
Design for Design for
MaintainabilityMaintainability

2

The Story So Far …
● We want to deliver and support a quality

software product
● We understand the stakeholder requirements
● We understand process and design
● We understand quality assurance

● How should we make process and design
decisions the first time …

● … if software maintenance will be the
dominant activity?

3

One-Slide Summary
● We can invest up-front effort in designing

software to facilitate maintenance activities.
This reduces overall lifecycle costs.

● We will consider designing to improve
comprehension, documentation, change,
reuse, and testability.
● The metrics used for understandability, the

category of information conveyed by
documentation, object-oriented principles
and design patterns, and coverage are all
relevant.

4

Analogy

● You are playing “Civilization”
● You want to quickly build the Hagia Sophia
● Do you just build it now (costs 3000

production)?
● Or do you build the Forge first (costs 100

production, but then increases your production
by +10%)?

● With your team …

5

Investment

● “It depends on the state of the world.”
● This is just a math problem: is T1 > T2 ?

● T1 = 3000/production
● T2 = (100/production) + (3000/(production*1.1))

● “To invest is to allocate money (or sometimes
another resource, such as time) in the
expectation of some benefit in the future”

● You almost always want to invest time during
design to produce maintainable software!

6

Investment in Maintenance

● Suppose maintenance is 70% of the lifetime
cost of software and the other 30% is coding
and design

● Would you spend 50% more on design if that
reduced the cost of maintenance by 50%?

7

Investment in Maintenance

● Suppose maintenance is 70% of the lifetime
cost of software and the other 30% is coding
and design

● Would you spend 50% more on design if that
reduced the cost of maintenance by 50%?
● Cost 1 = 30 + 70
● Cost 2 = 30*1.5 + 70*0.5

● We know the 70% number (indeed: 70-90%)
● But can we spend more on design to reduce

maintenance costs? Yes.

8

Design for Maintainability

● High level plan:
● We now understand key

maintenance tasks (e.g.,
testing, code review, etc.)

● So we should design our
software to make those
activities easier or more
efficient

● Even if that means that
coding will take longer

9

Pride

● The first thing to change is you
● Because you likely still think of yourself as a coder

● Student coder goals: quickly produce
throwaway software that runs efficiently and
solves a well-specified, set-in-stone task
● You feel good if it doesn't take you long, etc.

● You have to change your internal notion of a
“good job”
● You feel good for readable, elegant code, etc.

10

Design for Code Comprehension

● Code Inspection and Code Review are critical
maintenance activities

● We consider improving readability and
documentation to aid code comprehension

● We distinguish between essential complexity,
which follows from the problem statement
● e.g., sorting requires N log(N) time

● and accidental readability, which can be more
directly controlled by software engineers

11

Readability

● Readability is a human judgment of how easy
a text is to understand

● Commonly desired and mandated in software
● DOD MIL-M-38784B requires “10th grade reading

level or easier”

● So how can we improve code readability?
● It seems subjective

● Plan: ask many humans, model their average
notion of readability, relate to code features
● Use measurement plus machine learning

13

Descriptive vs. Prescriptive

● Descriptive modeling is a mathematical
process that describes [current] real-world
events and the relationships between factors
correlated with them

● A prescriptive (or normative) model evaluates
alternative solutions to answer the question
"What is going on?" and suggests what ought to
be done or how things should work [in the
future] according to an assumption or standard

14

Revenge of Perverse Incentive

● We can apply readability metrics automatically
to code

● But because they are descriptive, this can lead
to perverse incentives

● It may be true that existing code with a few
more blank lines is more readable

● So what if we just insert a blank line between
every line of code?
● That would maximize the metric, but …

● So use them, but not without nuance

15

Comments and Documentation

● Appeal from a developer on a mailing list:
● “Going forward, could I ask you to be more

descriptive in your commit messages? Ideally
should state what you've changed and also why
(unless it's obvious) … I know you're busy and this
takes more time, but it will help anyone who
looks through the log ...”

