Design Patterns

Elements of Reusable

AFTISIM-NOSIAAY

140¥d

Patterns and
Anti-Patterns

NOISS

i
-
-

S3143S DNILLNJdWC

Special thanks for James Perretta!

The Story So Far ...

 We want to deliver and support a quality
software product

* We understand the stakeholder requirements

 We understand process and maintainability

* We understand quality assurance

* How should we make process and design
designs the first time?

One-Slide Summary

» Software design patterns are general,
reusable solutions to commonly-occurring
problems. They separate the structure of a
system from its implementation. They apply in
almost all OO languages.

* Every design has tradeoffs. Object-oriented
design patterns often trade verbosity or
efficiency for extensibility.

 We'll consider structural, creational and
behavioral design patterns.

Patterns in Non-Software Design

Multiple choice question

1. Rick Astley’s never gonna: |«

Options

* Give you up

* Let you down
* Run around and
* Desertyou
. * All of the above < Correct

Distractors

Question Stem

VERSE

CHORUS

VERSE

CHORUS

BRIDGE

CHORUS

B

B

C

B

CHRISTOPHER

BOOKER

Further Real-World Reading

 The Design of Everyday Things

» design serves as the
communication between object
and user

 although people often blame
themselves when objects appear
to malfunction, it is not the fault mem THINGS
of the user but rather the lack of
intuitive guidance that should be
present in the design

e behavioral psych + ergonomics

Jargon

* The book popularizing
software design patterns
is often called the Gang
of Four book after its
four authors

* (Sometimes handy for
talking to interviewers or
practitioners.)

Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

>

-
=
S
)
-
-
rd
'
-
-
-
w
=
-
-
n-
~
)
el
-—
m
¥y}
)
=
=
r
>
=
)
ﬁl
-
o
—
)
C
=
prad
9]
w
m
E.
m
wi

High-Level Design Pattern Advice

» Consider code change as a certainty

» Redesign is expensive. Choosing the right pattern
helps avoid it.

* Consider your requirements and their changes

» Use patterns that fit your current or anticipated
needs.

* Consider multiple designs

» Diagram your designs before writing code.

Structural Patterns

» Structural design patterns ease design by
identifying simple ways to realize relationships

among entities.
* |n software, they usually

« Build new classes or interfaces
from existing ones

* Hide implementation details

* Provide cleaner or more

specialized interfaces

Tl JavaScript Daily Retweeted

Las Programming Wisdom
@CodeWisdom

"Telling a programmer there's
already a library to do X is like
telling a songwriter there's
already a song about love." -
Pete Cordell

11:00 AM - Mar 25, 2019 - Buffer

950 Retweets 3.3K Likes

Adapter Design Pattern

 The adapter design pattern is a structural
design pattern that converts the interface of a
class into another interface clients expect.

) Thereis. alWays a m‘v

Adapter Examples (1/2)

* Implementing a Stack interface using a
LinkedList interface

Stack
— push ()
- top() _. | _
- pop() LinkedList - . IT'S OKAY APRIE
- push front () £ 2 B
- front () |
- pop front ()
- push back()
- back ()
- pop back()
— 1nsert ()

Adapter Examples (2/2)

« Early implementations of £stream in C++

* ... were simply adapters around the C FILE macro

* The autograder used for this course securely
runs student code

* |t does this via an adapter around a
containerization library (e.g., docker)

» Handles quirks of the library
* Makes sure that certain options are always used

11

Other Structural Patterns

 The composite design pattern allows clients
to treat individual objects and groups of
objects uniformly

e e.g., selecting and moving objects in PowerPoint

* The proxy design pattern provides a surrogate
or placeholder for another object to control
access to it

« std::vector<bool> exposes std::vector<bool>::reference as
a method of accessing individual bits. In particular, objects

of this class are returned by operator[] by value.

https://en.cppreference.com/w/cpp/container/vector_bool
12

https://en.cppreference.com/w/cpp/container/vector_bool

Creational Design Patterns

* Creational design patterns avoid complexity
by controlling object creation so that objects
are created in a manner suitable for the
situation. They make a system independent of
how its objects are created.

