THIS STATEMENT
IS A LIE.

[ACCORDING To THiS
EMRT ANALYSIS,

THE SUBTECT WAS,
IN FACT, LYWG-

Debugging as
Hypothesis Testing

THAT'S NOT THE POINT
OF TUE PARADOY,
AND YOU KNOW (T.

SORRY.
NO TIME FOR
NON-EMPIRICAL
CHMT-CHAT. T

BECAUSE ITS COLD. ICE WANTS [1S THAT | LOOK T UP AND || I SHOuLD JUST | YOU CAN

TO GET WARM, SO \T kS

To THE TOP OF LIGUIDS N

ORDER To B WEARER TO
THE SUN.

LOOK STUFE UP | LEARN A 0T,
IN THE FIRST | TALKING TO

Smic—-comicS.com

The Story So Far ...

Quality assurance is critical to software
engineering

Defect reports are tracked and assigned to
developers for resolution

Modern software is so huge that simple
debugging approaches do not work

How should we intelligently N o
w USE

and scalably approach eg";‘%;wf © BenS 4o o

d e b u ggi n g? @A SSEEER STH PAGE oF OTHE

[0 IT MAGICALLY
PRINT("HERE!")) WORKS Now ¢,

>
e

HOW OFTEN I TRY IT

One-Slide Summary

* Delta debugging is an automated debugging
approach that finds a minimal interesting
subset of a given set. It is very efficient.

* Delta debugging is based on divide-and-
conquer and relies heavily on critical
assumptions (monotonicity, unambiguity, and
consistency).

|t can be used to find which code changes
cause a bug, to minimize failure-inducing
inputs, and even to find harmful thread
schedules.

Debugging Case Study

» Consider this deployment pipeline: Git Server
to Jenkins to GlassFish application server

* You have a known-valid test input (NetBeans git
commit) that leads to an incorrect WAR file

 What would you to do determine which pipeline
stage has the bug?

. Git Server Jenkins . . .
N
betBeans‘ G'It GUI Post-Receive »| Remote Access Je‘nkms Jenkins . GIassF{sh
Git Commit Git Push Hook AP Build Job Deploy Job WAR file

Real Life Motivation

» The Mozilla developers had a large number of
open bug reports in the queue that were not
even simplified

* The Mozilla engineers “faced imminent doom”

* Netscape product management sent out the
Mozilla Bug-A-Thon call for volunteers: people
who would help simplify bug reports.

e Simplify — turn bug reports into minimal test
cases, where each part of the input matters

Minimizing a Mozilla Bug

<SELECT _NAME="priority" MULTIPLE_SIZE=7> X
<SELECT _NAME="priority" _MULTIPLE_SIZE=7> v
<SELECT,K NAME="priority" MULTIPLE SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> X

 We want something
that can simplify this
large HTML intput to
just “<SELECT>”

<SELECT MAME="priority" MULTIPLE SIZE=7> X
<SELECT MAME="priority" MULTIPLE, SIZE=7> ¢
<SELECT_NAME="priority" MULTIPLE_SIZE=7> v
<SELECT _NAME="priority" _MULTIPLE_SIZE=7> ¢

L= = <IN T N Pt R S

Wh-lch causes the 10 <SELECT, NAME="priority" MULTIPLE_SIZE=7> X
11 <SELECT NAME="priority" MULTIPLE _SIZE=7> v

12 <SELECT NAME="priority" MULTIPLE SIZE=7> v

CraSh 13 <SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
14 <SELECT NAME="priority" MULTIPLE_SIZE=7> v

15 <SELECT _NAME="priority" MULTIPLE_ SIZE=7> v

[EaCh Character 'in 16 <SELECT_NAME="priority" MULTIPLE_SIZE=7> X

17 <SELECT _NAME="priority" _MULTIPLE_SIZE=7> X
“SELECT” -iS relevant 18 <SELECT, NAME="priority" MULTIPLE SIZE=7> X
19 <SELECT NAME="priority" MULTIPLE _SIZE=7> v
20 <SELECT _NAME="priority" _MULTIPLE_SIZE=7> v
(See 20-26) 21 <SELECT_NAME="priority" MULTIPLE SIZE=7> ¢

