
Fault LocalizationFault Localization
and Profilingand Profiling

2

The Story So Far …
● Quality assurance is critical to software

engineering.
● Static and dynamic QA approaches are common

● Defect reports are tracked from creation to
resolution

● Some are assigned to developers for resolution
● How do we know which part of a program to

change to repair a bug or improve a program?

3

One-Slide Summary
● A debugger helps to detect the source of a

program error by single-stepping through the
program and inspecting variable values.

● Fault localization is the task of identifying
lines implicated in a bug. Humans are better
at localizing some types of bugs than others.

● Automatic tools can help with the dynamic
analyses of fault localization and profiling.

● Care must be taken when evaluating such tools
(and their assumptions) for real-world use.

4

Outline

● Software Scales
● Manual Debuggers
● Human Study Results
● Automatic Tools
● Profilers
● Are Tools Helping?

5

6

Quick Quiz:
Which image is AI generated?

7

Bucket-Wheel Excavators

● Heaviest land vehicles
● ~14,000 tons

● (avg USA car: 2 tons)

● Mobile strip-mining

8

Modern Software Is Huge

● “Space is big. Really big. You just won't believe
how vastly, hugely, mind-bogglingly big it is. I
mean, you may think it's a long way down the
road to the chemist, but that's just peanuts to
space.” – Douglas Adams

● Who cares?
● Techniques developed based on smaller code bases

simply do not apply or scale to larger code bases
● Techniques from the 1980s or your habits from classes

9

Example Programs: < 1MLOC

libpng: 85,000 jfreechart: 300,000

10

Example Programs: 5-10 MLOC

11

Example Programs: 25 – 50 MLOC

12

Example Programs: 50 – 100 MLOC

13

Example Programs: 0.1 – 2.0BLOC

14

Humans Are Poor At
Comprehending Large Scales

● libpng 85 000
● google 2 000 000 000
● Suppose there is a bug somewhere, anywhere,

in libpng
● Suppose you can find it in a minute!
● At that same rate, it will take you more than

two weeks to find it in all of google
● A one-hour bug on libpng is three years on google
● Unless we do things differently …

15

Fault Localization

● Fault localization is the task of identifying
source code regions implicated in a bug
● “This regression test is failing. Which lines should

we change to fix things?”

● Answer is not unique: there are often many
places to fix a big
● Example: check for null at caller or callee?

● Debugging includes fault localization
● Answer may take the form of a list (e.g., of

lines) ranked by suspiciousness

16

What is a Debugger?
“A software tool that is used to detect the
source of program or script errors, by
performing step-by-step execution of
application code and viewing the content of
code variables.”
- Microsoft Developer Network

17

Debuggers

● Can operate on source code or assembly code
● Inspect the values of registers, memory
● Key Features (we’ll explain all of them)

● Attach to process
● Single-stepping
● Breakpoints
● Conditional Breakpoints
● Watchpoints

18

Signals
● A signal is an asynchronous notification sent to a

process about an event:
● User pressed Ctrl-C (or did kill %pid)

● Or asked the Windows Task Manager to terminate it

● Exceptions (divide by zero, null pointer)
● From the OS (SIGPIPE)

● You can install a signal handler – a procedure
that will be executed when the signal occurs.
● Signal handlers are vulnerable to

race conditions. Why?

19

Signal Example
#include <stdio.h>
#include <signal.h>

int global = 11;

int my_handler() {
 printf("In signal handler, global = %d\n",

global);
 exit(1);
}

void main() {
 int * pointer = NULL;

 signal(SIGSEGV, my_handler) ;

 global = 33;

 * pointer = 0;

 global = 55;

 printf("Outside, global = %d\n", global);
}

#include <stdio.h>
#include <signal.h>

int global = 11;

int my_handler() {
 printf("In signal handler, global = %d\n",

global);
 exit(1);
}

void main() {
 int * pointer = NULL;

 signal(SIGSEGV, my_handler) ;

 global = 33;

 * pointer = 0;

 global = 55;

 printf("Outside, global = %d\n", global);
}

● What does this
program print?

● With your team ...

20

Attaching A Debugger

● Requires operating system support
● There is a special system call that allows one

process to act as a debugger for a target
● What are the security concerns?

