Fault Localization
and Profiling

wWww.phdcomics.com

The Story So Far ...

* Quality assurance is critical to software
engineering.

« Static and dynamic QA approaches are common

» Defect reports are tracked from creation to
resolution

* Some are assigned to developers for resolution

 How do we know which part of a program to
change to repair a bug or improve a program?

One-Slide Summary

* A debugger helps to detect the source of a
program error by single-stepping through the
program and inspecting variable values.

* Fault localization is the task of identifying
lines implicated in a bug. Humans are better
at localizing some types of bugs than others.

* Automatic tools can help with the dynamic
analyses of fault localization and profiling.

« Care must be taken when evaluating such tools
(and their assumptions) for real-world use.

Outline

» Software Scales
 Manual Debuggers
 Human Study Results

©
Live 31 was vot a Bug.

* Automatic Tools W Pagaramily
* Profilers
* Are Tools Helping?

Microsoft: 70 percent of all security bugs are memory safety issues
Percentage of memory safety issues has been hovering at 70 percent for the past 12 years.

% By Catalin Cimpanu for Zero Day | February 11, 2019 -- 15:48 GMT (07:48 PST) | Topic: Security
.

We closely study the root cause trends of vulnerabilities & search for patterns

% of memory safety vs. non-memory safety CVEs by patch year

% of OVEs

image: Mart Miller

Around 70 percent of all the vulnerabilities in Microsoft products addressed through a security update each year are memory

safety issues; a Microsoft engineer revealed last week at a security conference.

Quick Quiz:
ich image is Al generated?

- T

= = e

Bucket-Wheel Excavators

* Heaviest land vehicles

 ~14,000 tons
e (avg USA car: 2 tons)

* Mobile strip-mining

v, M RIPIN TL N LI\ AN

Modern Software Is Huge

» “Space is big. Really big. You just won't believe
how vastly, hugely, mind-bogglingly big it is. |
mean, you may think it's a long way down the
road to the chemist, but that's just peanuts to
space.” - Douglas Adams

e Who cares?

* Techniques developed based on smaller code bases
simply do not apply or scale to larger code bases

e Techniques from the 1980s or your habits from classes

Example Programs: < 1TMLOC

libpng: 85,000 jfreechart: 300,000

—— hundred 0 | 9 2 4

thousand

simple iPhone game app
Unix vll_.pl
Win32/5imile virus

average iPhone app

Pacemaker

Photoshop v 1 D

Cammo
eb b

Quake 3 engme

Video pame system

Space Shuttle MACHINE

amillion lines of code

Example Programs:

ll_al_'"a".'
b b P

5-10 MLOC

HD DVD Player on XBox

{ just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel E';S;D

Lt

Google Chrome
latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only
Windows NT 3.5

1993

Firefox

latest version

1

10

U=
=Fnl|
1~ |~ 1%
'Illlllllm W —

10

Example Programs: 25 - 50 MLOC

U

Windows 2000
L.

Symbian

mobie operating system ——- 180%

Microsoft Office for Mac
2008

Windows 7
2009

12398

Windows XP
2001

50—

| (RPN (i (R (IR o B | - (N _____

11

Example Programs: 50 - 100 MLOC

g0

Large Hadron Collider

total code

Windows Vista
2007

Microsott Visual Studio 2012

Facebook
(including backend code)

US Army Future Combat System

fast battlefield network system (aborted)

Debian 5.0 codebase

l"rc—e, open-source operating system

Mac OS X “Tiger”
v10.4

50

Car software

12

Example Programs: 0.1 - 2.0BLOC

1 10 20 30 40 B0 70 20 20
Car software
average modern high-end car
M
Total DMNA basepairs in genome

OOOOO

APPARENT size of
healthcare.gov website
reported fgure, 2013

Google Is 2 Billion Lines of Code—And It's All in One Place

SARE GOOGLE IS 2 BILLION LINES OF
g CODE—ANDIT'S ALL IN ONE
- PIACE ’

Humans Are Poor At
Comprehending Large Scales
* libpng 85 000
« google 2 000 000 000

* Suppose there is a bug somewhere, anywhere,
in libpng

* Suppose you can find it in a minute!

* At that same rate, it will take you more than
two weeks to find it in all of google

* A one-hour bug on libpng is three years on google
* Unless we do things differently ...

14

Fault Localization

* Fault localization is the task of identifying
source code regions implicated in a bug

* “This regression test is failing. Which lines should
we change to fix things?”

