
Static andStatic and
Dataflow Dataflow
AnalysisAnalysis

(two part lecture)(two part lecture)

2

The Story So Far …
● Quality assurance is critical to software

engineering.
● Testing is the most common dynamic approach

to QA.
● But: race conditions, information flow, profiling …

● Code review and code inspection are the most
common static approaches to QA.

● What other static analyses are commonly used
and how do they work?

BUT FIRST, logistics ...

3

Logistics

● Exam Accommodations: Fill out our second
confirmation form, not just the SSD letter, by
midnight Wed 10/1:

● https://forms.gle/dQNrGvde4jFaziUq8
● Exam #1 does cover Dataflow Analysis

● Exam #1 covers both today's material and
Thursday's material

● It also allows you to use ChatGPT, course
recordings, Stack Overflow, etc. See webpage!

https://forms.gle/dQNrGvde4jFaziUq8

4

Exam Course Staff Availability

● Your exam must be submitted by midnight
eastern (so don't start a 2-hour exam at 11pm)

● Course staff will be available monitoring
Piazza at these times:

5

One-Slide Summary
● Static analysis is the systematic examination

of an abstraction of program state space with
respect to a property. Static analyses reason
about all possible executions but they are
conservative.

● Dataflow analysis is a popular approach to
static analysis. It tracks a few broad values
(“secret information” vs. “public
information”) rather than exact information. It
can be computed in terms of a local transfer
of information.

6

Doesn't GenAI Save Us?

What effect does human
pair programming have on

coding speed and
defect density?

7

Fundamental Concepts

● Abstraction
● Capture semantically-relevant details
● Elide other details
● Handle “I don't know”: think about developers

● Programs As Data
● Programs are just trees, graphs or strings
● And we know how to analyze and manipulate those

(e.g., visit every node in a graph)

8

goto fail;

9

“Unimportant” SSL Example

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
 SSLBuffer signedParams,
 uint8_t *signature,
 UInt16 signatureLen) {
OSStatus err;
 …
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

…
fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;
}

10

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head * sh,
 int b_size) {
 struct buffer_head *bh;
 unsigned long flags;
 save_flags(flags);
 cli(); // disables interrupts (“get lock”)
 if ((bh = sh->buffer_pool) == NULL)
 return NULL;
 sh->buffer_pool = bh -> b_next;
 bh->b_size = b_size;
 restore_flags(flags); // enables ints (unlock)
 return bh;
}

11

Could We Have Found Them?

● How often would those bugs trigger?
● Linux example:

● What happens if you return from a device driver
with interrupts disabled?

● Consider: that's just one function
… in a 2,000 LOC file

… in a 60,000 LOC module

… in the Linux kernel

● Some defects are very difficult to find via
testing or manual inspection

12

13

Many Interesting Defects

● … are on uncommon or difficult-to-exercise
execution paths
● Thus it is hard to find them via testing

● Executing or dynamically analyzing all paths
concretely to find such defects is not feasible

● We want to learn about “all possible runs” of
the program for particular properties
● Without actually running the program!
● Bonus: we don't need test cases!

14

Static Analyses Often Focus On

● Defects that result from inconsistently
following simple, mechanical design rules
● Security: buffer overruns, input validation
● Memory safety: null pointers, initialized data
● Resource leaks: memory, OS resources
● API Protocols: device drivers, GUI frameworks
● Exceptions: arithmetic, library, user-defined
● Encapsulation: internal data, private functions
● Data races (again!): two threads, one variable

15

How And Where Should We Focus?

16

Static Analysis

● Static analysis is the systematic examination
of an abstraction of program state space
● Static analyses do not execute the program!

● An abstraction is a selective representation of
the program that is simpler to analyze
● Abstractions have fewer states to explore

● Analyses check if a particular property holds
● Liveness: “some good thing eventually happens”
● Safety: “some bad thing never happens”

17

Let's Act It Out

● We're going to add some large numbers
● We'll keep track of the real answer
● But the Dataflow Analysis will only track the

fact of whether the running total is odd or
even
● This is an abstraction! Abstraction Full Information

18

Analogy

● 4294967296 and 8589934591 are too long to
track precisely.

● even and odd are short! Dataflow likes short.

19

Abstraction Example
Adding Big Numbers

1st Fact: x is odd

2nd Fact: x is odd

3rd Fact: x is even

4th Fact: x is even

20

But How Do We Track Facts In
Program Source Code?

