
Patterns andPatterns and
Anti-PatternsAnti-Patterns

Special thanks for James Perretta!

2

The Story So Far …
● We want to deliver and support a quality

software product
● We understand the stakeholder requirements
● We understand process and maintainability
● We understand quality assurance

● How should we make process and design
designs the first time?

3

One-Slide Summary
● Software design patterns are general,

reusable solutions to commonly-occurring
problems. They separate the structure of a
system from its implementation. They apply in
almost all OO languages.

● Every design has tradeoffs. Object-oriented
design patterns often trade verbosity or
efficiency for extensibility.

● We'll consider structural, creational and
behavioral design patterns.

4

Patterns in Non-Software Design

5

Further Real-World Reading

● The Design of Everyday Things
● design serves as the

communication between object
and user

● although people often blame
themselves when objects appear
to malfunction, it is not the fault
of the user but rather the lack of
intuitive guidance that should be
present in the design

● behavioral psych + ergonomics

6

Jargon

● The book popularizing
software design patterns
is often called the Gang
of Four book after its
four authors

● (Sometimes handy for
talking to interviewers or
practitioners.)

7

High-Level Design Pattern Advice

● Consider code change as a certainty
● Redesign is expensive. Choosing the right pattern

helps avoid it.

● Consider your requirements and their changes
● Use patterns that fit your current or anticipated

needs.

● Consider multiple designs
● Diagram your designs before writing code.

8

Structural Patterns

● Structural design patterns ease design by
identifying simple ways to realize relationships
among entities.

● In software, they usually
● Build new classes or interfaces

from existing ones
● Hide implementation details
● Provide cleaner or more

specialized interfaces

9

Adapter Design Pattern

● The adapter design pattern is a structural
design pattern that converts the interface of a
class into another interface clients expect.

10

Adapter Examples (1/2)

● Implementing a Stack interface using a
LinkedList interface

Stack
- push()
- top()
- pop() LinkedList

- push_front()
- front()
- pop_front()
- push_back()
- back()
- pop_back()
- insert()

11

Adapter Examples (2/2)

● Early implementations of fstream in C++
● … were simply adapters around the C FILE macro

● The autograder used for this course securely
runs student code

● It does this via an adapter around a
containerization library (e.g., docker)
● Handles quirks of the library
● Makes sure that certain options are always used

12

Other Structural Patterns

● The composite design pattern allows clients
to treat individual objects and groups of
objects uniformly
● e.g., selecting and moving objects in PowerPoint

● The proxy design pattern provides a surrogate
or placeholder for another object to control
access to it

● std::vector<bool> exposes std::vector<bool>::reference as
a method of accessing individual bits. In particular, objects
of this class are returned by operator[] by value.
https://en.cppreference.com/w/cpp/container/vector_bool

https://en.cppreference.com/w/cpp/container/vector_bool

13

Creational Design Patterns

● Creational design patterns avoid complexity
by controlling object creation so that objects
are created in a manner suitable for the
situation. They make a system independent of
how its objects are created.

● A plain constructor may not allow you to
● Control how and when an object is used
● Overcome language limitations (e.g., no default

arguments)
● Hide polymorphic types

14

The Named Constructor Idiom

● In the Named Constructor Idiom you declare
the class's normal constructors to be private or
protected and make a public static creation
method.
class Llama {
public:
 static Llama* create_llama(string name) {
 return new Llama(name);
 }

private: // Making constructor private
 Llama(string name_in): name(name_in) {}
 string name;
};

15

A Common Problem

● Suppose we need to create and use
polymorphic objects without exposing their
types to the client
● Recall: design for maintainability and extensibility.

We don't want the client to depend on (and thus
“lock in”) the actual subtypes.

● The typical solution is to write a function that
creates objects of the type we want but
returns that object so that it appears to be
(“cast to”) a member of the base class

16

The Factory Pattern

● The factory method pattern is a creational
design pattern that uses factory methods to
create objects without having the return type
reveal the exact subclass created.
Payment * payment_factory(string name, string type)
{
 if (type == “credit_card”)
 return new CreditCardPayment(name);
 else if (type == “bitcoin”)
 return new BitcoinPayment(name);
 …
}

Payment * webapp_session_payment =
 payment_factory(customer_name, “credit_card”);

17

Factory Pattern Variant

● You may also encounter implementations in
which special methods create the right type:
class PaymentFactory {
public:
 static Payment* make_credit_payment(string name){
 return new CreditCardPayment(name);
 }
 static Payment* make_bc_payment(string name){
 return new BitcoinPayment(name);
 }
};

Payment * webapp_session_payment =
PaymentFactory::make_credit_payment(customer_name);

18

Scenario: Difficulty-Based Enemies

● Suppose we're implementing a computer game
with a polymorphic Enemy class hierarchy, and
we want to spawn different versions of
enemies based on the difficulty level.

