\MBGINE "TRUTH \S A SPUERE:

Static and
Dataflow
Analysis

THE SPUERE
\S ALL

BLACK/ (two part lecture)

}Q L+

The Story So Far ...

* Quality assurance is critical to software
engineering.

* Testing is the most common dynamic approach
to QA.

* But: race conditions, information flow, profiling ...

* Code review and code inspection are the most
common static approaches to QA.

* What other static analyses are commonly used
and how do they work?

BUT FIRST, logistics ...

2

Logistics

e Exam Accommodations: Fill out our second

confirmation form, not just the SSD letter, by
midnight Wed 10/1:

481 SSD Exam Time Confirmation Form — after you have (1) obtained approval from S5D, then (2) complete this form to ensure you receive extra

exam time

* https://forms.gle/dQNrGvde4jFaziUq8
* Exam #1 does cover Dataflow Analysis

 Exam #1 covers both today's material and
Thursday's material

* |t also allows you to use ChatGPT, course
recordings, Stack Overflow, etc. See webpage!

https://forms.gle/dQNrGvde4jFaziUq8

Exam Course Staff Availability

* Your exam must be submitted by midnight
eastern (so don't start a 2-hour exam at 11pm)

* Course staff will be available monitoring

Piazza at these times:

Piazza Monitoring: Exam 1 10/3 (8AM-11PM)

FILLED FILLED FILLED FILLED FILLED FILLED
Selected 2
Name IA/GSI 8-10:30AM 10:30-1PM 1-3:30PM 3:30-6PM 6-8:30PM 8:30-11PM Slots
Priscila GSI]]]]
Hanchi GSI]]]]
Rohit Gsl O N W O
Derek IA]]]]
Sathvika GSI] H] O
Jesse GSI O O O O

2 slots per person (5 hours per person)

One-Slide Summary

» Static analysis is the systematic examination
of an abstraction of program state space with
respect to a property. Static analyses reason
about all possible executions but they are
conservative.

* Dataflow analysis is a popular approach to
static analysis. It tracks a few broad values
(“secret information” vs. “public
information”) rather than exact information. It
can be computed in terms of a local transfer
of information.

Doesn't GenAl Save Us?

Resedrch: Quantifying GitHub
Copilot’s impact in the enterprise

with Accenture

We conducted research with developers at Accenture to understand GitHub Copilot’s real-world impact in

enterprise organizations. . .
< . quality. We found that our Al pair programmer helps developers code up to 55%

faster and that it made 85% of developers feel more confident in their code quality.

Can GenAl Actuadlly Improve
Developer Productivity? ;{ p T

coding speed and

Uplevel Data Labs analyzed the difference in key engineering '7 defect density?
metrics across a sample of 800 developers before and after

P
__ g

GitHub Copilot access. The fi Key Insight:
frl:lm Whﬂt devs rEPUrt in su Developers with Copilot access saw a significantly higher})ug rate while

+ 4] % their issue throughput remained consistent.

This suggests that Copilot may negatively impact code quality.
IN BUG RATE A : . : :
Engineering leaders may wish to dig deeper to find the PRs with bugs and

put guardrails in place for the responsible use of generative Al.

Fundamental Concepts

 Abstraction

* Capture semantically-relevant details
* Elide other details
* Handle “I don't know”: think about developers

* Programs As Data

* Programs are just trees, graphs or strings

* And we know how to analyze and manipulate those
(e.g., visit every node in a graph)

)

goto fail

“Unimportant” SSL Example

static OSStatus

SSLVerifySignedServerKeyExchange (SSLContext *ctx, bool isRsa,
SSLBuffer signedParams,
uint8 t *signature,

UIntl6é signaturelen) {
OSStatus err;

if ((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) !'= 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &signedParams)) !'= 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)
goto fail;

fail:
SSLFreeBuffer (&signedHashes) ;

SSLFreeBuffer (&hashCtx) ;
return err;

}

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer head *
get free buffer (struct stripe head * sh,
int b size) {

struct buffer head *bh;

unsigned long flags;

save flags(flags);

cli(); // disables interrupts (“get lock”)

if ((bh = sh->buffer pool) == NULL)

return NULL;

sh->buffer pool = bh -> b next;

bh->b size = b size;

restore flags(flags); // enables ints (unlock)

return bh;

10

Could We Have Found Them?