● Example: track every call to logger.debug()

● What could go wrong? First attempt:
grep logger\.debug -r source_dir

public foo() {
 …
 logger.debug(“We have ” + conn + “connections.”);
}

public foo() {
 …
 if (logger.inDebug()) {
 logger.debug(“We have ” + conn + “connections.”);
 }
}

21

Abstraction: Abstract Syntax Tree

● An AST is a tree
representation of the
syntactic structure of
source code
● Parsers convert

concrete syntax into
abstract syntax

● Records only
semantically-relevant
information
● Abstracts away (, etc.

+

5 +

2 3

Example: 5 + (2 + 3)

22

Programs As Data

● “grep” approach: treat program as string
● AST approach: treat program as tree
● The notion of treating a program as data is

fundamental
● It relates to the notion of a Universal Turing

Machine. A Turing Machine description (finite
state controller, initial tape) can itself be
represented as a string (and thus placed on a
tape as input to another TM)

23

Dataflow Analysis

● Dataflow analysis is a technique for gathering
information about the possible set of values
calculated at various points in a program

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g.,

to help developers) down to a small set of
values

● We finally give rules for computing those
abstract values
● Dataflow analyses take programs as input

24

Two Exemplar Analyses

● Definite Null Dereference
● “Whenever execution reaches *ptr at program

location L, ptr will be NULL”
● Potential Secure Information Leak

● “We read in a secret string at location L, but there
is a possible future public use of it”

25

Discussion

● These analyses are not trivial to check

● “Whenever execution reaches” “→ all paths” →
includes paths around loops and through
branches of conditionals

● We will use (global) dataflow analysis to learn
about the program
● Global = an analysis of the entire method body, not

just one { block }

26

Analysis Example

Is ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

27

Correctness (Cont.)

To determine that a use of x is always null, we must
know this correctness condition:

On every path to the use of x, the last
assignment to x is x := 0 **

28

Analysis Example Revisited

Is ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

29

Static Datalfow Analysis

Static dataflow analyses share several traits:
● The analysis depends on knowing a property P at a

particular point in program execution
● Proving P at any point requires knowledge of the

entire method body
● Property P is typically undecidable!

30

Undecidability
of Program Properties

• Rice’s Theorem: Most interesting dynamic properties of
a program are undecidable:

● Does the program halt on all (some) inputs?
● This is called the halting problem

● Is the result of a function F always positive?
● Assume we can answer this question precisely
● Oops: We can now solve the halting problem.
● Take function H and find out if it halts by testing function F(x) =

{ H(x); return 1; } to see if it has a positive result
● Contradiction!

● Syntactic properties are decidable!
● e.g., How many occurrences of “x” are there?

● Programs without looping are also decidable!

31

Looping

● Almost every important program has a loop
● Often based on user input

● An algorithm always terminates
● So a dataflow analysis algorithm must

terminate even if the input program loops
● This is one source of imprecision

● Suppose you dereference the null pointer on the
500th iteration but we only analyze 499 iterations

32

Conservative Program Analyses

● We cannot tell for sure that ptr is always null (Rice)
● So how can we carry out any sort of analysis?

● It is OK to be conservative.

33

Conservative Program Analyses

● We cannot tell for sure that ptr is always null
● So how can we carry out any sort of analysis?

● It is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either
– P is definitely true
– Don’t know if P is true

● This is called a conservative
approximation

34

Conservative Program Analyses
● It is always correct to say “I don’t know”

● We try to say don’t know as rarely as possible
● All program analyses are conservative

● Never Claim safe unless sure

● But whether we actually say ‘don’t know’ depends on
context.
● Think about your software engineering process

● Bug finding analysis for developers? They hate
“false positives”, so if we don't know, stay silent.

● Bug finding analysis for airplane autopilot? Safety is
critical, so if we don't know, give a warning.

35

Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

36

Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

37

Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptr is ptr := 0 **

38

Definitely Null Information

● We can warn about definitely null pointers at any
point where ** holds

● Consider the case of computing ** for a single
variable ptr at all program points

● Valid points cannot hide!
● We will find you!

● (sometimes)

39

Abstracting “Don't Know”
(Priscila's Revenge on Wes)

1st Fact: x is odd

2nd Fact: x is ???

3rd Fact: x is ???

4th Fact: x is even

40

Abstracting “Not There Yet”
(Continuing Revenge)

3rd Fact: x is “not
there yet”

4th Fact: x is “not
there yet”

41

Abstracting “Not There Yet”
(Updating Prior Answers)

1st Fact: x is odd

2nd Fact: x is odd

3rd Fact: x is “not
there yet” even

4th Fact: x is “not
there yet” even

Note how prior answers can get updated!

