable. How?

29

Psychology:
Natural Experiment

● We can study parents, children and cognitive
ability … but how do we help rule out
socioeconomic status and parenting choices?

● Identical twins share 100% of their genes
● Fraternal twins share ~50% of their genes
● Twins reared together share certain

environmental aspects (e.g., religious
practices at home)

● Twins reared apart, however … !
● Separated at birth, adopted by different families

30

Psychology: Minnesota Twin Registry

● Tracks over 8,000 twin pairs for use in
psychological studies

● Early study by T. Bouchard found that identical
twins reared apart had an equal chance of
being similar to their co-twins in terms of
personality, interests, and attitudes as twins
reared together
● Differences must be due to the environment
● Similarities are likely due to genetics, especially if

twins share trait X far more often than others

31

Psychology: Twins Reared Apart

● 70% of variance in IQ was found to be
associated with genetic variation

● On temperament, occupational and leisure-
time interests, social attributes, monozygotic
twins reared apart are as similar as
monozygotic twins reared together
● Study carefully controls for SES, pre- and post-

reunion contact, parent education, etc.

[Bouchard, Lykken, McGue, Segal, Tellegen. Sources of Human
Psychological Differences: The Minnesota Study of Twins
Reared Apart.]

32

Psychology: Twins Reared Apart
● “... does not detract from the value or importance of

parenting, education, and other propaedeutic
interventions.”

● “MZA twins are so similar in psychological traits because
their identical genomes make it probable that their
effective environments are similar. Specific mechanisms
by which genetic differences in human behavior are
expressed in phenotypic differences are largely unknown.
It is a plausible conjecture that a key mechanism by
which the genes affect the mind is indirect, and that
genetic differences have an important role in determining
the effective psychological environment of the
developing child. Infants with different temperaments
elicit different parenting responses. ...”

33

Psychology: Twins Reared Apart

● This sort of research continues to this day
● “While adoption studies have provided key insights

into the influence of the familial environment on IQ
scores of adolescents and children, few have followed
adopted offspring long past the time spent living in the
family home […] These families, tested previously on
measures of IQ when offspring averaged age 15, were
assessed a second time nearly two decades later (M
offspring age = 32 years) […] The heritability was
estimated to be 0.42 [95% CI 0.21, 0.64].”

● [Emily Willoughby et al. Genetic and environmental
contributions to IQ in adoptive and biological families with
30-year-old offspring. Intelligence, Vol 88, Sep-Oct 2021.]

34

Psychology: Heritable Traits

● One interpretation is “biology is destiny”
● Be careful!

● Alternatively (abusing math for clarity), if the
correlation of intelligence between twins is
0.7, the dual is that the environment and your
choices control 30% of it!

● Also: if effective learning environments exist
and vary between individuals, pay attention as
a manager when directing training

35

Typical CS Hiring Process
● Someone at the company, typically a recruiter or an engineer,

gets your resume and puts it into their pipeline

● If they're interested, you'll probably get one or two phone screen
interviews

● If you pass the phone screen, you'll probably be invited to
interview with the company on-site

● Depending on the company, you may then have some follow-up
phone calls to find a team to be placed on

● If they offer you a job, you'll negotiate the offer to end up with
the best deal possible

● If this particular offer is the best out of all the offers you've
received, you accept!

● This can be spread out as much as a month and a half, or as
compact as two weeks

36

Skill-Based Technical Interview
Goals

● “The interview process at Google has been
designed (and redesigned!) from the ground up
to avoid false positives. We want to avoid
making offers to candidates who would not be
successful at Google. (The cost of this
unfortunately includes more false negatives,
which are times when we turn down somebody
who would have done well.)”

37

Google's Information Needs:
“A Good Fit”

● Are you good at CS? [Skill]

● Can you write and test code?

● Are you someone they want writing code they will use and
depend on?

● Can you think on your feet?

● Can you communicate CS concepts? [Behavioral]

● Can you explain your ideas to coworkers?

● Are you someone who would make their team better?

● Are you a nice person? [Behavioral]

● Are you someone they want to work with?

● And are you friendly enough to chat with every day?

38

Interview Format

● “For about 45 minutes you meet with a single
technical interviewer, who will present a
programming problem and ask you to work out
one or more solutions to it.”