● Once this is done, the debugger can basically
“catch signals” delivered to the target
● This isn’t exactly what happens, but it’s a good

explanation …

21

Building a Debugger
#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}

void main() {
 signal(SIGSEGV, debugger_signal_handler) ;

 global = 33;

 BREAKPOINT;

 global = 55;

 printf("Outside, global = %d\n", global);
}

#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}

void main() {
 signal(SIGSEGV, debugger_signal_handler) ;

 global = 33;

 BREAKPOINT;

 global = 55;

 printf("Outside, global = %d\n", global);
}

● We can then get
breakpoints and
interactive
debugging
● Attach to target
● Set up signal

handler
● Add in exception-

causing instructions
● Inspect globals, etc.

22

Advanced Breakpoints
● Optimization: hardware breakpoints

● Special register: if PC value = HBP register value, signal an
exception

● Faster than software, works on ROMs, only limited number of
breakpoints, etc.

● Feature: conditional breakpoint: “break at instruction X
if some_variable = some_value”

● As before, but signal handler checks to see if
some_variable = some_value

● If so, present interactive debugging prompt
● If not, return to program immediately
● Is this fast or slow?

23

Single-Stepping

● Debuggers also allow you to advance through
code one instruction at a time

● To implement this, put a breakpoint at the first
instruction (= at program start)

● The “single step” or “next” interactive command
is equal to:
● Put a breakpoint at the next instruction
● Resume execution
● (No, really.)

Watchpoints
● You want to know when a variable changes
● A watchpoint is like a breakpoint, but it stops

execution after any instruction changes the value
at location L

● How could we implement this? (With your
team ...)

25

Watchpoint Implementation

• Software Watchpoints
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

• Hardware Watchpoints
● Special register holds L: if the value at address L ever

changes, the CPU raises an exception

Q: Movies (284 / 842)

● Name the movie described below and
either the general scientific theory
that Malcolm invokes or the ambushing
cold-blooded killers. In this Oscar-
winning 1993 Spielberg/Crichton
extravaganza involving cloning and
theme parks, Dr. Ian Malcolm correctly
predicts that things will not turn out
well.

Real-World Languages
• This Northern European language boasts 5

million speakers (including Linus Torvalds).
Its original writing system was devised in the
16th century from Swedish, German and
Latin. Its eight vowels have powerful lexical
and grammatical roles; doubled vowels do
not become dipthongs.

● Hyvää päivää. Mitä kuuluu?

Video Game History
(nd2ga memorial)

• This 1979-1980 Atari 2600 video game introduced the first widely-known
Easter egg. At the time, Atari did not allow game designers or programmers
to credit themselves in any way (games were marketed and branded as
produced by Atari overall). Warren Robinett included a secret room crediting
himself as the designer. When a 15-year-old from Utah discovered it and
wrote to Atari for an explanation, they tasked Brad Stewart with fixing it,
but he said he would only change it to “Fixed by Brad Stewart”. Atari
decided to leave it in game, dubbing such hidden features Easter eggs and
saying they would include more in the future. The game itself involves
carrying items around three castles to defeat three dragons.

29

Psychology: Reactions

● You are invited to participate in a group
discussion of “personal problems”. Because of
the sensitive nature of the discussion, it takes
place over an intercom. During the discussion,
you hear:

● “I-er-um-I think I-I need-er-if-if could-er-er-somebody er-er-er-er-er-
er-er give me a little-er-give me a little help here because-er-I-er-I’m-
er-erh-h-having a-a-a real problem-er-right now and I-er-if somebody
could help me out it would-it would-er-er s-s-sure be-sure be good . . .
because-there-er-er-a cause I-er-I-uh-I’ve got a-a one of the-er-sei er-
er-things coming on and-and-and I could really-er-use some help so if
somebody would-er-give me a little h-help-uh-er-er-er-er-er c-could
somebody-er-er-help-er-uh-uh-uh (choking sounds). . . . I’m gonna die-
er-er-I’m . . . gonna die-er-help-er-er-seizure-er-[chokes, then quiet].”