● Normal Difficulty Goomba→

● Hard Difficulty Spiked Goomba→

19

Anti-Patterns

● An anti-pattern is a common response to a
recurring problem that is usually ineffective
and risks being counterproductive.

● A bad solution (anti-pattern) would be to
check the difficulty at each of the many places
in the code related to spawning enemies

● This creates copy-and-paste code (code
clones, duplicate code) and hurts maintenance
● Fixes to one clone may miss others, more lines of

code means code comprehension is slower, …

20

Anti-Patterns

● An anti-pattern is a common response to a
recurring problem that is usually ineffective
and risks being counterproductive.
Enemy* goomba1 = nullptr;
if (difficulty == “normal”)
 goomba1 = new Goomba();
else if (difficulty == “hard”)
 goomba1 = new SpikedGoomba();

Enemy* goomba2 = nullptr;
if (difficulty == “normal”)
 goomba2 = new Goomba();
else if (difficulty == “hard”)
 goomba2 = new SpikedGoomba();

21

Abstract Factory Design Pattern

● The abstract factory pattern encapsulates a
group of factories that have a common theme
without specifying their concrete classes.

Enemy

Goomba

Spiked Goomba

AbstractEnemyFactory
- virtual create_goomba()

NormalEnemyFactory
- override create_goomba()

HardEnemyFactory
- override create_goomba()

22

Abstract Factory Design Pattern

● The abstract factory pattern encapsulates a
group of factories that have a common theme
without specifying their concrete classes.

AbstractEnemyFactory* factory = nullptr;
// Only have to code this “if” part once!
if (difficulty == “normal”)
 factory = new NormalEnemyFactory();
else if (difficulty == “hard”)
 factory = new HardEnemyFactory();

Enemy* goomba1 = factory->create_goomba();
Enemy* goomba2 = factory->create_goomba();
Enemy* goomba3 = factory->create_goomba();
Enemy* goomba4 = factory->create_goomba();

23

Scenario: Global Application State

● Suppose we have some application state that
needs to be globally accessible. However, we
need to control how that data is accessed and
updated.

● The anti-pattern (bad) solution is to have a
naked global variable.
● Fails to control access or updates!

● A “less bad” solution is to put all of the state
in one class and have a global instance of that
class.

24

Acceptability of
Global Variables

● Global variables are usually a poor design
choice. However:

● If you need to access some state everywhere,
passing it as a parameter to every function
clutters the code (readability vs. …)
● This is not an argument for using global variables

to avoid passing a few parameters.

● Or if you need to access state stored outside
your program (e.g., database, web API)

● Then global variables may be acceptable

25

Singleton Design Pattern

● The singleton pattern restricts the
instantiation of a class to exactly one logical
instance. It ensures that a class has only one
logical instance at runtime and provides a
global point of access to it.

Singleton
public:

- static get_instance() // named ctor

private:
- static instance // the one instance

- Singleton() // ctor

26

Singleton Implementation Example

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null)
 Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;

 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }

 // Our global state
 private int billing_database;
 public int get_billing_count() {
 return billing_database;
 }
 public void increment_billing_count() {
 billing_database += 1;
 }
}

27

Singleton Implementation Example

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null)
 Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;

 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }

 // Our global state
 private int billing_database;
 public int get_billing_count() {
 return billing_database;
 }
 public void increment_billing_count() {
 billing_database += 1;
 }
}

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().

get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().
increment_billing_count();

 bills = Singleton.get_instance().
get_billing_count();

 System.out.println(bills);
 }
}

With your team …
What is the output of this code?

28

Singleton Implementation Example

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null)
 Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;

 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }

 // Our global state
 private int billing_database;
 public int get_billing_count() {
 return billing_database;
 }
 public void increment_billing_count() {
 billing_database += 1;
 }
}

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().

get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().
increment_billing_count();

 bills = Singleton.get_instance().
get_billing_count();

 System.out.println(bills);
 }
}

With your team …
What is the output of this code?