* Answer is not unique: there are often many
places to fix a big

« Example: check for null at caller or callee?

* Debugging includes fault localization

* Answer may take the form of a list (e.g., of
lines) ranked by suspiciousness

15

What is a Debugger?

“A software tool that is used to detect the
source of program or script errors, by
performing step-by-step execution of
application code and viewing the content of

code variables.”
- Microsoft Developer Network

Days before OpenAL Days after OpenAL

D ' P coding ChaTGPTg eeeeee

Dev lper'dbuggng Dvelperdbuggs
- 6 hours 2

@@@@

Debuggers

» Can operate on source code or assembly code
* Inspect the values of registers, memory

» Key Features (we’ll explain all of them)
» Attach to process
* Single-stepping
* Breakpoints
» Conditional Breakpoints
* Watchpoints

Signals

* Asignal is an asynchronous notification sent to a

process about an event:

e User pressed Ctrl-C (or did kill %pid)
* Or asked the Windows Task Manager to terminate it

» Exceptions (divide by zero, null pointer)

 From the OS (SIGPIPE)

* You can install a signal handler - a procedure

that will be executed when the signal occurs.

» Signal handlers are vulnerable to
race conditions. Why?

2 | Am Devloper
! @iamdevloper

Roses are red

And so are you

Violets are blue
Asynchronous operations

are great
15:53 - 14 Feb 19 -

1,993 Retweets 6,207 Likes

#include <stdio.h>
#include <signal.h>

int global < 11 Signal Example

int my_handler() {

printf("In signal handler, global = %d\n", e What does this
global); St ?

—— program print?

} » With your team ...

void main() {
int * pointer = NULL;

signal(SIGSEGV, my_handler) ;
global = 33;

* pointer = 0;

global = 55;

printf("Outside, global = %d\n", global);
3

Attaching A Debugger

* Requires operating system support

* There is a special system call that allows one
process to act as a debugger for a target
 What are the security concerns?

* Once this is done, the debugger can basically
“catch signals” delivered to the target

e This isn’t exactly what happens, but it’s a good
explanation ...

20

Building a Debugger

#include <stdio.h>
#include <signal.h>

 We can then get

#define BREAKPOINT *(0)=0 breakpoints and
int global = 11; interactive
int debugger_signal_handler () { debugging

J debugger code goss herel * Attach to target
; Set up signal
void main() { handler

signal(SIGSEGV, debugger_signal_handler) ; . .
« Add in exception-

causing instructions
* |Inspect globals, etc.

global = 33;
BREAKPOINT;

global = 55;

printf("Outside, global = %d\n", global);

21

Advanced Breakpoints

» Optimization: hardware breakpoints
» Special register: if PC value = HBP register value, signal an

exception
* Faster than software, works on ROMs, only limited number of

breakpoints, etc.
* Feature: conditional breakpoint: “break at instruction X

if some_variable = some_value”
* As before, but signal handler checks to see if

some_variable = some_value
* |If so, present interactive debugging prompt
 If not, return to program immediately

e |s this fast or slow?

22

Single-Stepping

* Debuggers also allow you to advance through
code one instruction at a time

* To implement this, put a breakpoint at the first
instruction (= at program start)

* The “single step” or “next” interactive command
is equal to:
e Put a breakpoint at the next instruction

e Resume execution
* (No, really.)

23

Watchpoints

* You want to know when a variable changes

* A watchpoint is like a breakpoint, but it stops
execution after any instruction changes the value
at location L

* How could we implement this? (With your
team ...)

DID YOU WATCH THE MOVIE DID YOU WATCH THE DID YOU WATCH ANY
ON TV LAST NIGHT ?j_/ GAME THEN ? TV LAST NIGHT ? THEN WHAT DID
N NOU WATCH?
// NOPE.
e £
\ £ ook TR,
~ Hr °°3 g 4

- ”/,.

Watchpoint Implementation

» Software Watchpoints
e Put a breakpoint at every instruction (ouch!)
* Check the current value of L against a stored value
 |f different, give interactive debugging prompt
* |f not, set next breakpoint and continue (single-step)

« Hardware Watchpoints

e Special register holds L: if the value at address L ever
changes, the CPU raises an exception

25

Q: Movies (284 / 842)

 Name the movie described below and
either the general scientific theory
that Malcolm invokes or the ambushing
cold-blooded killers. In this Oscar-

winning 1993 Spielberg/Crichton
extravaganza involving cloning and
theme parks, Dr. lan Malcolm correctly
predicts that things will not turn out
well.