* How often would those bugs trigger?
* Linux example:

* What happens if you return from a device driver
with interrupts disabled?
* Consider: that's just one function

... in.a 2,000 LOC file
... in a 60,000 LOC module
... in the Linux kernel

* Some defects are very difficult to find via
testing or manual inspection

11

CNET » News

Security & Privacy * Klocwork: Our source code analyzer caught Apple's ...

Klocwork: Our source code
analyzer caught Apple's
'gotofail' bug

If Apple had used a third-party source code analyzer on its encryption
library, it could have avoided the "gotofail" bug.

=gk

ﬁ 57 | [223 m 23

by Declan McCullagh | February 28, 2014 1:13 PM PST

W Follow

* (K SecuseTrassponn
Lt o, L YR
* [setereranipons o h 624

* N SecureTrasagorifre b

LA L
* o widCaloun

® |4 ssliRecoeCalioets. o

LR T T T Y
» L sslenilessage h

B g ailtie
LT o AY

¥ [N aiBsidiiag

[] 0 &3
* |8 wikhargeCigher .]]

g ssiCem e

Cexdn

B L 3¥phe s €

* wCsheriesa . Statie eode an'alfsls

g ssiCoen
e niCoiean b
| ssiCrypenoe
N niCryptnr
¥ [35Dty &
* s wligeunc
* L5 sDigests h

* g ankancthaEe o

8|5

More +

if ((err = Reodybosh(ESSLHoshSHAL, Bhash(tx])) != @)

goto foil;

if (Cerr = SSLHoshSHAL.update(Bhosh(tx, &clientfond)) 1= @)

goto fall;

if (Cerr = SSLHoshSHAL, updote(Bhashitx, Aserverfandam)) I= @)

goto fell;

if ((err = SSLHoshSHAL.updote{Bhash(tx, Lsignediarans)) |= @)]

goto foll;
goto ftil:r
Sl D et ShE «firal

(BhashCtx, Bhashut)) 1= @)

goto foil;

err = sslRoserify(ctx,
wins!

& woowork tssues H

Apple, we need to talk

Cta->peerPubiey,

Fiter manched | of & st Grouged by Diecbey, seied By Destrgtion, then by Beioare.

o i gt

Taniaviery Ry

¥ G JUsenn/ede e n s riapace (sa - 10 9/ Se0army - 5471 hssnenty_ i

L Rl R
B¢ sulandahaial nih g

* £ ssiandihaneelio ©
® g siryrhain g
B | n aserhan b

oy ssieyEachange ¢

O unkialr CEN: Code b unreschable

Writabie

CamdCan

SR T Bi2 %0

sl CevEmohange o

Comments | 25

T UNEEALM CEN (Wirmvngl More svlormat o
Coabe |1 wrreaihabie.

Tracebach
0 e/ bedeiven werseoneas- 109

0 aeylmchasge o 613 The code iy

Comrent itates: Asalyde

- l-[
Locatos Seviity
15 warrng (1)
& :

Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's
product would have nabbed the "goto fail" bug.

(Credit: Klocwork)

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users

vulnerable to Internet attacks until the company finally fixed it Tuesday.

Featured Posts

Google unveils Androi

wearables
Internet & Media

Motorol:

poweret
Internet |

0K, Gla
in my fa
Cutting E
Appleif
product
Apple

iPad wit
comeba
Apple

Most Popular

s

Giant 3[
house
Bk Facel

Exclusiv

Doeschi
716 Twe

Google'
four can
771 Goc

Connect With CNET

Facebook
Like Us

L~ 1 I

12

Many Interesting Defects

e ... are on uncommon or difficult-to-exercise
execution paths

* Thus it is hard to find them via testing

* Executing or dynamically analyzing all paths
concretely to find such defects is not feasible

* We want to learn about “all possible runs” of
the program for particular properties

* Without actually running the program!
 Bonus: we don't need test cases!

Static Analyses Often Focus On

* Defects that result from inconsistently
following simple, mechanical design rules

* Security: buffer overruns, input validation

* Memory safety: null pointers, initialized data
* Resource leaks: memory, OS resources

e API Protocols: device drivers, GUI frameworks
* Exceptions: arithmetic, library, user-defined

* Encapsulation: internal data, private functions
* Data races (again!): two threads, one variable

14

How And Where Should We Focus?