Output:
Singleton DB created
0
1

29

Singleton.get_instance()

● Could we avoid typing Single.get_instance() so
many times by doing this at all of the points in
our program that use the singleton?

Single s = Singleton.get_instance();

System.out.println(s.get_billing_count());

… // later

System.out.println(s.get_billing_count());

● Is this a good idea or not?

31

Singleton Design Scenario

● Suppose we are implementing a computer
version of the card game Euchre. In addition
to a few abstract datatypes, we have a Game
class that stores the state needed for a game
of Euchre. When started, our application
prototype plays one game of Euchre and then
exits.

● (With your team …) Should we make Game a
singleton?

32

Scenario Considerations

● Making Game a Singleton is tempting
● There is only one Game instance in our application

● However, there only happens to be one
instance of Game. There's no requirement that
we must only have one instance.

● We should only use the Singleton pattern when
current or future requirements dictate that
only one instance should exist.
● Singleton is not a license to make everything

global.

33

Trivia: Mexican History

● This priest and professor was a leader
in the Mexican War of Independence
(1810-1820). After giving the famous
“Cry of Dolores” speech he gathered an
army of 90,000 farmers and fought the
Spanish. His troops fled and he was
betrayed and executed. Although he
did not live to see independence in
1821, the day of his speech (16
September 1810) is officially
recognized as the day of Mexican
independence.

Trivia: Social Media

● Name the social media platform
most associated with memes about:
● color vision of shrimp
● Apollo's dodgeball
● Goncharov
● Spiders Georg

35

Trivia: Geography

● This national capital is the most populous city in Western
Asia. Almost all inhabitants speak Persian (تهران). It is home
to the Azadi Tower memorial, hosted a WWII conference
between Roosevelt, Stalin and Churchill, and despite air
pollution issues, it is a popular migration destination.

36

Trivia: US Toys

● This Mattel fashion doll franchise (and associated web
series) was created in 2010. It features fictional “ghouls”
and “mansters”, such as vegan vampire Draculaura and
clumsy Frankie Stein, attending the eponymous school. It
was so successful that rival lines such as Bratzillaz and
Equestria Girls are viewed as direction reactions
attempting to cash in on the same trend.

37

Psychology: Reaction
and Information

● How long does it take you to choose from among multiple
stimuli, even when you know the right answer?

● An early experiment presented subjects with a few lamps.
Each lamp was labeled (e.g., A, B, C, etc.). Every five
seconds, one of the lamps would light up. The subject was
asked to press the key, as quickly and as accurately as
possible, corresponding to the lamp that lit up.

● While only one lamp was ever lit, the experimenter varied the
total number of other lamps (e.g., from 2 to 10).

● How does your reaction time vary as a function of the number
of choices?

38

Psychology: Hick's Law

● Given n equally probable choices, the average
reaction time T required for a human to
choose among them is: T = b·log

2
(n+1)

● b is an empirically-learned constant

● Increasing the number of choices increases
decision time logarithmically. The amount of
time taken to process a certain amount of bits
is known as the rate of gain of information.

[Hick, W. E. (1 March 1952). "On the rate of gain of information". Quarterly Journal of Experimental
Psychology. 4 (1): 11–26]
[Hyman, R (March 1953). "Stimulus information as a determinant of reaction time". Journal of Experimental
Psychology. 45 (3): 188–96.]

39

Psychology: Hick's Law

● Implications for SE:
● Hick's Law is often used to justify menu design

decisions in human interfaces – from
restaurant menus to UI design in computing.
Users given many choices have to take time to
interpret and decide, work they typically don't
want (cf. analysis paralysis, Mac vs. Windows
design philosophy, etc.). Why don't we like
voluminous bug-finding tool output again?

40

Behavioral Design Patterns

● Behavioral design patterns that support
common communication patterns among
objects. They are concerned with algorithms
and the assignment of responsibilities between
objects.

● The iterator pattern is a common behavioral
design pattern. It provides a uniform interface
for traversing containers regardless of how
they are implemented.

41

Observer Design Pattern

● The observer pattern (also called “publish-
subscribe”) allows dependent objects to be
notified automatically when the state of a
subject changes. It defines a one-to-many
dependency between objects so that when one
object changes state, all of it dependents are
notified.