30

Psychology: Reactions

● The more
people in the
discussion, the
longer it takes
anyone to take
action

● Gender (of you
or others) had
no effect

31

Bystander Effect

● “It is our impression that nonintervening
subjects not decided not to respond. Rather
they were still in a state of indecision and
conflict concerning whether to respond or not.
The emotional behavior of these
nonresponding subjects was a sign of their
continuing conflict ...”

● Motivated by 1964 attack on Kitty Genovese in
residential New York: rape and murder took
30+ minutes and had 38(?) witnesses no one →
came out to help

32

Bystander Effect

[Darley and Latane. Bystander Intervention in
Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

● Implications for SE: Team sizing
considerations. Who will volunteer to be
assigned this bug? A similar topic
came up in our lecture on triage
for distributed organizations.

33

Human Fault Localization

● OK, so humans have debuggers
● Are humans any good at debugging?
● Not all bugs are equally easy to find
● Not all programs are equally easy to debug

Find The Bug
(team …?)

● Over 53% of
participants
(seniors) could
find the bug in
about 3 minutes

● Note:
conditional
branches,
recursive calls,
rich comments,
variable names

35

Find The Bug 2

● Only 33% could
locate the bug

● Note: shorter,
simpler
identifiers,
simpler control
flow, not as
abstract

36

Human Study

● Participants (n=65, half with >4 years of
experience) were shown snippets of textbook
● Defects seeded based on 100 consecutive bug fixes

from the Mozilla bug repository

● Double experimental control
● Quicksort in Textbook A vs. Textbook B has the

same complexity (differs only in style)
● Bubblesort in Textbook A vs. AVL Tree in Textbook A

differ in complexity (have same presentation style)
[Z. Fry et al.: A Human Study of Fault Localization Accuracy.
International Conference on Software Maintenance (ICSM) 2010]

37

What Do You Think?

● Rank these: which of these bugs is easiest for
humans to find?
● Extra Assignment
● Missing Statement
● Extra Conditional
● Calling Wrong Method
● Extra Statement

39

Tool Support for Fault Localization

● A spectrum-based fault localization tool uses
a dynamic analysis to rank suspicious
statements implicated in a fault by comparing
the statements covered on failing tests to the
statements covered on passing tests

● Basic idea:
● Instrument the program for coverage (put print

statements everywhere)
● Run separately on normal inputs and bug-inducing

inputs
● Compute the set difference!

Fault Localization Example

● Consider this simple buggy program:

41

Coverage-Based Fault Localization

StatementStatement 3,3,53,3,5 1,2,31,2,3 3,2,13,2,1 3,2,13,2,1 5,5,55,5,5 2,1,32,1,3

int m;

m = z;

if (y < z)

if (x < y)

m = y;

else if (x<z)

m = y; // bug

else

if (x > y)

m = y;

else if (x>z)

m = x;

return m;

Pass Pass Pass Pass Pass Fail

42

Insight: Print-Statement Debugging

● If you do not execute X but you do observe the
bug, X cannot be related to that bug

● If Y is primarily executed when you observe
the bug, it is more likely to be implicated than
Z which is primarily executed when you do not
observe the bug

● Suspiciousness Ranking

susp(s) = fail(s) / total_fail

 fail(s)/total_fail + pass(s)/total_pass

[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.]

43

Fault Localization Ranking

StatementStatement 3,3,53,3,5 1,2,31,2,3 3,2,13,2,1 3,2,13,2,1 5,5,55,5,5 2,1,32,1,3 susp(s)susp(s)

int m; 0.50.5

m = z; 0.50.5

if (y < z) 0.50.5

if (x < y) 0.630.63

m = y; 00

else if (x<z) 0.710.71

m = y; // bug 0.830.83

else 00

if (x > y) 00

m = y; 00

else if (x>z) 00

m = x; 00

return m; 0.50.5

Pass Pass Pass Pass Pass Fail

44

Profiling

● A profiler is a performance analysis tool that
measures the frequency and duration of function
calls as a program runs.

● A flat profile computes the average call times for
functions but does not break times down based
on context

● A call-graph profile computes call times for
functions and also the call-chains involved

45

Event-Based Profiling

• Interpreted languages provide special hooks for
profiling

● Java: JVM-Profile Interface, JVM API
● Python: sys.set_profile() module
● Ruby: profile.rb, etc.