15

Static Analysis

e Static analysis is the systematic examination
of an abstraction of program state space

* Static analyses do not execute the program!

* An abstraction is a selective representation of
the program that is simpler to analyze

* Abstractions have fewer states to explore
* Analyses check if a particular property holds

* Liveness: “some good thing eventually happens”
* Safety: “some bad thing never happens”

16

Let's Act It Out

* We're going to add some large numbers
 We'll keep track of the real answer

* But the Dataflow Analysis will only track the
fact of whether the running total is odd or
even

 This is an abstraction!

f\bstra/cti\on | Full Iqrmation
o 777N
LA

Analogy

* 4294967296 and 8589934591 are too long to
track precisely.

* even and odd are short! Dataflow likes short.

ooy Wi N . e 1}
o - b N e q o Y. i o
s & DR T, 2 Za s PR
YRR T T Mgy
Pon ; L R

s > o

> ’ / 'fEﬂ':ﬂ'-. = 9 |1';}.|-'- I’]
PR @t¥® “TamaBearof N
7 8% Very Little Brain,

ox®e
"3 and long words

bother me.” N
., |
:3\ B \

htip: ,-",.-’w'innietjlewisepnnh.,tumblr.cumf

18

Abstraction Example
Adding Big Numbers

Python 3.8.10 (default, Mar 11 2025, 17:45:31)

[GCC 9.4.0] on linux st . .

Type "help", "copyright", "credits" or "license" 1t Fact: x is Odd
>>> X = 123

2" Fact: x is odd

3d Fact: x is even

4th Fact: x is even

19

But How Do We Track Facts In
Program Source Code?

* Example: track every call to logger.debug()

public foo() {

logger.debug(“We have ” + conn + “connections.”);

}

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}

}

* What could go wrong? First attempt:

grep logger\.debug -r source dir

20

Abstraction: Abstract Syntax Tree

e An AST i1s a tree Example: 5 + (2 + 3)
representation of the .
syntactic structure of ! !
source code 5 ¥
e Parsers convert v v
concrete syntax into 2 3

abstract syntax

* Records only
semantically-relevant
information

* Abstracts away (, etc.

21

Programs As Data

* “grep” approach: treat program as string
* AST approach: treat program as tree

* The notion of treating a program as data is
fundamental

* |t relates to the notion of a Universal Turing
Machine. A Turing Machine description (finite
state controller, initial tape) can itself be
represented as a string (and thus placed on a
tape as input to another TM)

22

Dataflow Analysis

* Dataflow analysis is a technique for gathering
information about the possible set of values
calculated at various points in a program

* We first abstract the program to an AST or CFG

* We then abstract what we want to learn (e.g.,
to help developers) down to a small set of

values

* We finally give rules for computing those
abstract values

* Dataflow analyses take programs as input

23

Two Exemplar Analyses

* Definite Null Dereference

* “Whenever execution reaches *ptr at program
location L, ptr will be NULL”

 Potential Secure Information Leak

* “We read in a secret string at location L, but there
is a possible future public use of it”

WELL THERE'S YOUR
PROBLEM

24

Discussion

* These analyses are not trivial to check

* “Whenever execution reaches” — “all paths” —
includes paths around loops and through
branches of conditionals

* We will use (global) dataflow analysis to learn
about the program

* Global = an analysis of the entire method body, not
just one { block }

25

Analysis Example

Is ptxr always null when it is dereferenced?

ptr = new AVL();

1f (B > 0)

/\

ptr = 0; X =2 * 3;

— -

print (ptr->data) ;

Correctness (Cont.)

To determine that a use of x is always null, we must

know this correctness condition:

On every path to the use of x, the last

assignment to x is x := 0

Tesk:

1. What important event Yook
| place on December 16, 17737

Mz

al =

N

*%

[do Not BELIEVE iN LINESR

|| TiME. THERE 1% Mo Past+ awd

futuRE: alu |5 ONE, aMd4
EXISTENCE IM HE YEMPoRal SEMSE
15 ILLUSeRY, THYS QUESHoM,

| HEREFoRE, 1% MEAN[HGLESY asy

MpoSsiBLE Yo ANSER.