22 <SELECT_NAME="priority" MULTIPLE_SIZE=7> ¢

[}
=
(=}
H

[&}

23 <SELECT_NAME="priority" _MULTIPLE_SIZE=7> v

24 <SELECT_NAME="priority" MULTIPLE_SIZE=7> ¢
[}

25 <SELECT NAME="priority" MULTIPLE_SIZE=7> v
26 <SELECT NAME="priority" MULTIPLE_SIZE=7> X

6

Error

This passwaord Is already used by starboy98. Try
another,

Y
BT A TP EFE L T]

Often people who encounter a bug spend a lot of time

investigating which changes to the input file will make the bug
go away and which changes will not affect it.

— Richard Stallman, Using and Porting GNU CC

WE DoONT UNDERSTAND HISTORY 1S THE FICTION | THATS WHY EVENTS ARE o WHAT
WHAT REALY CAISES WE IMYENT TO PERSUADE | ALWAYS REINTERPRETED | ARE You
EVENTS T HAPPEM OURSELYES TUAT EVENMTS | WHEM YALES THAMNGE . WRITING ?

A REVISIONIST
AJTO BIOGRAPHY .

xﬁ___ © KNOWARLE AMD THAT | WE NEED NEW VERSIONS
LIFE WAS ORDER| OF HISTORY TO ALLOW FOR.

AND DIRECTION. | QUR CURRENT PREJUDICES .
\
19

S

A

Delta Debugging

* Three Problems: One Common Approach
» Simplifying Failure-Inducing Input
* |solating Failure-Inducing Thread Schedules

 |dentifying Failure-Inducing Code Changes

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

I CAN COME BACK LATER
IF YOU NEED TIME TO
CONCOCT ADDITIOMNAL

UNINFORMED

CRITICISMS.

THIS DESIGN WJILL
NMEVER WORK IN
THE REAL WORLD,

|
rfl—\ﬁ}s T

F o200 Scott Adama, inc. /DNaL By UFS, Ins.

S

|

Scott Adams, Inc./Dist.

.'] II |

werw dilbert.com scotndama®aal.com

=]
0

Problem: Failure-Inducing Input

* Having a test input may not be enough

* Even if you know the suspicious code, the input
may be too large to step through

* This HTML input makes a version of Mozilla
crash. Which portion is relevant?

<td align=left valign=top>

<SELECT NAME="op.sys" MULTIPLE SIZE=7>

<QPTION VALUE="All">All<OPTION VALUE="Windows 3.l1"»Windows 3.l<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98 ">Windows 98<0OPTION VALUE="Windows ME">Windows ME<QOPTION VALUE="Windows 2000">Windows Z2000<0PTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5"»Mac System 7.5<0PTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System B.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<0PTION VALUE="Mac System B.6">Mac System 8.6<0OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="0OpenB5SD">0penBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS5'">»BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino'>Neutrino<OPTION VALUE="0OpenVMS">0penVMS<OPTION VALUE="05/2">05/2<0PTION
VALUE="OSF/1">05F/1<0PTION VALUE="Solaris"»So0laris<OPTION VALUE="S5un0S8">5un0S<OPTION VALUE="other">other</SELECT>

</td>

<td align=left wvalign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">-—-<QOPTION VALUE="Pl">Pl<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<0PTION VALUE="P4">P4<0PTION
VALUE="P5">P5</SELECT>
</td>

<td align=left wvalign=top>

<SELECT NAME="bug-severity" MULTIPLE SIZE=7>

<0OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement'>enhancement</SELECT>
</tr>

</table>

Problem: Thread Scheduling

* Multithreaded programs can be non-
deterministic

« Can we find simple, bug-inducing thread
schedules?