● You register a function that will get called
whenever the target program calls a method,
loads a class, allocates an object, etc.
● cf. “signal handler”

46

JVM Profiling Interface
● VM notifies profiler agent of various events (heap

allocation, thread start, method invocation, etc.)
● Profiler agent issues control commands to the

JVM and sends reports to developers (GUI, etc.)

“We applied the JVM Profiler to one of
Uber’s biggest Spark applications (which
uses 1,000-plus executors), and in the
process, reduced the memory allocation
for each executor by 2GB, going from
7GB to 5GB. For this Spark application
alone, we saved 2TB of memory. “

Bo Yang et al., Uber Engineering Blog:
“JVM Profiler: An Open Source Tool for
Tracing Distributed JVM Applications at
Scale”

47

Statistical Profiling

● You can arrange for the operating system to send
you a signal (just like before) every X seconds
(see alarm(2))

● In the signal handler you determine the value of
the target program counter
● And append it to a growing list file
● This is sampling

● Later, you use debug information from the
compiler to map the PC values to procedure
names
● Sum up to get amount of time in each procedure

48

Sampling Analysis
● Advantages

● Simple and cheap – the instrumentation is unlikely to
disturb the program too much

● No big slowdown
● Disadvantages

● Can completely miss periodic behavior (e.g., you
sample every k seconds but do a network send at
times 0.5 + nk seconds)

– High error rate: if a value is n times the sampling
period, the expected error in it is sqrt(n) sampling
periods

● Read the gprof paper for exam #2

49

Real-World Tool Utility

● Human study of 34 graduate students
● Given Tarantula (as a friendly plugin for

Eclipse) and asked to complete two debugging
tasks
● Tetris: square block rotation bug
● NanoXML: parsing library exception

● Hypotheses:
● Tools will help us debug faster
● Tools help more on harder problems

[Parnin and Orso. Are Automated Debugging Techniques Actually Helping Programmers? ISSTA '11.]

50

Results

● Experts Are Faster When Using Tools
● Over all participants, tools did not help
● Top-third of participants went from 14:28 to 8:51

with tool support (for Tetris, p < 0.05)

● Tools Did Not Help With Harder Tasks
● Changes In Rank Did Not Matter

● 7 35 in Tetris, 83 16 in NanoXML→ →
● Why is this so crucial here?

51

Explanations

● “Based on this data, we have determined that
programmers do not visit each statement in a
linear fashion.”

● “If the faulty nature of a statement were
apparent to the developers by just looking at
it, tool usage should stop as soon as they
get to that statement in the list.”

● “participants, on average, spent another ten minutes using
the tool after they first examined the faulty statement.
That is, participants spent (or wasted) on average 61% of
their time continuing to inspect statements with the tool
after they had already encountered the fault.”

52

Implications

● You are a Software Engineering manager
● Making a process decision: do we purchase,

train on, and deploy Tarantula
● Tarantula claims: this tool will correctly rank

buggy statements near the top of the list
● This is almost a red herring!
● You must examine the “end-to-end” performance

● So fault localization tools are worthless?

53

Nuanced Example

● Suppose you have three devs: A, B and C
● Expert, Medium, Novice

● Tarantula makes A, the expert, 39% faster
● But makes everything 13% slower (training,

overhead, whatever)

● If everything is equal, net gain = 0 (as in study)
● But suppose A is 25x faster than C (later lec.)

● A=25, B=13, C=1 in this world your team, →
overall, is 8.7% faster with Tarantula

54

Questions?
● HW4

● Running cppcheck on the lighttpd web server
may take hours

● This may be a good opportunity learn about a
utility like Unix screen: you ssh in, run screen,
start the analysis, “detach”, close the connection,
screen prevents you from losing your work, you ssh
in later and re-attach and get your results

● https://linuxize.com/post/how-to-use-linux-screen/

https://linuxize.com/post/how-to-use-linux-screen/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	What is a Debugger?
	Machine-Language Debugger
	Signals
	Signal Example
	Attaching A Debugger
	Building a Debugger
	Advanced Breakpoints
	Single-Stepping
	Watchpoints
	Watchpoint Implementation
	Q: Movies (284 / 842)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Profiling
	Event-Based Profiling
	JVM Profiling Interface
	Statistical Profiling
	Sampling Analysis
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