{ WWEM 1N DOURT,
DENY ALL TERMS
AHD DEFIMITIONS |

M

i

Iy o
L&
N

)

Analysis Example Revisited

Is ptxr always null when it is dereferenced?

1f (B v
Q X

print (ptr—->data) ;

I
\ O
w

28

Static Datalfow Analysis

Static dataflow analyses share several traits:

* The analysis depends on knowing a property P at a
particular point in program execution

* Proving P at any point requires knowledge of the
entire method body

* Property P is typically undecidable!

T Word cannot edit the Unknown.

Undecidability
of Program Properties

e Rice’s Theorem: Most interesting dynamic properties of
a program are undecidable:

* Does the program halt on all (some) inputs?
* This is called the halting problem

* |s the result of a function F always positive?
* Assume we can answer this question precisely
* QOops: We can now solve the halting problem.

* Take function H and find out if it halts by testing function F(x)
{ H(x); return 1; } to see if it has a positive result

e Contradiction!

* Syntactic properties are decidable!
* e.g., How many occurrences of “x” are there?

* Programs without looping are also decidable!

30

Looping

* Almost every important program has a loop
* Often based on user input
* An algorithm always terminates

* S0 a dataflow analysis algorithm must
terminate even if the input program loops

* This is one source of imprecision

* Suppose you dereference the null pointer on the
500t iteration but we only analyze 499 iterations

Conservative Program Analyses

 We cannot tell for sure that ptr is always null (Rice)
* So how can we carry out any sort of analysis?

e |t is OK to be conservative.
‘ T

32

Conservative Program Analyses

 We cannot tell for sure that ptr is always null
* So how can we carry out any sort of analysis?

* |t is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either

- P is definitely true
GIVEN THESE PREVALENCES,

i y - . 15 1T LIKELY THAT THE TEST
Don’t know if P is true RESULT IS A FALSE. POSITIVE?

WELL, THIS CHAPTER IS ON
BAYES' THEOREM, SO YES.

k‘
.
-
¥

 This is called a conservative
approximation

W I
d g

SOMETIMES, IF YOU UNDERSTAND
BAYES' THEOREM WELL ENOUGH, 33
YOU DON'T NEED IT.

Conservative Program Analyses

* |t is always correct to say “l don’t know”
* We try to say don’t know as rarely as possible

* All program analyses are conservative
* Never Claim safe unless sure

* But whether we actually say ‘don’t know’ depends on
context.

* Think about your software engineering process

* Bug finding analysis for developers? They hate
“false positives”, so if we don't know, stay silent.

* Bug finding analysis for airplane autopilot? Safety is
critical, so if we don't know, give a warning.

Definitely Null Analysis

Is ptxr always null when it is dereferenced?

ptr = new AVL();

ptr = 0;

if (B > 0)

N

if (B > 0)
ptr = 0; X =2 * 3;

foo = myAVL; ptr = 0;

~.

print (ptr—->data);

~_

print (ptr->data) ;

35

Definitely Null Analysis

Is ptxr always null when it is dereferenced?

36

Definitely Null Analysis

Is ptxr always null when it is dereferenced?

print (ptr->data) ; print (ptr—>4=ta) ;

No, not always. Yes, always.
On every path to the use of ptr, the
last assignment to ptris ptr :=0 ** 7

Definitely Null Information

* We can warn about definitely null pointers at any
point where ** holds

* Consider the case of computing ** for a single
variable ptr at all program points

* Valid points cannot hide!
* We will find you!

* (sometimes)

DISGUISE SKILT

Abstracting “Don't Know”

(Priscila’s Revenge on Wes)

Python 3.8.10 (default, Mar 11 2025, 17:45:31)

[GCC 9.4.0] on linux

Type "help"”, "copyright”™, "credits" or "license" ¢ . .

>>> import random 1° Fact: x is Odd
>>> x = 123

>>> X

123

>>> X + random.randint(1,1e0) 2 Fact: x is 7??