Schedule Thread A Thread B Schedule Thread A Thread B

open(".htpasswd")

open(" .htpasswd")
open(” .htpasswd")

read(...)

modify(...) read(...)
write(...) read(...)
close(...) modify(...)
open(" .htpasswd") write(...)
Emﬁﬁﬁ read(...) close(...)
modify(...) modify(...)
write(...) write(...)
close(...)

close(...)

v X 10

Problem: Code Changes

* A new version of GDB has a Ul bug
* The old version does not have that bug

« 178,000 lines of code have been modified
between the two versions

 Where is the bug?

* These days: continuous integration testing helps
* ... but does not totally solve this. Why?

diff -r gdb-4.16/gdb/infecmd.c gdb-4.17/gdb/infemd.c
12391278
< "Set arguments to give program being debugged when it is started.'n

> "Set argument list to give program being debugged when it is started.'\n
11

What is a Difference?

* With respect to debugging, a difference is a
change in the program configuration or state
that may lead to alternate observations

» Difference in the input: different character or bit in
the input stream

» Difference in thread schedule: difference in the time
before a given thread preemption is performed

» Difference in code: different statements or
expressions in two versions of a program

» Difference in program state: different values of
internal variables

12

Unified Solution

* Abstract Debugging Problem:

* Find which part of something (= which difference,
which input, which change) determines the failure

 “Find the smallest subset of a given set that is still
interesting”

* Divide and Conquer

» Applied to: working and failing inputs, code
versions, thread schedules, program states, etc.

13

Yesterday, My Program Worked
Today, It Does Not

v = = e = = X
—_
Yesterday n changes Today

* We will iteratively

« Hypothesize that a small subset is interesting
« Example: change set {1, 3,8} causes the bug

» Run tests to falsify that hypothesis

14

Delta Debugging
* Given
- aset C ={c, .., c } (of changes)
 a function Interesting : C — {Yes, No}

* Interesting(C) = Yes , Interesting({}) = No

 |nteresting is monotonic, unambiguous and
consistent (more on these later)

* The delta debugging algorithm returns a
minimal Interesting subset M of C:

* Interesting(M) = Yes

 For all m < M, Interesting(M - m) = No

15

Example Use of Delta Debugging

v

s,

Yesterday

= .=
N ——— S —

n changes

» C = the set of n changes

* Interesting(X) = Apply the changes in X to

—

b 4

Today

Yesterday's version and compile. Run the result
on the test. If it fails, return “Yes” (X is an

interesting failure-inducing change set),

otherwise return “No” (X is too small and does
not induce the failure)

16

Naive Approach

 We could just try all subsets of C to find the
smallest one that is Interesting

* Problem: if |C| = N, this takes 2" time

» Recall: real-world software is huge

« We want a polynomial-time solution
Every Day Is
Exactl

: C§MC

* |deally one that is more like log(N)

* Or we'll loop for what feels like forever ¥ sua

Algorithm Candidate

/* Precondition: Interesting({c. ... C }) = Yes */
DD({c,, ..., C }) =
if n =1 then return {c }
let P1={c,..c }
P2 = So far, this is
let {C”/Z”’ ’ C”} just binary search!
if Interesting(P1) = Yes It won't work if
you need a big
then return DD(P1) subset to be
Interesting.

else return DD(P2)

18

Useful Assumptions

Any subset of changes may be Interesting

* Not just singleton subsets of size 1 (cf. bsearch)
Interesting is Monotonic

* |nteresting(X) — Interesting(X U {c})
Interesting is Unambiguous

* |Interesting(X) & Interesting(Y) — Interesting(X nY)

Interesting is Consistent

* Interesting(X) = Yes or Interesting(X) = No

e (Some formulations: Interesting(X) = Unknown)

19

Delta Debugging Insights

* Basic Binary Search
* Divide C into P1 and P2

 |f Interesting(P1) = Yes then recurse on P1

 |f Interesting(P2) = Yes then recurse on P2
* At most one case can apply (by Unambiguous)
* By Consistency, the only other possibility is

* (Interesting(P1) = No) and (Interesting(P2) = No)
 What happens in such a case?