Subject/Publisher
public:

- subscribe()
- unsubscribe()

Observer/Subscriber
public:

- update()

Observer subscribes to
subject for updates

Subject calls
update() when
state changes

Note: subscribe and unsubscribe can be static or non-static, depending on implementation.

42

Observer Pattern Exercise

● How many times is “Received update” printed?
class Subject {
 public static void subscribe(Observer obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(Observer obs) {
 subscribers.Remove(obs);
 }
 public static void change_state() {
 foreach (Observer obs in subscribers) {
 obs.update();
 }
 }
 private static List<Observer> subscribers
 = new List<Observer>();
}

class Observer {
 public void update() {
 Console.WriteLine("Received update");
 }
}

class MainClass {
 public static void Main(string[] args) {
 Observer observer1 = new Observer();
 Observer observer2 = new Observer();

 Subject.subscribe(observer1);
 Subject.change_state();

 Subject.subscribe(observer2);
 Subject.change_state();

 Subject.unsubscribe(observer2);
 Subject.change_state();
 }
}

43

Observer “update_” Functions

● Having multiple “update_XYZ” functions, one
for each type of state change, keeps messages
granular
● Observers that do not care about a particular type

of update can ignore it (via an empty
implementation of the update function)

● Generally it is better to pass the newly-
updated data as a parameter to the update
function (push) as opposed to making
observers fetch it each time (pull)

44

Scenario: “Likes” In Social
Streaming Website

● Suppose we're building a social video
streaming website with users and channels.

● Both users and channels can receive likes (for
good comments or good videos).

● When a user or channel receives a like, it gets
karma.

● At 50,000 karma, a channel gets a trophy.
● At 50,000 karma, a user gets ad-free access.

45

Likes: First Design
Actor

public:
- virtual receive_like()
- apply_karma()
private:
- karma

User
public:
- override receive_like()

Channel
public:
- override
receive_like()

Note: receive_like is called on an Actor when
someone likes its comment or video, etc.

46

Likes: Anti-Pattern Observations

47

Template Method Design Pattern

● The template method behavioral design
pattern involves a method in a superclass that
operates in terms of high-level steps that are
implemented by abstract helper methods
provided by concrete implementations.

● Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.
Template method design lets subclasses
redefine certain steps of that algorithm
without changing the algorithm's structure.

48

Likes: Template Method
Actor

public:
- receive_like()
- note_karma()
protected:
- virtual on_50k_karma()
private:
- karma

User
protected:
- override on_50k_karma()

Channel
protected:
- override on_50k_karma()

49

Likes: Template Method
Implementation

class Actor {
 public void receive_like() {
 karma += 1;
 if (get_karma() >= 50000)
 on_50k_karma();
 else
 note_karma();
 }
 protected virtual void on_50k_karma() {}

 // Other members same as before
}

class Channel: Actor {
 protected override void on_50k_karma() {
 Console.WriteLine("Channel trophy!");
 }
}

class User: Actor {
 protected override void on_50k_karma() {
 Console.WriteLine("Ad-free access!");
 }
}

50

Template Method
The “Hollywood Principle”

● In the first (anti-pattern) implementation, the
derived class called the base class version of
receive_like()

● In the template method implementation, the
non-virtual base class receive_like() called
derived class methods

● “Don't call us, we'll call you!”

51

Exercise

● Suppose we want to add an AffiliateChannel to
our setup. An AffiliateChannel does not receive
a trophy on 50,000 karma, but instead
received nothing.

● Modify our design to include this new type.
Actor

public:
- receive_like()
- note_karma()

protected:
- virtual on_50k_karma()

private:
- karma

User
protected:

- override on_50k_karma()

Channel
protected:

- override on_50k_karma()

52

Solution

● Suppose we want to add an AffiliateChannel to
our setup. An AffiliateChannel does not receive
a trophy on 50,000 karma, but instead
received nothing.

● Modify our design to include this new type.
Actor

public:
- receive_like()
- note_karma()

protected:
- virtual on_50k_karma()

private:
- karma

User
protected:

- override on_50k_karma()

Channel
protected:

- override on_50k_karma()

AffiliateChannel
Protected:

// this override should be empty
- override on_50k_karma()

53

Questions?

● Further reading from EECS 381
● http://www.umich.edu/~eecs381/lecture/notes.html

● See “Idioms and Design Patterns” PDFs

http://www.umich.edu/~eecs381/lecture/notes.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