Real-World Languages

e This Northern European language boasts 5
million speakers (including Linus Torvalds).
Its original writing system was devised in the
16" century from Swedish, German and

Latin. Its eight vowels have powerful lexical
and grammatical roles; doubled vowels do
not become dipthongs.

* Hyvaa paivaa. Mita kuuluu?

Video Game History

(nd2ga memorial)

o This 1979-1980 Atari 2600 video game introduced the first widely-known
Easter egg. At the time, Atari did not allow game desighers or programmers
to credit themselves in any way (games were marketed and branded as
produced by Atari overall). Warren Robinett included a secret room crediting
himself as the designer. When a 15-year-old from Utah discovered it and
wrote to Atari for an explanation, they tasked Brad Stewart with fixing it,
but he said he would only change it to “Fixed by Brad Stewart”. Atari

decided to leave it in game, dubbing such hidden features Easter eggs and
saying they would include more in the future. The game itself involves
carrying items around three castles to defeat three dragons.

mT

PE Lm-+p
E - .mr

* o FmTT
mT-ooq. .

Psychology: Reactions

* You are invited to participate in a group
discussion of “personal problems”. Because of
the sensitive nature of the discussion, it takes
place over an intercom. During the discussion,
you hear:

e “l-er-um-I think I-I need-er-if-if could-er-er-somebody er-er-er-er-er-
er-er give me a little-er-give me a little help here because-er-l-er-I’m-
er-erh-h-having a-a-a real problem-er-right now and I|-er-if somebody
could help me out it would-it would-er-er s-s-sure be-sure be good . . .
because-there-er-er-a cause l-er-l1-uh-I’ve got a-a one of the-er-sei er-
er-things coming on and-and-and | could really-er-use some help so if
somebody would-er-give me a little h-help-uh-er-er-er-er-er c-could
somebody-er-er-help-er-uh-uh-uh (choking sounds). . . . I’'m gonna die-

er-er-I’'m . . . gonna die-er-help-er-er-seizure-er-[chokes, then quiet].”
29

Psychology: Reactions

 The more
people in the
discussion, the
longer it takes
anyone to take
action

* Gender (of you
or others) had
no effect

100

a3}
O

Percentage Helping
L
o

ko
]

2 pers.

6 pers.

J'

=

sﬂf’f

40

80

120 160 200 240 280

Seconds from Beginning of Fit

Bystander Effect

* “It is our impression that nonintervening
subjects not decided not to respond. Rather
they were still in a state of indecision and
conflict concerning whether to respond or not.
The emotional behavior of these
nonresponding subjects was a sign of their
continuing conflict ...”

* Motivated by 1964 attack on Kitty Genovese in
residential New York: rape and murder took
30+ minutes and had 38(?) witnesses —no one
came out to help

31

Bystander Effect

[Darley and Latane. Bystander Intervention in
Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968. |

* Implications for SE: Team sizing
considerations. Who will volunteer to be
assigned this bug? A similar topic
came up in our lecture on triage
for distributed organizations.

Human Fault Localization

* OK, so humans have debuggers
* Are humans any good at debugging?
* Not all bugs are equally easy to find

* Not all programs are equally easy to debug

WHERE AN ARMY NO, REALLYT
OF HOSTILE ALIENS YEAH, | DIDN'T
| HIT THIS BUG IS NOW GATHERING - KNOW C# COULD

THAT RIPPED TO SWEEP THROUGH 4edl=1 I\ oo THAT EITHER.

OPEN A PORTAL
AND TAKE OVER
TO A PARALLEL OUR. PLANET.

UNIVERSE..,

Eug Bash by Hans Bjordahl http: /S Swwn.bugbash. nats

Find The Bug

(team ...?7)

* Over 53% of
participants
(seniors) could
find the bug in
about 3 minutes

* Note:
conditional
branches,
recursive calls,
rich comments,
variable names

19

/***

Performs the initial call to moveTower

to solve the puzzle. Moves the disks

from tower 1 to tower 3 using tower 2.
**/
public void solve () {

moveTower (totalDisks, 1, 3, 2);

}

/***
Moves the specified number of disks
from one tower to another by moving a
subtower of n-1 disks out of the way,
moving one disk, then moving the
subtower back. Base case of 1 disk.
**/
private void moveTower (int numDisks,
int start, int end, int temp)
if (numDisks == 1)
moveTower (numDisks-1, temp, end, start);
else {
moveTower (numDisks-1, start, temp, end);
moveOneDisk (start, end);
moveTower (numDisks-1l, temp, end, start);