20

Interference

* By Monotonicity
* |f Interesting(P1) = No and Interesting(P2) = No

* Then no subset of P1 alone or subset of P2 alone is
Interesting

* S0 the Interesting subset must use a
combination of elements from P1 and P2

* |n Delta Debugging, this is called interference

» Basic binary search does not have to contend with
this issue

21

Interference Insight

(hardest part of this lecture?)

 Consider P1

* Find a minimal subset D2 of P2
e Such that Interesting(P1uD2) = Yes

 Consider P2

 Find a minimal subset D1 of P1
* Such that Interesting(P2 u D1) = Yes

* Then by Unambiguous
 Interesting((P1uD2) n (P2uD1)) =

Interesting(D1u D2) is also minimal

22

Trivia: Public Service
Announcements

 The United States Forest
Service's ursine mascot first
appeared in 1944. Give his

catch-phrase safety message.

Q: Books (726 / 842)

* Paraphrase any one of Isaac
Asimov's 1942 Three Laws of
Robotics.

Trivia: Football

(student “memorial”)

player of all time, is the most successful league goal
scorer in the world (541 league goals). He scored 1281

goals in 1363 games in total, and was sometimes known as
Pérola Negra or O Rei do Futebol. Sports writer Jeff
Powell said of him: “The most wondrous player of all
consecrated Brazil as the cathedral of the beautiful
game. Brazil /0 were a team of superstars dedicated not
just to a cause but an ideal, a dream of what football
should be.”

Real-World Languages

* These languages, of which there are about
250, are often mutually intelligible and
constitute a major branch of the Niger-Congo
languages. They are spoken largely in central,
east and southern Africa. Popular examples
include Swahili, with 80 million speakers,
Shona, with 11 million, and Zulu, with 10
million. They commonly use words such as
muntu or mutu for “person”. Words such as
bongos, chimpanzee, gumbo, jumbo, mambo,
rumba and safari come from these languages.

26

Psychology: Deductive Reasoning

* You are shown a set of four cards placed on a table, each
of which has a number on one side and a colored patch
on the other side. The visible faces of the cards show 3,
8, red and brown. Which card(s) must you turn over to
test the truth of the proposition that if a card shows an
even number on one face, then its opposite face is red?

Psychology: Unrelated

 Who do you investigate in a bar to test the
truth of the proposition “if you have alcohol
you must be over 18”7

Psychology: Wason Selection Task

* Most participants have trouble solving the
problem in general but can solve it easily
when it involves policing a social rule

* |n the original study, < 10% of subjects found the
correct solution (follow-on studies, < 25%)

 However, 75% get the drinking age problem correct

* Or a similar but unfamiliar “benefit accepted” vs.
“cost not paid” social context

* (e.g., “to eat cassava root you must have a tattoo”)

[Wason, P. C. (1968). "Reasoning about a rule".
Quarterly Journal of Experimental Psychology. 20 (3): 273—-281.]

Psychology: Social Contract

* “We do not have a general-purpose ability to
detect violations of conditional rules. But
human reasoning is well-designed for detecting
violations of conditional rules when these can
be interpreted as cheating on a social
contract.”

e (e.g., must pay cost, may claim benefit)

* Implications for SE: Myriad for defect
detection, groupwork, etc.

[Cosmides, L.; Tooby, J. (1992). "Cognitive Adaptions for Social Exchange". 163-228.]

30

Delta Debugging Algorithm

DD(P, {c,, ..., C }) =

if n =1 then return {c }
let P1={c,..c }
letP2={c .., C}

if Interesting(PuP1) = Yes then return DD(P,P1)
if Interesting(PuP2) = Yes then return DD(P,P2)
else return DD(PuP2, P1) v DD(PuP1, P2)

31

Delta Debugging Algorithm
DD(R{C, wy €l =

P helps us handle interference.
P is a subset of changes we are

]f n = 1 then return {C1} including when calling Interesting().