>>2
133
>>2

> 3 Fact: x is 22?
>>>

4th Fact: x is even

39

Abstracting “Not There Yet”

(Continuing Revenge)

Python 3.8.10 (default, Mar 11 2025, 17:45:31)
[GCC 9.4.0] on linux
Type "help"”, "copyright™, "credits” or "license"”

>>> X = 777

3rd Fact: x is “not
there yet”

4t Fact: x is “not
there yet”

40

Abstracting “Not There Yet”

(Updating Prior Answers)

Python 3.8.10 (default, Mar 11 2025, 17:45:31)
[GCC 9.4.0] on linux st Fact: x 'iS Odd

Type "help"”, "copyright™, "credits” or "license"”

>>> X = 777

2" Fact: x is odd

3" Fact: x is “pet
thereyet” even
4% Fact: x is “not
thereyet” even

Note how prior answers can get updated! — 41

Definitely Null Analysis (Cont.)

* To make the problem precise, we associate

one of the following values with ptr at every
program point

* Recall: abstraction and property
value interpretation
1 This statement is not
(called “bottom”) reachable (not there yet)
C X = constant c
T Don’t know if X is a
(called “top”) constant (unknown)

42

Example

Get out a piece of paper. Let's fill in these blanks now.

X=T
X:=3 — X =
B>0O
X: — <—X:
Yi=Z+W Yi=0
X = —
X:=4 -/4—)(:
X= — X =
Ai=2*X

Recall: 1 = not reachable / not there yet, ¢ = constant (write the number,
don't write “c”), T = don't know.

43

Example Answers

Y=Z+W
X:=4

X=-4 —

44

Anime / Movie

* This anime, adapted from a manga by Koyoharu
Gotouge, follows siblings whose family is
slaughtered by demons, leaving the sister
transformed into one herself. Its Mugen
Train movie grossed over $506 million worldwide,
making it the highest-grossing anime film at the
time, though it has since been surpassed by the
franchlse s Infinity Castle film, Wthh crossed
$600 million globally. =

Real-World Languages

* The official language of Sri Lanka and Singapore is
spoken by over 66 million and boasts a rich
literature stretching back over 2000 years. Unlike
most Indian languages, it does not distinguish
between aspirated and unaspirated consonants. It
uses suffices to mark number, case and verb tense
and uses a flexible S-O-V ordering. It uses
postpositions rather than prepositions.

* Example: auetoi& &io

Fictional Magicians

* In Greek Mythology, this
sorceress transforms her
enemies into animals. In
Homer's Odyssey she tangles
with Odysseus (who defeats
her magic); she ultimately
suggests that he travel
between Scylla and Charybdis BT < areet creatures. ror

i cach creature exiled this way; Its

tO I’eaCh Ithaca . i controller puts a 2/2 green Boar

creature token onto the battlefield.

Another tmmnent bartle subsided
M brsy smeuffling and carefree rooting.

Psychology: Predictions

 You are asked to read about a conflict and are
given two alternative ways of resolving it.

* You are then asked to do:
* Say which option you would pick
* Guess which option other people will pick

* Describe the attributes of a person who would
choose each of the two options

* (Actually, let's be more specific ...)

Psychology: Prediction

* Would you be willing to walk around campus
for 30 minutes holding a sign that says “Eat at
Joe's”?

* (No information about Joe's restaurant is provided,

you are free to refuse, but we claim you will learn
“something useful” from the study.)

* Would you do it?

Psychology: False Consensus Effect

Of those who agreed to carry the sign, 62%
thought others would also agree

Of those who refused, 67% thought others
would also refuse

We think others will do the same as us,
regardless of what we actually do

* We make extreme predictions about the
personalities of those who chose differently

* But choosing “like me” does not imply anything: it's
common!

* “Must be something wrong with you!”

Psychology: False Consensus Effect

* Replications with 200 college students, etc.

* [Kathleen Bauman, Glenn Geher. WE think you agree: the detrimental
impact of the false consensus effect on behavior. J. Current

Psychology, 2002, 21(4).]

Implications for SE: Myriad, whenever you
design something someone else will use.
Example: Do you think this static analysis
should report possible defects or certain
defects? By the way, what do you think the
majority of our customers want?

Using Abstract Information

* Given analysis information (and a policy about
false positives/negatives), it is easy to decide
whether or not to issue a warning

* Simply inspect the x = 7 associated with a statement
using x
* |f x is the constant O at that point, issue a warning!