16

What vs. Why

● We can make a distinction between
documentation that summarizes what the
code does (or what happened in a commit)
● e.g., “Replaced a warning with an

IllegalArgumentException”, “this loop sorts by task
priority”, “added an array bounds check”

● And documentation that summarizes why the
code does that (or the change was made)
● e.g., “Fixed Bug #14235” or “management is

worried about buffer overruns”

17

High-Quality Comments

● You should focus on adding why information to
your documentation, comments and commit
messages

● Because there is tool and process support for
adding or recovering what information
● For example, code inspection may reveal that a

loop sorts by task priority but will not reveal that
this was done because a customer required it

Documenting Exceptions

● Documentation for @throws information, such
as @exception IllegalArgument if id
is null or id.equals(“”) can be
automatically inferred via tools
● Same approach as test input generation
● Gather constraints to reach the “throw” line
● Then rewrite them in English
● Instead of solving them
● Explains What the code does

19

“Why” for Exceptions

● Tools are at least as accurate as humans 85% of
the time, and are better 25% of the time
● Tools can do What – so have humans focus on Why

[Automatic Documentation Inference for Exceptions]

Documenting Commit Messages

● Appeal from a developer:
● “Sorry to be a pain in the neck about this, but

could we please use more descriptive commit
messages? I do try to read the commit emails,
but... I can't really tell what's going on”

● Example: revision 3909 of iText's complete
commit message is “Changing the
producer info”

Commit Messages in the Wild
(one “case study”)

● October 2021:
Amazon's Twitch
source code was
leaked in a 125 GB
data breach

● the entirety of
twitch.tv with
“with commit
history going back
to its early
beginnings”

22

Commit Messages in the Wild

● Average size of a non-empty human written log
message: 1.1 lines

● Average size of a textual diff: 37.8 lines

23

“Why” for Commit Messages

● Tools and algorithms have been shown to
replace or provide 89% of the What
information in log messages

● It is definitely good to describe what a
change is doing

● But you should focus on documenting
Why

● Get in the habit of providing two
categories of information for every pull
request

● (And method summary, and …)

24

Trivia: SCOTUS

● This associate justice of the Supreme Court was born
in the Bronx, went to Princeton and Yale, and was
appointed by Obama. She has been associated with
concern for the rights of defendants, calls for reform
of the criminal justice system, and dissents on issues
of race, gender and ethnic identity. For example, in
Schuette vs. CDAA (a case about a state ban on race-
and sex-based discrimination in public university
admissions), she dissented that “[a] majority of the
Michigan electorate changed the basic rules of the
political process in that State in a manner that
uniquely disadvantaged racial minorities.”

25

Trivia: SCOTUS 2

● This associate justice of the Supreme Court
was born in Brooklyn, went to Cornell and
Columbia, and was appointed by Clinton. She
has been associated with gender equality and
women's rights. She has been characterized for
making passionate dissents and a liberal view
of the law. Her dissent in Ledbetter v.
Goodyear Tire & Rubber Co. is credited with
leading to the Lilly Ledbetter Fair Pay Act of
2009 that makes it easier to file equal pay
lawsuits. Also: lace jabot collection.

26

Trivia: Filmmakers

● This Japanese artist was called “the best
animation filmmaker in history” by Roger
Ebert. He co-founded Studio Ghibli, received
international acclaim, and directed films such
as Princess Mononoke (once the highest-
grossing film in Japan) and Spirited Away (also
once the highest-grossing film in Japan, and an
Academy Award winner). Airships?

27

Trivia: Music

● This single-reed woodwind instrument features
a straight tube with a cylindrical bore and a
flared bell. It is believed to date back to the
year 1700 in Germany. It is commonly used in
classical, military, marching, klezmer and jazz
bands. Modern orchestras use soprano versions
of this instrument in B and A. Benny Goodman ♭
helped popularize its use in big bands for
swing. The Beatles song When I'm Sixty-Four
features a trio of these.

28

Psychology: Bridges?
● 85 single males, aged 18-

35, walked over either a
450-long, 5-foot wide
suspension bridge made
of wooden boards and
wire cables over the
Capilano Canyon, or a
solid wood bridge
upriver.
● Similar males rated the

bridge a 79 out of 100 on
“How fearful ...”

29

Psychology: Bridges

● After crossing either the control or experimental bridge,
subjects were approached by a male or female interviewer

● “She explained that she was doing a project for her psychology
class on the effects of exposure to scenic attractions on creative
expression. She then asked potential subjects if they would fill
out a short questionnaire” and then write a story based on a
neutral picture.

● Upon completion she thanked them and then tore off a corner
of a sheet of paper and wrote down her name and phone
number, inviting each subject to call if he wanted to talk
further.

● The control group was told her name was Donna and the
experimental group was told her name was Gloria …

30

Psychology:
Misattribution of Arousal

● 23/33 filled out the questionnaire on the
experimental bridge, 22/33 on the control
bridge

● The stories were scored for sexual imagery
using TAT scoring
● Experimental group: 2.47 for sexual imagery vs.

1.41 in the control group (p < 0.01)

● In the experiment group, 50% of them called
her, while in the control group, only 12.5% did
so (p < 0.02)
[Dutton and Aron. Some evidence for heightened sexual attraction under conditions of high anxiety. J. Personal
and Social Psychology. 1974.]