● Interviewer perspective: “you know in the first
ten minutes”

39

A Medium-Difficulty Example
(“The Two-Sum Problem”)

● You are given an array of n integers and a
number k. Determine if there is a pair of
elements in the array that sums to exactly k.

● For example, given the array [1, 3, 7] and k =
8, the answer is “yes,” but given k = 6 the
answer is “no.”

40

Questions You Ask

● Can you modify the array? Yes.

● Do we know something about the range of the numbers in the
array? No, they can be arbitrary integers.

● Are the array elements necessarily positive? No, they can be
positive, negative, or zero.

● Do we know anything about the value of k relative to n or the
numbers in the array? No, it can be arbitrary.

● Can we consider pairs of an element and itself? No, the pair
should consist of two different array elements.

● Can the array contain duplicates? Sure, that's a possibility.

● What about integer overflow? Don't worry about it.

41

Example Solution 1: Brute Force

● O(N^2) time, O(1) space
boolean sumsToTarget (int[]arr, int k) {

 for (int i = 0; i < arr.length; i++) {

 for (int j = i + 1; j < arr.length; j++) {

 if (arr[i] + arr[j] == k) {

 return true;

 } } }

 return false;

}

42

Example Solution 2: Hashing

● Expected O(N) time, expected O(N) space
boolean sumsToTarget (int[]arr, int k) {

 HashSet < Integer > values = new HashSet < Integer > ();

 for (int i = 0; i < arr.length; i++) {

 if (values.contains (k – A[i])) return true;

 values.add (A[i]);

 }

 return false;

}

43

Other Solutions

● Sort and Binary Search
● O(n log n) time, O(log n) to O(1) space

● Radix Sort and Walk Inward
● O(n log X) time, O(log n) space

boolean sumsToTarget (int[] arr, int k) {
 Arrays.radixSort(arr);
 int lhs = 0, rhs = arr.length ¿ 1;
 while (lhs < rhs) {
 int sum = arr[lhs] + arr[rhs];
 if (sum == k) return true;
 else if (sum < k) lhs++;
 else rhs--;
 }
 return false;
}

44

Were those solutions good?

● What are your thoughts? (With your team …)
boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

45

Software Microcosm

● If you do not convey that you have mastered
skill X, they will assume you have not

● They will assume how you write this program
is how you will write every program

● They are looking for reasons to reject you
● “Saying true things” vs. “Not saying false

things”
● Thus, even though the problem is small and

simple, you should show all of the steps of the
software engineering process

46

Do Not Forget

● Even though the problem is small, you should
● Perform requirements elicitation
● Ask about functional and quality properties
● Talk about process considerations

● Talk about how you design for maintainability

● Write commented code, including method-level
and statement-level documentation (what/why)

● Write tests that show off corner cases
● Talk about other approaches to QA (within reason)

47

Top 10 Mistakes in Interview Prep
[Gayle McDowell, Cracking the Coding Interview]

#1 Practicing on a computer
#2 Not rehearsing behavioral questions
#3 Not doing a mock interview
#4 Trying to memorize solutions
#5 Not solving problems out loud
#6 Rushing
#7 Sloppy coding (bad style),
#8 Not testing
#9 Fixing mistakes carelessly
#10 Giving up

48

Behavioral Questions

● What is your greatest weakness?
● Tell me about a time you missed a deadline.
● Tell me about a time you experienced a

conflict with a teammate.

● Very easy to sound unimpressive if you have
not practiced!

49

Situation, Action, Result

● Recommendation: structure your responses
(especially to “negative” questions):
● Situation: describe objectively
● Action: what did you do?
● Result: how were things better after?

● Be specific, not arrogant

50

Resume and Interview “Stats”

● Your resume says you worked on XYZ Project. What
was the most challenging aspect of that?

● What did you learn the most from? What was the most
interesting? What was the hardest bug? What did you
enjoy the most? What was the biggest conflict? Most
significant requirements change?

● What is the largest program (LOC) you have written?
Modified? What is the largest number of tests you
have written? Worked with? What is the largest team
you have worked with? What is the largest process
you automated? How many customers have you
spoken to?

51

What do we know? Little so far!

52

Suggestion

● Remember this “from the other side”

● Ask what people look for during interviews!
● Guest speakers in classes are great for this!

53

Questions?

● HW2
● Exam 1 coming up!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