* A plain constructor may not allow you to

* Control how and when an object is used

* Overcome language limitations (e.g., no default
arguments)

* Hide polymorphic types

13

The Named Constructor Idiom

* In the Named Constructor Idiom you declare
the class's normal constructors to be private or
protected and make a public static creation

method.

class Llama {
public:
static Llama* create llama (string name) {
return new Llama (name) ;

J

private: // Making constructor private
Llama (string name 1in): name (name 1in) {}
string name;

b

14

A Common Problem

» Suppose we need to create and use
polymorphic objects without exposing their
types to the client

» Recall: design for maintainability and extensibility.

We don't want the client to depend on (and thus
“lock in”’) the actual subtypes.

* The typical solution is to write a function that
creates objects of the type we want but
returns that object so that it appears to be
(“cast to”) a member of the base class

15

The Factory Pattern

* The factory method pattern is a creational
design pattern that uses factory methods to
create objects without having the return type
reveal the exact subclass created.

Payment * payment factory(string name, string type)
{
1f (type == “credit card”)
return new CreditCardPayment (name) ;
else 1f (type == “bitcoin”)
return new BitcolnPayment (name) ;

}
Payment * webapp session payment =

payment factory(customer name, “credit card”);
16

Factory Pattern Variant

* You may also encounter implementations in
which special methods create the right type:

class PaymentFactory {
public:
static Payment* make credit payment (string name) {
return new CreditCardPayment (name) ;
}
static Payment* make bc payment (string name) {
return new BitcoinPayment (name) ;

}
Y

Payment * webapp session payment =
PaymentFactory::make credit payment (customer name) ;

17

Scenario: Difficulty-Based Enemies

Suppose we're implementing a computer game
with a polymorphic Enemy class hierarchy, and
we want to spawn different versions of
enemies based on the difficulty level.

 Normal Difficulty — Goomba Q

» Hard Difficulty — Spiked Goomba

18

Anti-Patterns

 An anti-pattern is a common response to a
recurring problem that is usually ineffective
and risks being counterproductive.

* A bad solution (anti-pattern) would be to
check the difficulty at each of the many places
in the code related to spawning enemies

* This creates copy-and-paste code (code
clones, duplicate code) and hurts maintenance

* Fixes to one clone may miss others, more lines of
code means code comprehension is slower, ...

19

Anti-Patterns

 An anti-pattern is a common response to a
recurring problem that is usually ineffective
and risks being counterproductive.

Enemy* goombal = nullptr;

if (difficulty == “normal”)
goombal = new Goomba () ;

else if (difficulty == “hard”)
goombal = new SpikedGoomba () ;

e N
Enemy* goomba2 = nullptr; ’ NO,YOU nllrucnm%];ﬂ
if (difficulty == “normal”)

goomba2 = new Goomba () ;
else if (difficulty == “hard”)
goomba2 = new SpikedGoomba () ;

20

Abstract Factory Design Pattern

 The abstract factory pattern encapsulates a
group of factories that have a common theme
without specifying their concrete classes.

AbstractEnemyFactory
- virtual create_goomba()

I—t—l

NormalEnemyFactory HardEnemyFactory
- override create goombal() - override create_goombal)

Enemy

|

Goomba

|

Spiked Goomba

21

Abstract Factory Design Pattern

 The abstract factory pattern encapsulates a
group of factories that have a common theme
without specifying their concrete classes.

AbstractEnemyFactory* factory = nullptr;
// Only have to code this “if” part once!
if (difficulty == “normal”)

factory = new NormalEnemyFactory() ;
else if (difficulty == “hard”)

factory = new HardEnemyFactory() ;

Enemy* goombal
Enemy* goomba2
Enemy* goomba3
Enemy* goomba4

factory->create goomba() ;
factory->create goomba () ;
factory->create goomba () ;
factory->create goomba () ;

22

Scenario: Global Application State

» Suppose we have some application state that
needs to be globally accessible. However, we
need to control how that data is accessed and
updated.