42

Definitely Null Analysis (Cont.)
● To make the problem precise, we associate

one of the following values with ptr at every
program point
● Recall: abstraction and property

Don’t know if X is a
constant (unknown)

T
(called “top”)

X = constant cc

This statement is not
reachable (not there yet)

ꓕ
(called “bottom”)

interpretationvalue

43

Example

X = T
X =

X =

X =
X =

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X =

X =

X =

Get out a piece of paper. Let's fill in these blanks now.

Recall: ꓕ = not reachable / not there yet, c = constant (write the number,
don't write “c”), T = don't know.

44

Example Answers

X = T
X = 3

X = 3

X = 3
X = 4

X = T

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = T

45

Anime / Movie

● This anime, adapted from a manga by Koyoharu
Gotouge, follows siblings whose family is
slaughtered by demons, leaving the sister
transformed into one herself. Its Mugen
Train movie grossed over $506 million worldwide,
making it the highest-grossing anime film at the
time, though it has since been surpassed by the
franchise’s Infinity Castle film, which crossed
$600 million globally.

46

Real-World Languages

● The official language of Sri Lanka and Singapore is
spoken by over 66 million and boasts a rich
literature stretching back over 2000 years. Unlike
most Indian languages, it does not distinguish
between aspirated and unaspirated consonants. It
uses suffices to mark number, case and verb tense
and uses a flexible S-O-V ordering. It uses
postpositions rather than prepositions.
● Example: வணக்கம்

47

Fictional Magicians

● In Greek Mythology, this
sorceress transforms her
enemies into animals. In
Homer's Odyssey she tangles
with Odysseus (who defeats
her magic); she ultimately
suggests that he travel
between Scylla and Charybdis
to reach Ithaca.

48

Psychology: Predictions

● You are asked to read about a conflict and are
given two alternative ways of resolving it.

● You are then asked to do:
● Say which option you would pick
● Guess which option other people will pick
● Describe the attributes of a person who would

choose each of the two options
● (Actually, let's be more specific …)

49

Psychology: Prediction

● Would you be willing to walk around campus
for 30 minutes holding a sign that says “Eat at
Joe's”?
● (No information about Joe's restaurant is provided,

you are free to refuse, but we claim you will learn
“something useful” from the study.)

● Would you do it?

50

Psychology: False Consensus Effect
● Of those who agreed to carry the sign, 62%

thought others would also agree
● Of those who refused, 67% thought others

would also refuse
● We think others will do the same as us,

regardless of what we actually do
● We make extreme predictions about the

personalities of those who chose differently
● But choosing “like me” does not imply anything: it's

common!
● “Must be something wrong with you!”

51

Psychology: False Consensus Effect

● Replications with 200 college students, etc.
● [Kathleen Bauman, Glenn Geher. WE think you agree: the detrimental

impact of the false consensus effect on behavior. J. Current
Psychology, 2002, 21(4).]

● Implications for SE: Myriad, whenever you
design something someone else will use.
Example: Do you think this static analysis
should report possible defects or certain
defects? By the way, what do you think the
majority of our customers want?

52

Using Abstract Information

● Given analysis information (and a policy about
false positives/negatives), it is easy to decide
whether or not to issue a warning
● Simply inspect the x = ? associated with a statement

using x
● If x is the constant 0 at that point, issue a warning!

● But how can an algorithm compute x = ?

53

The Idea

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

54

Explanation

● The idea is to “push” or “transfer” information
from one statement to the next

● For each statement s, we compute information
about the value of x immediately before and
after s

Cin(x,s) = value of x before s

Cout(x,s) = value of x after s

55

Transfer Functions

● Define a transfer function that transfers
information from one statement to another

56

Rule 1

 Cout(x, x := c) = c if c is a constant

x := c

X = ?

X = c

X = ? (does it matter what x is here?)

57

Rule 2

 Cout(x, s) = ꓕ if Cin(x, s) = ꓕ

s

X = ꓕ

X = ꓕ

Recall: ꓕ = “unreachable code or 'haven't analyzed this yet'”

58

Rule 3

 Cout(x, x := f(…)) = T

x := f(…)

X = ?

X = T

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

59

Rule 4

 Cout(x, y := …) = Cin(x, y := …) if x  y

y := . . .

X = a

X = a

60

The Other Half

● Rules 1-4 relate the in of a statement to the out of
the same statement

● they propagate information across statements

● Now we need rules relating the out of one statement
to the in of the successor statement

● to propagate information forward along paths

● In the following rules, let statement s have
immediate predecessor statements p1,…,pn

61

Rule 5

if Cout(x, pi) = T for some i, then Cin(x, s) = T

 s

X = T

X = T

X = ?X = ?X = ?