}
}

/***
Prints instructions to move one disk
from the specified start tower to the
specified end tower.
***/
private void moveOneDisk (int start, int end)
System.out .println ("Move one disk from "
+ start + " to " + end);

Find The Bug 2

* Only 33% could
locate the bug

* Note: shorter,
simpler
identifiers,
simpler control
flow, not as
abstract

) 0~ O P

|—i

/** Move a single disk from src to dest. */
public static wvoid hanoil (int srec, int dest) {
System.out.println(src + " => " + dest);
}
/*%* Move two disks from src to dest,
making use of a spare peg. */
public static void hanoi2 (int src,
int dest, int spare) {
hanoil (src, dest);
System.out.println(src + " => " + dest);
hanoil (spare, dest);
}
/** Move three disks from src to dest,
making use of a spare peg. */
public static wvoid hanoi3 (int src,
int dest, int spare) {
hanoil (src, spare, dest);
System.out .println(src + " => " + dest);
hanoi2 (spare, dest, src);

}

35

Human Study

» Participants (n=65, half with >4 years of
experience) were shown snippets of textbook

« Defects seeded based on 100 consecutive bug fixes
from the Mozilla bug repository

* Double experimental control

* Quicksort in Textbook A vs. Textbook B has the
same complexity (differs only in style)

* Bubblesort in Textbook A vs. AVL Tree in Textbook A
differ in complexity (have same presentation style)

[Z. Fry et al.: AHuman Study of Fault Localization Accuracy.

International Conference on Software Maintenance (ICSM) 2010] 36

What Do You Think?

* Rank these: which of these bugs is easiest for
humans to find?

Extra Assignment
Missing Statement
Extra Conditional
Calling Wrong Method
Extra Statement

s LRALLWLL WOl LGSO, LLY

sole aim is the advancement
of transportation safety. It
does not assign fault or de-
termine eivil or criminal li-
ability.

So far, they have deter-
mined that the crash oc-
curred when the plane
struck the ground, but
they're unsure what speed
the aircraft was going at the

09
08
0.7
06
05 T I
04

-] .s
. 8

01

Fig. 3. Human fault localization accuracy as a function of defect type.

Tool Support for Fault Localization

* Aspectrum-based fault localization tool uses
a dynamic analysis to rank suspicious
statements implicated in a fault by comparing
the statements covered on failing tests to the
statements covered on passing tests

 Basic idea:

* |[nstrument the program for coverage (put print
statements everywhere)

* Run separately on normal inputs and bug-inducing
inputs

 Compute the set difference!

39

Fault Localization Example

* Consider this simple buggy program:

-

int mid(int x, 1nt y, 1nt z) {
int m;

m = Z,
-

(y’< z) 1
(X <y)m=y,;
(X < z)m=y; /*¥ BUG: m=Xx; */

return m;

1
J

Coverage-Based Fault Localization

else if (x>z)

m = X;

ewnm; [——

Pass Pass Pass Pass Pass Fail
41

Insight: Print-Statement Debugging

* |f you do not execute X but you do observe the
bug, X cannot be related to that bug

* |If Y is primarily executed when you observe
the bug, it is more likely to be implicated than
Z which is primarily executed when you do not
observe the bug

» Suspiciousness Ranking
susp(s) = fail(s) / total_fail
fail(s)/total_fail + pass(s)/total_pass

[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.] 42

Fault Localization Ranking

Statement 3,35 123 321 321 555 213 susp(s)
int m; o o5
m=z SRR 0.5
fiy<z S s
- I

if (x<vy) 0.63
m=y;

L 0
else if (x<z) [N o
f (x> y) -
m=y; .
else if (x>2)]
m = X;

eurnm; | N o

Pass Pass Pass Pass Pass Fail

o

(= (=

-

43

Profiling

» A profiler is a performance analysis tool that
measures the frequency and duration of function
calls as a program runs.

» Aflat profile computes the average call times for
functions but does not break times down based
on context

* A call-graph profile computes call times for
functions and also the call-chains involved

44

Event-Based Profiling

o Interpreted languages provide special hooks for
profiling
o Java: JVM-Profile Interface, JVM API
* Python: sys.set_profile() module

* Ruby: profile.rb, etc.