 The anti-pattern (bad) solution is to have a
naked global variable.

» Fails to control access or updates!

* A “less bad” solution is to put all of the state
in one class and have a global instance of that
class.

23

Acceptability of EI'HEII
Global Variables IR

* Global variables are usually a poor design
choice. However:

* |f you need to access some state everywhere,
passing it as a parameter to every function
clutters the code (readability vs. ...)

* This is not an argument for using global variables
to avoid passing a few parameters.

* Or if you need to access state stored outside
your program (e.g., database, web API)

* Then global variables may be acceptable

24

Singleton Design Pattern

* The singleton pattern restricts the
instantiation of a class to exactly one logical
instance. It ensures that a class has only one
logical instance at runtime and provides a
global point of access to it.

Singleton
public:
- static get_instance() // named ctor

private:
- static instance // the one instance
- Singleton() // ctor

25

Singleton Implementation Example

class Singleton {
// public way to get “the one logical instance”
public static Singleton get instance() {
if (Singleton.instance == null)
Singleton.instance = new Singleton();
return Singleton.instance;

}

private static Singleton instance = null;

private Singleton() { // only runs once What the
billing database = 0; professor
System.out.println("Singleton DB created"); covered
}
// our global state
private int billing database; .
public int get billing count() { What's on
return billing database; the exam
}
public void increment_billing count() {
billing database += 1;
}
} What you
remember

Singleton Implementation Example

class Singleton {
// public way to get “the one logical instance”
public static Singleton get instance() {
if (Singleton.instance == null)
Singleton.instance = new Singleton(); .
return Singleton.instance; With your team ...
} What is the output of this code?

private static Singleton instance = null;

private Singleton() { // only runs once
billing database = 0;
System.out.println("Singleton DB created");

} \

class Main {
// our global state public static void main(String[] args) {
private int billing database; int bills = Singleton.get instance().

public int get_billing count() { get_billing_count();
return billing_database; System.out.println(bills);

}
public void increment_billing count() { Singleton.get_instance().
billing database += 1; increment_billing count();
} N bills = Singleton.get instance().
} get billing count();
System.out.println(bills);
} 27

}

Singleton Implementation Example

class Singleton {
// public way to get “the one logical instance”
public static Singleton get instance() {

if (Singleton.instance == null) .
Singleton.instance = new Singleton(); OUtPUt *
return Singleton.instance; Slngleton DB created
}
private static Singleton instance = null; 0
private Singleton() { // only runs once 1

billing database = 0;
System.out.println("Singleton DB created");

J class Main {
// our global state public static void main(String[] args) {
private int billing database; int bills = Singleton.get instance().
public int get billing count() { get_billing count();
return billing database; System.out.println(bills);
}
public void increment billing count() { Singleton.get_instance().
billing database += 1; increment_billing count();
} B bills = Singleton.get instance().
} get billing count();
System.out.println(bills);
} 28

}

Singleton.get_instance()

* Could we avoid typing Single.get_instance() so
many times by doing this at all of the points in
our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get billing count());
.. // Later
System.out.println(s.get billing count());

* |s this a good idea or not?

29

Singleton.get_instance() Warning

* This is a bad idea. There is no guarantee that
Singleton.get_instance() will return the same
pointer (same object) every time it is called.
(It may return different concrete copies of the
same logical item.)

30

Singleton Design Scenario

» Suppose we are implementing a computer
version of the card game Euchre. In addition
to a few abstract datatypes, we have a Game
class that stores the state needed for a game
of Euchre. When started, our application

prototype plays one game of Euchre and then
exits.

o (With your team ...) Should we make Game a
singleton?

31

Scenario Considerations

* Making Game a Singleton is tempting

 There is only one Game instance in our application

 However, there only happens to be one
instance of Game. There's no requirement that

we must only have one instance.

* We should only use the Singleton pattern when
current or future requirements dictate that
only one instance should exist.

* Singleton is not a license to make everything
global.