31

Psychology:
Misattribution of Arousal

● The misattribution of arousal is a process whereby people
unconsciously mistake physiological symptoms (e.g., blood
pressure, shortness of breath: symptoms of fear) with arousal.
This includes perceiving a partner as more attractive because
of a heightened state of stress.

● Later studies found that confidence can also be affected by
misattribution of arousal. Participants were asked to complete
a task with a noise in the background; some were told the
noise might make them nervous, others were told it would
have no effect or that there was a deadline: “which resulted
in those participants [who attributed their arousal to external
noise] feeling more confident that they did well on the tasks
than those that attributed their arousal to the performance
anxiety from the task”. (“We used SE process XYZ during the
last stressful push; coincidentally, I think I like XYZ ...”)

32

Design for Change and Reuse

● In class, many programs are written once, to a
fixed specification, and thrown away

● In industry, many programs are written once
and then modified as requirements,
customers, and developers change

● Many fundamental tenets of object-oriented
design facilitate subsequent change
● You've seen these before, but now you are in a

position to really appreciate the motivation!

33

Design Desiderata

● Classes are open for extension and modification without
invasive changes

● Subtype polymorphism enables changes behind interfaces

● Classes encapsulate details likely to change behind
(small) stable interfaces

● Internal parts can be developed independently

● Internal details of other classes do not need to be
understood, contract is sufficient

● Class implementations and their contracts can be tested
separately (unit testing)

34

Design for Reuse: Delegation

● Delegation is when one object relies on
another object for some subset of its
functionality
● e.g., in Java, Sort delegates functionality to some

Comparator

● Judicious delegation enables code reuse
● Sort can be reused with arbitrary sort orders
● Comparators can be reused with arbitrary client

code that needs to compare integers
● Reduce “cut and paste” code and defects

35

Design for Change: Motivation

● Amazon.com processes millions of orders each
year, selling in 75 countries, all 50 states, and
thousands of cities worldwide. These
countries, states, and cities have hundreds of
distinct sales tax policies and, for any order
and destination, Amazon.com must be able to
compute the correct sales tax for the order
and destination. Over time:
● Amazon moves into new markets
● Laws and taxes in existing markets change

36

Software Design
Patterns

● A software design pattern
is a general, reusable
solution to a commonly-
occurring problem within a
given context in software
design.
● (Other lectures have more

details!)

37

Design Example: Online Store
● You are designing an online storefront. There are multiple

steps within HandlePurchase()

1. Update Inventory Database (one behavior)

2. Calculate Tax (many behaviors?)

3. Send Message to Fulfillment Warehouse (one behavior)

● Issue: support new tax calculations (US states, Canadian
provinces,international rules) as the business expands

● (with your team?) Do you …

A. Make HandlePurchase() an Interface with a different
implementation for each tax type? (OO inheritance)

B. Put HandlePurchase() in an abstract class where inventory and
warhousing methods are provided but an abstract calculate tax
method must be provided to instantiate the class? (cf. sorting)

38

Strategy Design Pattern

● Problem: Clients need different variants of an algorithm

● Solution: Create an interface for the algorithm, with an
implementing class for each variant of the algorithm

● Consequences:

● Easily extensible for new algorithm implementations

● Separates algorithm from client context

● Introduces extra interfaces and classes: code can be harder
to understand; adds overhead if the strategies are simple

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

39

Template Method
Design Pattern

● Problem: An algorithm has customizable
and invariant parts

● Solution: Implement the invariant parts of the algorithm in an
abstract class, with abstract (unimplemented) primitive
operations representing the customizable parts of the
algorithm. Subclasses customize the primitive operations.

● Consequences

● Code reuse for the invariant parts of algorithm

● Customization is restricted to the primitive operations

● Inverted (“Hollywood-style”) control for customization: “don’t
call us, we’ll call you” (cf. comparison function in sorting)

● Invariant parts of the algorithm are not changed by subclasses

AbstractClass

TemplateMethod() {final}
PrimitiveOperation() {abstract}

ConcreteClass
PrimitiveOperation()

40

Template Method vs. Strategy

● Both support variation in a larger context
● Strategy uses an interface and polymorphism

(via composition)
● Strategy objects are reusable across multiple

classes
● Multiple strategy objects are possible per class

● Template method uses inheritance + an
overridable method

41

Design for Extensibility:
Contracts and Subtyping

● Design by contract prescribes that software
designers should define formal, precise and verifiable
interface specifications for components, which
extend the ordinary definition of abstract data types
with preconditions, postconditions and invariants

● A subclass can only have weaker preconditions

● My super only works on positive numbers, but I work
on all numbers

● A subclass can only have stronger postconditions

● My super returns any shape, but I return squares
● This is just the Liskov Substitution Principle!