* But how can an algorithm compute x =7

52

The ldea

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

GWETMES T FEEL LIVE VR | | WELL, THOREND SAHS, " SIMPLIRY,
LIFE HAS GOTTEM TOO CoMALL-| | SIMPUIFY® MBNBE WE NEED |
CATED. TWAT WEVE ACUMAMTED | |

Explanation

* The idea is to “push” or “transfer” information
from one statement to the next

* For each statement s, we compute information
about the value of x immediately before and
after s

C..(x,s) = value of x before s
C...(X,s) = value of x after s

54

Transfer Functions

 Define a transfer function that transfers
information from one statement to another

Rule 1

«— X =2 (does it matter what x is here?)

1
D

C...(X, x :=c) = c if cis a constant

56

Rule 2

— X

1

n

— X

1

COUt(X’ S) =1 if Cin(X) S) =1

Recall: 1 = "unreachable code or 'haven't analyzed this yet”

57

— X=?
x = f(..)
l — =T

C..(x, x:=1(..))=T

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

58

The Other Half

 Rules 1-4 relate the in of a statement to the out of
the same statement
* they propagate information across statements

* Now we need rules relating the out of one statement
to the in of the successor statement

* to propagate information forward along paths

* |In the following rules, let statement s have
immediate predecessor statements p.,...,p,

60

if C_.(X, p;) =T forsome i, thenC (x,s)=T

if Co.(X, p;) =c and C (X, p;) =d and d =c
thenC_(x,s)=T

62

if C_.(X, p;)) =c or L foralli,
then C (X, s) =cC

63

if C_.(x, p;) =1 foralli,
then C. (x,s) =1

64

Static Analysis Algorithm

For every entry s to the program, set
C.(x,s)=T

Set C. (%, s) =C_.(x, s) =L everywhere else

Repeat until all points satisfy 1-8:

Pick s not satisfying 1-8 and update using the
appropriate rule

65

The Value L

* To understand why we need 1, look at a loop

X=T

X:=3
B>0

— X=3

XV\X:_?

Y=Z+W

X:W

Y:=0

Az2*X
A<B

66

The Value L

* To understand why we need 1, look at a loop

\X:j’

Y:=0

— X =220

— X =202
A=2*X — X =202

A<B

67

The Value 1 (Cont.)

* Because of cycles, all points must have values at
all times during the analysis

* Intuitively, assigning some initial value allows the
analysis to break cycles

* The initial value L means “we have not yet
analyzed control reaching this point”

68

Sometimes
all paths
lead to the
same place.

Thus you
need 1.

69

Another Example

X :=3
B>0

Let's do it on paper!

Analyze the value of X ...

/\

Y=Z+W

\/

Yi=0

Ai=2*X
X:1=4
A<B

Another Example: Intermediate

X=T
X=1

Must continue
until all rules
are satisfied !

71

Another Example: Intermediate

X=T

—x=X

Must continue
until all rules
are satisfied !

72

Another Example: Intermediate

s X=T
X:=3 - X__Kj,

—x=X 4

Must continue
until all rules
are satisfied !

73

Another Example: Answer

s X=T
X:=3 - X:i<3

Now all rules
are satisfied !

Orderings

* We can simplify the presentation of the
analysis by ordering the values

l < ¢ < T

Making a picture with “lower” values drawn
lower, we get

T
. -1 0 1

| 'I am called |
. a lattice!

75

Orderings (Cont.)

o T is the greatest value, 1 is the least
* All constants are in between and incomparable

* Let lub be the least-upper bound in this ordering
o cf. “least common ancestor” in Java/C++

* Rules 5-8 can be written using lub:
C..(x,s)=lb {C,,(X, p) | pisa predecessor of s }

76

Termination

* Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

* The use of lub explains why the algorithm

terminates
* Values start as 1 and only increase

1 can change to a constant, and a constant to T
- Thus, C_(x, s) can change at most twice

77

Number Crunching

The algorithm is polynomial in program size:
Number of steps =

Number of C_{(....) values changed * 2 =
(Number of program statements)? * 2

78

“Potential Secure Information Leak”
Analysis

Could sensitive information possibly reach an insecure use?

str := get password()

If B >0

/\

str := sanitize(str) Y :=0

e

display (str)

In this example, the password contents can
potentially flow into a public display
(depending on the value of B)

79

Live and Dead

* The first value of x is X = 3
dead (never used)

* The second value of x is v
live (may be used) X =

* Liveness is an important
concept
* We can generalize it to
reason about
“potential secure
information leaks”