62

Rule 6

if Cout(x, pi) = c and Cout(x, pj) = d and d  c

then Cin (x, s) = T

 s

X = d

X = T

X = ?X = ?X = c

63

Rule 7

if Cout(x, pi) = c or ꓕ for all i,

then Cin(x, s) = c

 s

X = c

X = c

X = ꓕ
X = ꓕ

X = c

64

Rule 8

if Cout(x, pi) = ꓕ for all i,

then Cin(x, s) = ꓕ

 s

X = ꓕ

X = ꓕ

X = ꓕX = ꓕ X = ꓕ

65

Static Analysis Algorithm

• For every entry s to the program, set
Cin(x, s) = T

• Set Cin(x, s) = Cout(x, s) = ꓕ everywhere else

• Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the

appropriate rule

66

The Value ꓕ

● To understand why we need ꓕ, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

67

The Value ꓕ

● To understand why we need ꓕ, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

X = ???
X = ???

X = ???

68

The Value ꓕ (Cont.)

● Because of cycles, all points must have values at
all times during the analysis

● Intuitively, assigning some initial value allows the
analysis to break cycles

● The initial value ꓕ means “we have not yet
analyzed control reaching this point”

69

Sometimes
all paths

lead to the
same place.

Thus you
need ꓕ.

70

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

Let's do it on paper!
Analyze the value of X …

71

Another Example: Intermediate

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = T
X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ Must continue
until all rules
are satisfied !

72

Another Example: Intermediate

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = T
X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ Must continue
until all rules
are satisfied !

73

Another Example: Intermediate

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = T
X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

3

3

3

3

3

3
4

4

Must continue
until all rules
are satisfied !

74

Another Example: Answer

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = T
X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

X = ꓕ

3

3

3

3

3

3
4

4
T

T

Now all rules
are satisfied !

75

Orderings

● We can simplify the presentation of the
analysis by ordering the values

 ꓕ < c < T
Making a picture with “lower” values drawn

lower, we get

ꓕ

T

-1 0 1… …
I am called
a lattice!

76

Orderings (Cont.)

• T is the greatest value, ꓕ is the least
● All constants are in between and incomparable

● Let lub be the least-upper bound in this ordering
● cf. “least common ancestor” in Java/C++

● Rules 5-8 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }

77

Termination

● Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

● The use of lub explains why the algorithm
terminates
● Values start as ꓕ and only increase

 ꓕ can change to a constant, and a constant to T
– Thus, C_(x, s) can change at most twice

78

Number Crunching

The algorithm is polynomial in program size:
Number of steps =
Number of C_(….) values changed * 2 =
(Number of program statements)2 * 2

79

“Potential Secure Information Leak”
Analysis

Could sensitive information possibly reach an insecure use?

In this example, the password contents can
potentially flow into a public display

(depending on the value of B)

str := get_password()

If B > 0

str := sanitize(str) Y := 0

display(str)

80

Live and Dead

● The first value of x is
dead (never used)

● The second value of x is
live (may be used)

● Liveness is an important
concept
● We can generalize it to

reason about
“potential secure
information leaks”

X := 3

X := 4

 Y := X

81

Sensitive Information

A variable x at stmt s is a possible sensitive (high-
security) information leak if

● There exists a statement s’ that uses x
● There is a path from s to s’
● That path has no intervening low-security assignment

to x

82

Computing Potential Leaks

● We can express the high- or low-security status of
a variable in terms of information transferred
between adjacent statements, just as in our
“definitely null” analysis

● In this formulation of security status we only care
about “high” (secret) or “low” (public), not the
actual value
● We have abstracted away the value

● This time we will start at the public display of
information and work backwards

83

Secure Information Flow Rule 1

 Hin(x, s) = true if s displays x publicly

true means “if this ends up being a secret variable
then we have a bug!”

display(x)

X = true

X = ?

Is my password
exposed?

Suppose:

84

Secure Information Flow Rule 2

 Hin(x, x := e) = false

(any subsequent use is safe)

x := sanitize(x)

X = false

X = ?

Is my password
exposed?

Suppose:

85

Secure Information Flow Rule 3

 Hin(x, s) = Hout(x, s) if s does not refer to x

s

X = a

X = a

Does the
security status
of my password

change?

86

Secure Information Flow Rule 4

Hout(x, p) =  { Hin(x, s) | s a successor of p }

(if there is even one way to potentially have a leak,
we potentially have a leak!)

p

X = true

X = true

X = ?X = ?X = ?

Is my password
exposed?

87

Secure Information Flow Rule 5
(Bonus – What if we have to reason about 2 variables?)