P is passed in to recursive DD calls.

let P1 = {C1, Cn/z} P starts as { }.
letP2={c .., C}

if Interesting(PuP1) = Yes then return DD(P,P1)
if Interesting(PuP2) = Yes then return DD(P,P2)
else return DD(PuP2, P1) v DD(PuP1, P2)

32

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

Example: Use DD to find the smallest
interesting subset of {1, ..., 8}

33

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 34
56 7 8

f

First Step:
Partition C = {1, ..., 8} into
P1={1, ..., 4} and P2 = {5, ..., 8}

34

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 34 772
56 7 8

E

Second Step:
Test P1 and P2

35

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 34 No
56 7 8

E

Second Step:
Test P1 and P2

36

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1
of P1 such that
Interesting(D1 + P2)

37

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No

T

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

38

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 34 No

5 6 7 8 No
T P=P2:={5,6,7, 8
We'll include P when

\ checking Interesting

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

39

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No
12 56 7 8 27?7

T

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

40

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No
12 5 6 7 8 No

T

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

41

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No
12 5 6 7 8 No

34567381

T

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

42

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

1234

12 34

12
3 4

9 6 7 8 Interesting?

No

5 6 7 8 No
5 6 7 8 No
5 6 7 8 Yes

T

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

43

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No
12 5 6 7 8 No

345 6 7 8 Yes
3 5 6 7 8 77

\

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

44

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
5 6 7 8 No
12 5 6 7 8 No

345 6 7 8 Yes
3 5 6 7 8 Yes

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
D1 = {3}

5 6 7 8 No

12 5 6 7 8 No

345 6 7 8 Yes
3 5 6 7 8 Yes

S~

46

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

1234

5 6 78

Interesting?

12 34

12
3 4
3
12 34

56 7 8
56 78
56 7 8
56 78
5 6

No
No
No
Yes
Yes
Yes

D1 = {3}

Now find
D2!

P=P1={1, 2, 3, 4}
We'll include P when
checking Interesting

47

Example: {3,6} Is Smallest

Interesting Subset of {1, ..., 8}

1234

5 6 78

Interesting?

12 34

12
3 4
3
12 34
12 34

56 7 8
56 78
56 7 8
56 78
5 6
5

No
No
No
Yes
Yes

Yes
277

D1 = {3}

48

Example: {3,6} Is Smallest

Interesting Subset of {1, ..., 8}

1234

5 6 78

Interesting?

12 34

12
3 4
3
12 34
12 34

56 7 8
56 78
56 7 8
56 78
5 6
5

No
No
No
Yes
Yes
Yes

No

D1 = {3}

49

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
D1 = {3}

5 6 7 8 No

12 5 6 7 8 No

34567 8 Yes
3 567 8 Yes
23456 Yes
2 345 No
1234 6 72?

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No
D1 = {3}

5 6 7 8 No

12 5 6 7 8 No

34567 8 Yes
3 567 8 Yes
23456 Yes
2 345 No
1234 6 Yes

Example: {3,6} Is Smallest

Interesting Subset of {1, ..., 8}

1 2

3 4

5 6 78

Interesting?

1 2

12

3 4

3 4

2 3 4
2 3 4

3 4

56 7 8
56 78
56 7 8
56 78
5 6

>

6

o D1 = {3}

No D2 = {6}
No

Yes

Yes

Ye

No

Yes 52

Example: {3,6} Is Smallest
Interesting Subset of {1, ..., 8}

12345 6 7 8 Interesting?

12 3 4 No D1 = {3)
56 78 No D2 = {6}
12 5 6 7 8 No
34567 8 Yes Final Answer:
3 5678 Yes 13, 6}
12 3456 Yes
12 345 No

1 2 3 4 6 Yes 53

Algorithmic Complexity

* |f a single change induces the failure
e DD is logarithmic: 2 * log |C]|
 Why?
e Otherwise, DD is linear
* Assuming constant time per Interesting() check
* |s this realistic? (cf. “AOTBE”)
* |f Interesting can return Unknown
e DD is quadratic: |C|* + 3|C|

 |f all tests are Unknown except last one (unlikely)

Questioning Assumptions

(assumptions are restated here for convenience)

All three key assumptions are questionable
Interesting is Monotonic

* |Interesting(X) — Interesting(X u {c})

Interesting is Unambiguous

* |Interesting(X) & Interesting(Y) — Interesting(X nY)
Interesting is Consistent

* Interesting(X) = Yes or Interesting(X) = No

e (Some formulations: Interesting(X) = Unknown)

55

Ambiguity

(a 481 student found this counterexample!)