42

Design for Testability

● If the majority cost of software engineering is
maintenance, and the majority cost of
maintenance is QA, and the majority cost of
QA is testing

● It behooves us to design our software so that
testing is effective
● Design to admit testing
● Design to admit fault injection
● Design to admit coverage
● Recognize “free test” opportunities

43

Design to Admit Testing

● Consider a library oriented architecture, a
variation of modular programming or service-
oriented architecture with a focus on
separation of concerns and interface design
● “Package logical components of your application

independently - literally as separate gems, eggs,
RPMs, or whatever - and maintain them as internal
open-source projects … This approach combats the
tightly-coupled spaghetti so often lurking in big
codebases by giving everything the Right Place in
which to exist.”

44

Unit Testing

● Recall: it is hard to generate test inputs with
high coverage for areas “deep inside” the code
● Must solve the constraints for main(), then for

foo(), then for bar(), etc., all at the same time!

● The farther code is from an entry point, the
harder it is to test
● This is one of the motivations behind Unit Testing

● Solution: design with more entry points for
self-contained functionality (cf. AVL tree,
priority queue, etc.)

45

Example:
Model View Controller

● Suppose you are designing Angry Birds
● Design so that it can be tested without

someone actually playing the game (live)!
● e.g., have an interface where abstract commands

can be queued up: one way to get them is from the
UI, but another is programmatic

● “If I create a world with blocks X, Y and Z and then
we launch bird A at angle B, does C occur within
five timesteps?”

46

Fault Injection

● Microsoft's Driver Verifier sat between a driver
and the operating system and “pretended to
fail (some of the time)” to expose poor driver
code

● The CHESS project sat between a program and
the scheduler and “forced strange schedules”
to expose poor concurrency code

● Hardware, OS and Networking errors can occur
infrequently, but you still want to test them
● Must design for it!

47

Level Of Indirection

● Old adage: the solution to everything in
computer science is either to add a level of
indirection or to add a cache

● Don't have your code call fopen() or cout or
whatever directly

● Instead, add a very thin level of indirection
where you call my_fopen which then calls
fopen

● Later add “if coin_flip() then fail else ...” to
that indirection layer to inject faults

Designing for
Coverage-Based Testing

● Code coverage has many flaws
● At a high level, simple coverage metrics do not

align with covering requirements (cf. traceability)

● Solutions
● Better test suite adequacy metrics (mutation, etc.)
● Design and write the code so that high code

coverage correlates with high requirements
coverage!

49

Recall: Implicit Control Flow

● Line coverage was often inadequate because
“visit line 5 when ptr==null” could be very
different from “visit line 5 when ptr !=null”
● Because “*ptr = 9” is really “if (ptr == null)

abort(); else *ptr = 9;”

● Consider explicit conditionals that check
requirements adherence
● To get coverage points for reaching the true

branch, the test will have to satisfy the
requirement

50

Requirement Coverage

● Quality requirement: “finish X within Y time”
● Add in “get the time”, “do X”, “get the time”,

“subtract”, “if t2 – t1 < Y then ...”

● You could also encode these in test oracles
● Explicit Conditional Pros

● Testing tools can help you reason about partial
progress

● Testing tools can try to falsify claims

● Explicit Conditional Cons
● Muddies meaning of coverage (100% not desired)

51

Tests for Free

● Many programs transform data from one
format to another (cf. adapter pattern)

● If the program is implementing a function with
similar domain and range, you can often get
high-coverage tests “for free” by composing
the program with itself
● If possible, design your program so that this is

possible (cf. as a library)

52

Examples

● Inversion
● Forall X. unzip(zip(x)) = x
● Forall X. deserialize(serialize(x)) = x
● Forall X. decrypt(encrypt(x)) = x

● Convergence
● Forall X. indent(indent(x)) = indent(x)
● Forall X. stable_sort(stable_sort(x)) = stable_sort(x)
● Forall P1. Forall I. If P2 =

compile(decompile(compile(P1))) then P1(I)=P2(I)
● mp3enc/mp3dec, jpg2png/png2jpg,

Note: you may need a
non-exact comparator!

53

Hints for Practice

● Find 5 commit messages and 5 comments on
github and try to write “Why” documentation
for them

● Write an Eiffel program that uses pre- and
post-conditions and inheritance

● How would you design the Autograder to
support fault injection?

● How would you design mutate.py as a library
that takes a list of edit operations? When
should mutate(p,[e1,e2]) = mutate(p,[e2,e1])?

54

Questions?

● HW5!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