Sensitive Information

A variable x at stmt s is a possible sensitive (high-
security) information leak if

. T
. T
. T

nere exists a statement s’ that uses x
nere is a path from s to s’

nat path has no intervening low-security assignment

to x

Chronicle.com - Today's News [(=] ¢

Textbook Sales Drop, and University Presses Search for
Reasons Why

students Flock to Web Sites Offering Pirated Textbooks

M 81

Computing Potential Leaks

* We can express the high- or low-security status of
a variable in terms of information transferred
between adjacent statements, just as in our
“definitely null” analysis

* |In this formulation of security status we only care
about “high” (secret) or “low” (public), not the

actual value
 We have abstracted away the value

* This time we will start at the public display of
information and work backwards

Secure Information Flow Rule 1

Is my password
exposed?

l — X = frue
Suyppose: | display (x)

— X =2

H. (X, s) = true if s displays x publicly
true means “if this ends up being a secret variable
then we have a bug!”

83

Secure Information Flow Rule 2

Is my password |
exposed?

Suppose: X := sanitize (x)

— X=2

H. (X, X := e) = false
(any subsequent use is safe)

84

Secure Information Flow Rule 3

Does the
X=a security status
of my password
S \ change?

H. (x, s) =H_.(X, s)if s does not refer to x

out

85

Secure Information Flow Rule 4

Is my password
exposed?

p

/Rmﬂ |

X=2 X=2 X = true X=2

H...X p)= v{H._ (x,s) | sasuccessor of p }

(if there is even one way to potentially have a leak,
we potentially have a leak!)

86

Secure Information Flow Rule 5

(Bonus - What if we have to reason about 2 variables?)

Hi (Y, X 1= y) = Hy (X, X 1= y)
(To see why, imagine the next statement is
display(x). Do we care about y above?)

87

Algorithm: How so we start?

« We are going to let all H_(...) = false initially

e Repeat process until all statements s satisfy rules
1-4 :
Pick s where one of 1-4 does not hold and update
using the appropriate rule

38

Secure Information Flow Example

X := passwd()

X := sanitize (4}? H(X) = false

B >0 +~—\H(X) = false

H(X) = faW(X) = false
Y :=Z + W Y := 0 X) = false
H(X) = false H(X) = false
+— H(X) = false
display (X)

H(X) = false

X := passwd(:)
— H(X) = false

A<B

\

(Time permitting: discuss with your partner. Where does the analysis start?) 89

~— H(X) - false

Secure Information Flow Example

X := passwd()

X := sanitize (4}? H(X) = false

B >0 +~—\H(X) = false

H(X) = faW(X) = false
Y :=Z + W Y := 0 X) = false
H(X) = false H(X) = false
+~— H(X) = TRUE
display (X)

H(X) = false

X := passwd(3
— H(X) = false

A<B

\

~— H(X) - false

90

Secure Information Flow Example

X := passwd()
X := sanitize (;?H(X):false
H(X) = TW(X): TRUE
Y :=2Z + W Y :=0 X) = TRUE
H(X) = TRU. H(X) = TRUE
+— H(X) = TRUE
display (X)
— H(X) = TRUE
X := passwd()
A <p TTHX)=TRUE

— H(X) = TRUE

\

91

Secure Information Flow Example

:= passwd()

X
T]
///////////;;;"x r= sanitize(X)<h%¥};bee
oss"“\:\ere B > 0 —H(X) = TRUE

WO © ({\(\9 >

St
H(X) = TW(X) = TRUE

Y (=2 + W Y :=0

H(X) = M) = TRUE
— H(X) = TRUE

display (X)
H(X) = TRUE

X\W
B\t \X=I>~‘,‘,0J a<s [HX)ETRUE
S\BY " _ecu?
ve ° |

X) = TRUE

— H(X) = TRUE

Termination

* A value can change from false to true, but not
the other way around

* Each value can change only once, so termination
is guaranteed

* Once the analysis is computed, it is simple to
issue a warning at a particular entry point for
sensitive information

93

Static Analysis Limitations

* Where might a static analysis go wrong?

* |f | asked you to construct the shortest
program you can that causes one of our static
analyses to get the “wrong” answer, what
would you do?