. U s T o o . I
by-ene-subset{and-notindependently-by-twe

isioint subsets

 What if the world is ambiguous?

 Then DD (as presented here) may not find an

Interesting subset

* Hint: trace DD on Interesting({2, 8}) = yes,

Interesting({3, 6}) = yes,
intersect {3, 6}) = no.

DD returns {2,6} :-(.

out Interesting({2, 8}

Software Update

AVAILAB

LE_NO_RESTART_MESSAGE

UPDATES_
-f'% UPDATES_AVAILABLE_NO_RESTART_INFORMATIVE
- Note: Use of this software is subject to the original Software License
Agresment{s) that accomp e being updated. A list of
A Sl Az ma f 5

(" SHOW_DETAILS_TITLE)

(" NOT_NOW_TITLE) (INSTALL_TITLE)

Not Monotonic

) e 1Y e
Montenic: I Xrisinteresting, any superset-obx

« What if the world is not monotonic?

* For example, Interesting({1,2}) = Yes but
Interesting({1,2,3,4}) = No

 Then DD will find an Interesting subset

* Thought questions: Will it be minimal? How long
will it take?

57

Inconsistency

PINN .

« What if the world is not consistent?

 Example: we are minimizing changes to a
program to find patches that makes it crash

e Some subsets may not build or run!
* Integration Failure: a change may depend on earlier changes

» Construction failure: some subsets may yield programs with
parse errors or type checking errors (cf. HW3!)

» Execution failure: program executes strangely or does not
terminate, test outcome is unresolved

58

Spotting Assumptions (1/2)

(special thanks to Daniel Hoekwater!)

Let Interesting(X) = “summing all integers in X yields 0”

« Soi{b, 4, 3,2, -2, -3, -4, -5}and { -5, 2, 3} are interesting,
but { -2, 2, 5} is not.

Run DD on {5, 4, 3, 2, -2, -3, -4, -5}
DD might return M ={5, -2, -3}

It looks promising: M is interesting, and some smaller
subsets like { 3, -2 } are non-Interesting

Note, however, that {2, -2} is a smaller subset of M that is
interesting!

e This is because Interesting is not Monotonic and is not

Unambiguous. (Exam practice: Why?)
59

Spotting Assumptions (2/2)
(special thanks to Daniel Hoekwater!)

Let Interesting(X) = “adding integers in X yields 0”
e So{-2, 2, 5}is interesting (because of subset {-2,2})

In this case, Interesting is Monotonic but is not Unambiguous
e Exam practice: Why?

Note how a slight change in the definition of Interesting
changes whether it or not it satisfies certain assumptions

 Compare this slide to the previous slide

(Also recall: an empty set cannot be interesting in DD.
That violates the “yesterday, my program worked”
assumption.)

60

Delta Debugging Thread Schedules

* DejaVu tool by IBM, CHESS by Microsoft, etc.

* The thread schedule becomes part of the input

 We can control when the scheduler preempts

one thread

replay >

replay

(&)

61

Differences in Thread Scheduling

e Starting point

------ t1 Y
' e Passing run
---------- N » Failing run
« Differences (for t1)
 T1 occurs in passing
---------- t3 run at time 254
* T1 occurs in failing
run at time 278

62

Differences in Thread Scheduling

 We can build new test cases by mixing the two
schedules to isolate the relevant differences

L
\'4
—_— <—
l/ x 63

Does It Work?

o Test #205 of SPEC JVM98 Java Test Suite

* Multi-threaded raytracer program
* Simple race condition

* Generate random schedules to find a passing
schedule and a failing schedule (to get started)

» Differences between passing and failing
« 3,842,577,240 differences (!)