 Hin(y, x := y) = Hout(x, x := y)

(To see why, imagine the next statement is
display(x). Do we care about y above?)

x := y

Y = a

X = a

88

Algorithm: How so we start?

• We are going to let all H_(…) = false initially

• Repeat process until all statements s satisfy rules
1-4 :

Pick s where one of 1-4 does not hold and update
using the appropriate rule

89

Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false
H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false

(Time permitting: discuss with your partner. Where does the analysis start?)

90

Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false
H(X) = TRUE

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false

91

Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE
H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

92

Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE
H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

POSSIBLE LEAK

From high-security

value starting here

No possible leak

Starting here

93

Termination

● A value can change from false to true, but not
the other way around

● Each value can change only once, so termination
is guaranteed

● Once the analysis is computed, it is simple to
issue a warning at a particular entry point for
sensitive information

94

Static Analysis Limitations

● Where might a static analysis go wrong?
● If I asked you to construct the shortest

program you can that causes one of our static
analyses to get the “wrong” answer, what
would you do?

95

Static Analysis

● Potential exam practice and thought question
● You are asked to design a static analysis to

detect bugs related to file handles
● A file starts out closed. A call to open() makes it open;

open() may only be called on closed files. read() and
write() may only be called on open files. A call to
close() makes a file closed; close may only be called
on open files.

● Report if a file handle is potentially used incorrectly

● What abstract information do you track?
● What do your transfer functions look like?

96

Abstract Information

● We will keep track of an abstract value for a
given file handle variable

● Values and Interpretations

T file handle state is unknown

ꓕ haven't reached here yet

closed file handle is closed

open file handle is open

97

Rules

● Previously: “null ptr” ● Now: “file handles”

*ptr

ptr = 0

Report
Error!

read(f)

f = closed

Report
Error!

98

Rules: open

open(f)

f = closed
open(f)

f = T or open

Report
Error!

f = open

99

Rules: close

close(f)

f = open
close(f)

f = T or closed

Report
Error!

f = closed

100

Rules: read/write

(write is identical)

read(f)

f = open
read(f)

f = T or closed

Report
Error!

f = open

101

Rules: Assignment

g := f

f = a
g := f

f = a

f = a g = a

102

Rules: Multiple Possibilities

f = a

f = T

f = b

f = a

f = a

f = a
f = ꓕ

f = a

103

A Tricky Program

start:
switch (a)
 case 1: open(f); read(f); close(f); goto start
 default: open(f);
do {
 write(f) ;
 if (b): read(f);
 else: close(f);
} while (b)
open(f);
close(f);

104

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ
ꓕ

ꓕ
ꓕ

closed

105

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ

ꓕ
ꓕ

ꓕ
ꓕ

closed

106

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

open

open

open

open

closed
ꓕ

ꓕ
ꓕ

closed

107

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

open

open

open

open

closed
T

T

ꓕ

closed

108

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

T

T

T

T

T
T

T

T

closed

109

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

T

T

T

T

T
T

T

T

closed

110

Is There Really A Bug?

start:
switch (a)
 case 1: open(f); read(f); close(f); goto start
 default: open(f);
do {
 write(f) ;
 if (b): read(f);
 else: close(f);
} while (b)
open(f);
close(f);

111

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Definitely null (cf. constant propagation) is a
forwards analysis: information is pushed from
inputs to outputs

Secure information flow (cf. liveness) is a
backwards analysis: information is pushed from
outputs back towards inputs

112

Questions?
● Exam 1 shortly!
● Priscila's Exam Review Thursday (now?) in

LCSIB1355 until 4pm

● How's the homework going?
● Don't neglect the homework while studying for the

exam.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Discussion
	Global Optimization
	Correctness (Cont.)
	Slide 28
	Global Analysis
	Undecidability of Program Properties
	Slide 31
	Conservative Program Analyses
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Global Constant Propagation
	Slide 39
	Slide 40
	Slide 41
	Global Constant Propagation (Cont.)
	Example
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Using the Information
	The Idea
	Explanation
	Transfer Functions
	Rule 2
	Rule 1
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	An Algorithm
	The Value #
	Slide 67
	The Value # (Cont.)
	Slide 69
	Another Example
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Orderings
	Orderings (Cont.)
	Termination
	Termination (Cont.)
	Liveness Analysis
	Live and Dead
	Liveness
	Computing Liveness
	Liveness Rule 1
	Liveness Rule 2
	Liveness Rule 3
	Liveness Rule 4
	Slide 87
	Algorithm
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Forward vs. Backward Analysis
	Slide 112