YOU KNOW THIS METAL I SPEND MOSTOF MY LUFE| | BUT TODAY, THE PATTERN

RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | OF Llﬁ!'fE 1S ALL WSOMG!

LTTLE LIGHTS? THE PATTERN OF LIGHTS OHGOD! TRY

K "”E”‘H \ SOUNDS ﬁ'#wr rsurrmsv
HELPING!

LT 5

Static Analysis

* Potential exam practice and thought question

* You are asked to design a static analysis to
detect bugs related to file handles

* Afile starts out closed. A call to open() makes it open;
open() may only be called on closed files. read() and
write() may only be called on open files. A call to
close() makes a file closed; close may only be called
on open files.

* Report if a file handle is potentially used incorrectly

* What abstract information do you track?
* What do your transfer functions look like?

95

Abstract Information

* We will keep track of an abstract value for a
given file handle variable

* Values and Interpretations

T file handle state is unknown
1 haven't reached here yet
closed file handle is closed

open file handle is open

96

Rules

* Previously: “null ptr” < Now: “file handles”

— ptr=0 «— f = closed
*ptr read (f)
\ Report \ Report
Error! Error!

97

Rules: open

+— f = closed

open (£f)

— f = open

—— =T oropen

98

Rules: close

«— f=open «—— [=T or closed
close (f) close (f)
«— £ = closed N Report

Rules: read/write

(write is identical)

«— f=open «—— [=T or closed
read (f) read (f)
— f=open \ Report

100

Rules: Assignment

— f=za — f-a
= f g = f
— f-a «— g-=-a

101

Rules: Multiple Possibilities

102

A Tricky Program

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);

103

i closed

, L

start: L > open(f)

[l

open(f) ¢ 1
A \

i L write(f) e
read(f) .

T
close(f) read(f)

g

close(f)

close(f) <= open(f)

104

closed

i closed

l closed

open(f)

i open

read(f)

i open

close(f)

start:
@sed

open(f)

write(f) —»

read(f)

close(f)

close(f) <= open(f)

105

closed

i closed

>
lclosed
start: closed . gpen(f)
@sed open
open(f) open .
ic’pen write(f) P close(f)
read(f)
open
i open !
Y closed

close(f)

read(f) open i

-

L

close(f)

1

<= open(f)

106

closed

i closed

>
lclosed
start: closed . gpen(f)
@sed open
open(f) open .
ic’pen write(f) P close(f)
read(f)
open
i open T
Y closed

close(f)

read(f) open i

-

l

close(f)

T

<+ = open(f)

107

closed

i closed

>
lclosed
start: closed . gpen(f)
@sed open
open(f) T .
i open write(f) T
read(f)
T
i open T
\/
close(f) read(f)

close(f)

close(f) = open(f)

108

closed

i closed

>
lclosed
start: closed . gpen(f)
@sed open
open(f) T .
i open write(f) T
read(f)
T
i open T
\/
close(f) read(f)

close(f)

close(f) =——— open(f)

109

Is There Really A Bug?

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);

110

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Definitely null (cf. constant propagation) is a
forwards analysis: information is pushed from
inputs to outputs

Secure information flow (cf. liveness) is a
backwards analysis: information is pushed from
outputs back towards inputs

111

Questions?

* Exam 1 shortly!

* Priscila’s Exam Review Thursday (now?) in
LCSIB1355 until 4pm

* How's the homework going?

* Don't neglect the homework while studying for the
exam.

112

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Discussion
	Global Optimization
	Correctness (Cont.)
	Slide 28
	Global Analysis
	Undecidability of Program Properties
	Slide 31
	Conservative Program Analyses
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Global Constant Propagation
	Slide 39
	Slide 40
	Slide 41
	Global Constant Propagation (Cont.)
	Example
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Using the Information
	The Idea
	Explanation
	Transfer Functions
	Rule 2
	Rule 1
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	An Algorithm
	The Value #
	Slide 67
	The Value # (Cont.)
	Slide 69
	Another Example
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Orderings
	Orderings (Cont.)
	Termination
	Termination (Cont.)
	Liveness Analysis
	Live and Dead
	Liveness
	Computing Liveness
	Liveness Rule 1
	Liveness Rule 2
	Liveness Rule 3
	Liveness Rule 4
	Slide 87
	Algorithm
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Forward vs. Backward Analysis
	Slide 112