» Each difference moves a thread switch time by +1
or -1

64

Deltas

DD Isolates One Difference
After 50 Probes (< 30 minutes)

Delta Debugging Log

le+14
cfai] semenma

rs
1e+13 |2

B il:

il.
1e+12
:IE
;Ill“
T
Faem
0 5 10 15 20 25 30 35 40 45 50

Tests executed

65

Pin-Pointing The Failure

* The failure occurs iff thread switch #33 occurs
at yield point 59,772,127 (line 91) instead of
59,772,126 (line 82) —race on which variable?

25
44
45
81
B2
Hd
85
a1
Q2
130
131

132
134
135
733

public class Scene { ...

should be
>“Cﬁﬁcal
Section”

private static int ScenesLoaded = 0;

(more methods. ..)

private

int LoadScene(String filename) |
int 0ldScenesloaded = ScenesLoaded: h
(more initializations. ..)
infile = new DatalnputStream(...);
(more code...)
SceneslLoaded = 0ldScenesLoaded + 1: y
System.out.println("" +

Scenesloaded + " scenes loaded."):;

but is not

66

#define SIZE 20

double mult(double z[]. int n)

[
1

Minimizing Input =

i=i+j+ 1
. z[i] = z[i] = (z[0] + 1.0):
* GCC version 2.95.2 o
return z[n]:
on x86/Linux with |
void copy(double fo[]. double fiom[]. int count)
int n=(count + 7) / 8:

certain | _
optimizations R

= *from++:

case 7: *fot++ = *from++:

crashed on a case 6 $1o++ = *fiome+

case 5: *fot++ = *Ffrom++:

. 4 case 4: *fo++ = *fiom++;

leg] t] mate C case 3: *fo++ = éum——:

case 2: *fo++ = *from++:

prog ram case 1: *fo++ = *from++:
| while (— —n = 0):

return mult(fo. 2):

 Note: GCC crashes, }

N Ot th e p rog ram ! :’rnt main(int arge. char *argv[])

double x[SIZE]. ¥[SIZE]:
double *px = x:

while (px < x 4+ SIZE)
*px++ = (px — x) = (SIZE + 1.0):
return copy(y. x. SIZE):

Delta Debugging to the Rescue

* With 731 probes (< 60 seconds), minimized to:

t(double z[],int n){mt 7,7 for(;;)){i = i + j + 1;z[i] = z[i] =
(z|0] 4+ 0);}return z|n|;}

 GCC has many options

« Run DD again to find which are relevant

—ffloat-store —fno-default-inline —fno-defer-pop

—fforce-mem —fforce-addr —fomit-frame-pointer

—fno-inline —finline-functions —fkeep-inline-functions
—fkeep-static-consts —fno-function-cse —ffast-math

—fstrength-reduce —fthread-jumps —fese-follow-jumps
—fcse-skip-blocks —frerun-cse-after-loop —frerun-loop-opt

—fgcse —fexpensive-optimizations —fschedule-insns
—fschedule-insns2 —ffunction-sections —fdata-sections

—fcaller-saves —funroll-loops —funroll-all-loops 68

—fmove-all-movables —frediuce-all-oivs —fno-neeprhole

Go Try It Out: Eclipse Integration
Automated Debugging in Eclipse

We realized two Eclipse plug-ins that automatically determine why your program fails:

+ |n the input and
* in the program history.

These plug-ins integrate with JUnit tests: As soon as a test fails, they automatically determine the
failure cause. You don't even have to press a button—just wait for the diagnosis.

DDinput: Failure-Inducing Input
Find out which part of the input causes your program to fail:

The program fails when the input contains <SELECT=.

This plug-in applies Delta Debugging to program inputs, as described in Simplifying and Isolating
Failure-Inducing Input.

Available for download.

DDchange: Failure-Inducing Changes

Find out which change causes your program to fail:
The change in Line 45 makes the program fail.

This plug-in applies Delta Debugging to program changes, as described in Yesterday, my program
worked. Today, it does not. Why?.

Available for download.

Questions?
 Work on HW4!

’ g ' Sasha Laundy

The best debugger ever made is a
good night's sleep.

W:£1ﬂﬂﬂ.cnmiﬂﬂvfh|ﬂfﬂ 2 7T 1t h » i

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Q: Books (726 / 842)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