32

Trivia: Mexican History

* This priest and professor was a leader
in the Mexican War of Independence
(1810-1820). After giving the famous
“Cry of Dolores” speech he gathered an
army of 90,000 farmers and fought the
Spanish. His troops fled and he was
betrayed and executed. Although he
did not live to see independence in
1821, the day of his speech (16
September 1810) is officially
recognized as the day of Mexican
independence.

Trivia: Social Media

* Name the social media platform
most associated with memes about:
e color vision of shrimp

» Apollo’s dodgeball
* Goncharov
* Spiders Georg

Trivia: Geography

* This national capital is the most populous city in Western
Asia. Almost all inhabitants speak Persian (ul,g5). It is home
to the Azadi Tower memorial, hosted a WWII conference
between Roosevelt, Stalin and Churchill, and despite air
pollution issues, it is a popular migration destination.

Trivia: US Toys

* This Mattel fashion doll franchise (and associated web
series) was created in 2010. It features fictional “ghouls”
and “mansters”, such as vegan vampire Draculaura and
clumsy Frankie Stein, attending the eponymous school. It
was so successful that rival lines such as Bratzillaz and
Equestria Girls are viewed as direction reactions

Psychology: Reaction
and Information

How long does it take you to choose from among multiple
stimuli, even when you know the right answer?

An early experiment presented subjects with a few lamps.
Each lamp was labeled (e.g., A, B, C, etc.). Every five
seconds, one of the lamps would light up. The subject was
asked to press the key, as quickly and as accurately as
possible, corresponding to the lamp that lit up.

While only one lamp was ever lit, the experimenter varied the
total number of other lamps (e.g., from 2 to 10).

How does your reaction time vary as a function of the number
of choices?

Psychology: Hick's Law

* Given n equally probable choices, the average
reaction time T required for a human to
choose among them is: T = b-log (n+1)

* b is an empirically-learned constant

* Increasing the number of choices increases
decision time logarithmically. The amount of
time taken to process a certain amount of bits
is known as the rate of gain of information.

[Hick, W. E. (1 March 1952). "On the rate of gain of information”. Quarterly Journal of Experimental
Psychology. 4 (1): 11-26]

[Hyman, R (March 1953). "Stimulus information as a determinant of reaction time". Journal of Experimental
Psychology. 45 (3): 188-96.] 38

Psychology: Hick's Law

* Implications for SE:

* Hick's Law is often used to justify menu design
decisions in human interfaces - from
restaurant menus to Ul design in computing.
Users given many choices have to take time to
interpret and decide, work they typically don't
want (cf. analysis paralysis, Mac vs. Windows
design philosophy, etc.). Why don't we like
voluminous bug-finding tool output again?

Behavioral Design Patterns

* Behavioral design patterns that support
common communication patterns among
objects. They are concerned with algorithms
and the assignment of responsibilities between

objects.

* The iterator pattern is a common behavioral
design pattern. It provides a uniform interface
for traversing containers regardless of how
they are implemented.

40

Observer Design Pattern

 The observer pattern (also called “publish-
subscribe”) allows dependent objects to be
notified automatically when the state of a
subject changes. It defines a one-to-many
dependency between objects so that when one
object changes state, all of it dependents are
notified.

Observer subscribes to

4 subject for updates I
Subject/Publisher Observer/Subscriber
public: public:
- subscribe() - update()
- unsubscribe() Subject calls
1 update() when A

state changes

41
Note: subscribe and unsubscribe can be static or non-static, depending on implementation.

Observer Pattern Exercise

 How many times is “Received update” printed?

class Subject {
public static void subscribe(Observer obs) {
subscribers.Add(obs);

}

public static void unsubscribe(Observer obs) {

subscribers.Remove(obs);

} class MainClass {
public static void change_state() { public static void Main(string[] args) {
foreach (Observer obs in subscribers) { Observer observerl = new Observer();
obs.update(); Observer observer2 = new Observer();
}
} Subject.subscribe(observerl);
private static List<Observer> subscribers Subject.change_state();
= new List<Observer>();
} Subject.subscribe(observer2);

Subject.change_state();
class Observer {

public void FPdaFe() { . Subject.unsubscribe(observer);
Console.WritelLine("Received update"); Subject.change_state();

}
} } }

Observer “update_" Functions

* Having multiple “update_XYZ” functions, one
for each type of state change, keeps messages
granular

* Observers that do not care about a particular type
of update can ignore it (via an empty
implementation of the update function)

* Generally it is better to pass the newly-
updated data as a parameter to the update
function (push) as opposed to making
observers fetch it each time (pull)

43

Scenario: “Likes” In Social
Streaming Website

» Suppose we're building a social video
streaming website with users and channels.