* You register a function that will get called
whenever the target program calls a method,

loads a class, allocates an object, etc.
o cf. “signal handler”

JVM Profiling Interface

* VM notifies profiler agent of various events (heap
allocation, thread start, method invocation, etc.)

* Profiler agent issues control commands to the
JVM and sends reports to developers (GUI, etc.)

“We applied the JVM Profiler to one of
Uber’s biggest Spark applications (which
uses 1,000-plus executors), and in the
process, reduced the memory allocation
for each executor by 2GB, going from
7GB to 5GB. For this Spark application
alone, we saved 2TB of memory. “

Percentage of Queries

0.27

Bo Yang et al., Uber Engineering Blog:
“JVM Profiler: An Open Source Tool for

Tracing Distributed JVM Applications at
Figure 3. Our JVM Profiler identified that 70 percent of applications were using less

”»
than 80 percent of their allocated memory. Scale

20%-40% 40%-60% 60%-80% >=80%

% of allocated memory used (max_mem / Xmx)

46

Statistical Profiling

* You can arrange for the operating system to send
you a signal (just like before) every X seconds

(see alarm(2))

* In the signal handler you determine the value of
the target program counter
* And append it to a growing list file
e This is sampling

* Later, you use debug information from the
compiler to map the PC values to procedure

Names
e Sum up to get amount of time in each procedure

47

Sampling Analysis

* Advantages

* Simple and cheap - the instrumentation is unlikely to
disturb the program too much

* No big slowdown

* Disadvantages

 Can completely miss periodic behavior (e.g., you
sample every k seconds but do a network send at
times 0.5 + nk seconds)

- High error rate: if a value is n times the sampling
period, the expected error in it is sqrt(n) sampling
periods

e Read the gprof paper for exam #2

48

Real-World Tool Utility

 Human study of 34 graduate students

* Given Tarantula (as a friendly plugin for
Eclipse) and asked to complete two debugging
tasks

» Tetris: square block rotation bug
 NanoXML: parsing library exception

* Hypotheses:

* Tools will help us debug faster

* Tools help more on harder problems

[Parnin and Orso. Are Automated Debugging Techniques Actually Helping Programmers? ISSTA '11.] 49

Results

* Experts Are Faster When Using Tools

e Over all participants, tools did not help

* Top-third of participants went from 14:28 to 8:51
with tool support (for Tetris, p < 0.05)

» Tools Did Not Help With Harder Tasks

* Changes In Rank Did Not Matter
e / — 35in Tetris, 83 — 16 in NanoXML

* Why is this so crucial here?

50

Explanations

e “Based on this data, we have determined that
programmers do not visit each statement in a
linear fashion.”

* “If the faulty nature of a statement were
apparent to the developers by just looking at
it, tool usage should stop as soon as they
get to that statement in the list.”

« “participants, on average, spent another ten minutes using
the tool after they first examined the faulty statement.
That is, participants spent (or wasted) on average 61% of

their time continuing to inspect statements with the tool
after they had already encountered the fault.” "

Implications

* You are a Software Engineering manager

* Making a process decision: do we purchase,
train on, and deploy Tarantula

« Tarantula claims: this tool will correctly rank
buggy statements near the top of the list

e This is almost a red herring!

* You must examine the “end-to-end” performance

 So fault localization tools are worthless?

52

Nuanced Example

* Suppose you have three devs: A, B and C
e Expert, Medium, Novice
* Tarantula makes A, the expert, 39% faster

* But makes everything 13% slower (training,
overhead, whatever)

 |f everything is equal, net gain = 0 (as in study)
* But suppose A is 25x faster than C (later lec.)

e A=25, B=13, C=1 — in this world your team,
overall, is 8.7% faster with Tarantula

53

Questions?

. HW4

 Running cppcheck on the 1ighttpd web server
may take hours

* This may be a good opportunity learn about a
utility like Unix screen: you ssh in, run screen,
start the analysis, “detach”, close the connection,
screen prevents you from losing your work, you ssh
in later and re-attach and get your results

e https://linuxize.com/post/how-to-use-linux-screen/

54

https://linuxize.com/post/how-to-use-linux-screen/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	What is a Debugger?
	Machine-Language Debugger
	Signals
	Signal Example
	Attaching A Debugger
	Building a Debugger
	Advanced Breakpoints
	Single-Stepping
	Watchpoints
	Watchpoint Implementation
	Q: Movies (284 / 842)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Profiling
	Event-Based Profiling
	JVM Profiling Interface
	Statistical Profiling
	Sampling Analysis
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