* Both users and channels can receive likes (for
good comments or good videos).

 When a user or channel receives a like, it gets
karma.

* At 50,000 karma, a channel gets a trophy.
* At 50,000 karma, a user gets ad-free access.

44

Likes: First Design

Actor
public:
- virtual receive_like()
- apply _karma()

Note: receive_like is called on an Actor when
someone likes its comment or video, etc.

private:
- karma
User Channel
public: public:
- override receive_like() - override

receive_like()

45

Likes: Anti-Pattern Observations

class Actor { HOLY DUPLICATION ; BATMAN!

public virtual void receive like() {
karma += 1;
}
public float get karma() { return karma; }
private float karma = 42;
public void note_karma() {
Console.WriteLine("Some karma received!");

}) class Channel: Actor {

public override void receive like() {
base.receive like();
if (get _karma() >= 50000)
Console.WriteLine("Channel trophy!");
else
note_karma();

class User: Actor {
public override void receive_like() {
base.receive like();

if (get_karma() >= 50000) }
Console.WriteLine("Ad-free access!"); }
else
note_karma();
}
}

46

Template Method Designh Pattern

 The template method behavioral design
pattern involves a method in a superclass that
operates in terms of high-level steps that are
implemented by abstract helper methods
provided by concrete implementations.

* Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.
Template method design lets subclasses
redefine certain steps of that algorithm
without changing the algorithm’s structure.

47

Likes: Template Method

Actor
public:

- receive_like()
- note_karma()

protected:

- virtual on_50k_karma()

private:

- karma

I—f—l

protected:

- override on_50k_karma()

User

protected:

Channel

- override on_50k_karma()

48

Likes: Template Method
Implementation

class Actor {

public void receive_like() {

karma += 1;

if (get_karma() >= 50000)
on_50k_karma();

else

note_karma();

}

protected virtual void on_50k_karma() {}

// Other members same as before

}

class Channel: Actor {
protected override void on_50k_karma() {
Console.WriteLine("Channel trophy!");
}
}

class User: Actor {

protected override void on_50k_karma() {
Console.WritelLine("Ad-free access!");

}
}

49

Template Method
The “Hollywood Principle”

* In the first (anti-pattern) implementation, the
derived class called the base class version of
receive_like()

* |In the template method implementation, the
non-virtual base class receive_like() called
derived class methods

* “Don't call us, we'll call you!”

50

Exercise

* Suppose we want to add an AffiliateChannel to
our setup. An AffiliateChannel does not receive
a trophy on 50,000 karma, but instead
received nothing.

* Modify our design to include this new type.

Actor
public:
- receive_like()
- note_karma()
protected:
- virtual on_50k_karma()
private:

- karma

User 1 Channel
protected: protected:

- override on_50k_karma() - override on_50k_karma()

51

Solution

* Suppose we want to add an AffiliateChannel to
our setup. An AffiliateChannel does not receive
a trophy on 50,000 karma, but instead
received nothing.

* Modify our design to include this new type.

AL(-”. Channel
public:
- receive_like() protected:
- note_karma() I - override on_50k_karma()
protected:
- virtual on_50k_karma()
private:
- karma

User I AffiliateChannel
protected: Protected:
- override on_50k_karma() /7 this override Sggi/dkgf;gv(;’tv

52

Questions?

* Further reading from EECS 381

e http://www.umich.edu/~eecs381/lecture/notes.html

* See “ldioms and Design Patterns” PDFs

53

http://www.umich.edu/~eecs381/lecture/notes.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

