
Code InspectionCode Inspection
 and and

Code ReviewCode Review

2

One-Slide Summary
● In a code review, another developer examines

your proposed change and explanation, offers
feedback, and decides whether to accept it.
Modern code reviews have significant tool
support.

● In a (formal) code inspection, a team of
developers meets and examines existing code,
following a process to understand it and spot
issues.

● Both of these static quality assurance
approaches have costs and benefits.

3

The Story So Far …
● Quality assurance is critical to software

engineering.
● Testing is the most common dynamic (“run the

program”) approach to QA.
● We can generate some test inputs and oracles, but

testing remains very expensive.

● What about static (“look at the program”)
approaches to QA?

4

Intuition
(Why Static Approaches?)

“Given enough eyeballs,

all bugs are shallow.”

– Linus's Law
(Linus Torvalds) “Have peers, rather

than customers, find
defects.”

– Karl Wiegers

Grace Hopper reviewing code

5

Why Have A Peer Read My Code?
Example of Both: Twilight

[http://reasoningwithvampires.tumblr.com/]

http://reasoningwithvampires.tumblr.com/

6

● Faults can mask other faults at runtime
● Only completed implementations can be

tested (esp. for scalability or performance)
● Maybe there is a way to mitigate this??

● Many quality attributes (e.g., security,
compliance, maintainability) are hard to test

● Non-code artifacts (e.g., design documents,
README) cannot be tested

Why not simply test?

7

Why not simply test?
● Faults can mask other faults at runtime
● Only completed implementations can be

tested (esp. for scalability or performance)
● Maybe there is a way to mitigate this??

● Many quality attributes (e.g., security,
compliance, maintainability) are hard to test

● Non-code artifacts (e.g., design documents,
README) cannot be tested

Ideally we do both: Test + Code Review

8

A Second Pair of Eyes
(Plan: I Write Code, You Look At It)

● Different background, different experience
● No preconceived idea of correctness
● Not biased by “what was intended”
● “Breadth of experience in an individual is essential to

creativity and hence to good engineering. …
Collective diversity, or diversity of the group - the
kind of diversity that people usually talk about - is
just as essential to good engineering as individual
diversity. … Those differences in experience are the
"gene pool" from which creativity springs.”

– Bill Wulf, Nat. Academy of Engineering President

9

How much code do we examine?

Two Angles to Static QA Approaches
● Code Inspection: Examine Whole Program

● Expensive if the program changes
● Good if a new concern arises

● Code Review: Examine Each Change
● It’s basically an Inductive Argument:

● V(0) is good; V(n) is good V(n+1) is good→
● Bad if the definition of “good” changes

10

Code Inspection Example:
It's A Bug Hunt!

year = ORIGINYEAR; /* = 1980 */
while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
}

With
Your

Group!

11

12

Code Review

● What is code review?
● What is different between code review and

code inspection in practice?

13

GitHub

● Pull requests let you tell others about changes
you've pushed to a [Git] repository. Once a pull
request is opened, you can discuss and review
the potential changes with collaborators and
add follow-up commits before the changes are
merged into the repository.

● Other contributors can review your proposed
changes, add review comments, contribute to
the pull request discussion, and even add
commits to the pull request.

14

15

Microsoft
(Visual Studio, CodeFlow, etc.)

● Before you check in your code, you can use
Visual Studio to ask someone else from your
team to review it. Your request will show up in
the Team Explorer, in the “My Work” page.

● (Are you using Git to share your code? If so,
then use a pull request.)

16

Microsoft Teams, You Say?

17

Dev #1 – Request Review

18

Dev #1 – Submit Request to Dev #2

19

Dev #2 – See and Accept Request

20

Dev #2 – View Details

21

Dev #2 – Suggest Improvements

22

Google's Code Review Policy
● All change lists (“CLs”) must be reviewed. Period.
● Any CL can be reviewed by any engineer at Google.
● Each directory has a list of owners. At least one reviewer or the author

must be an owner for each file that was touched in the commit. If the
author is not in the owners file, the reviewer is expected to pay extra
attention to how the code fits in to the overall codebase.

● One can enforce that any CLs to that directory are CC'd to a team
mailing list.

● Reviews are conducted either by email, or using a web interface called
Mondrian.

● In general, the review must have a positive outcome before the change
can be submitted (enforced by perforce hooks). However, if the
author of the changelist meets the readability and owners checks, they
can submit the change “To Be Reviewed”, and have a post-hoc review.
There is a process which will harass reviewers with very annoying
emails if they do not promptly review the change.

23

Google, Facebook

● “In broad strokes, code review processes in Google
and Facebook are similar. In both companies it is
practically required that every change to production
code is reviewed by at least one team member.

Google has this readability process where you need to
earn a privilege to commit in a given programming
language. Readability is literally a badge on your
profile that the code review system checks to see if
you can commit the code yourself or you need to ask
for an extra review for the compliance with
company-wide language style guides.”
● Marcin Wyszynski 2017, worked at both companies

24

Tools

● Google uses Mondrian, an in-house tool
● One of its authors later made https://www.gerritc

odereview.com/
● Reportedly, one of its authors later made https://r

eviewable.io/
● Those give a taste of what Mondrian is like

● Facebook uses Phabricator
● Developed in-house, later open-sourced

https://www.phacility.com/

https://www.gerritcodereview.com/
https://www.gerritcodereview.com/
https://reviewable.io/
https://reviewable.io/
https://www.phacility.com/

25

26

Code
Review

Integration
Example

(MediaWiki)

27

Code
Review

Integration
Example

(MediaWiki)

Should we do
testing before a
human views it?

Depends...

28

Trivia: Chemistry, Biology

● This English chemist and X-ray crystallographer
used X-ray diffraction images of DNA, leading
to the discovery of its double helix structure
(see “Photo 51” below). After dying at age 37
of cancer, other collaborators on the work
were awarded the Nobel prize
(controversy: not awarded
posthumously).

● Hint: Initials R.F.

29

Psychology: Group Decision Making
● 156 students read descriptions of three

hypothetical candidates for student body
president and then met in 4-person groups to
elect a winner
● Each candidate had 16 associated pieces of

information (unambiguously positive, negative and
neutral facts related to the job)

● Collectively, each 4-person group had all the info
● Individually, each person only had some info
● Candidate A is objectively twice as good as B or C

● Who wins the election?

30

● Starting
individual
information
distribution
breakdown by
group
condition:

31

Group Decision Making

● “Even though groups could have produced
unbiased composites of the candidates through
discussion, they decided in favor of the
candidate initially preferred by a plurality
rather than the most favorable candidate.
Group members' pre and postdicussion recall
of candidate attributes indicated that
discussion tended to perpetuate, not correct,
members' distorted pictures of the
candidates.”

32

Analogy: Gerrymandering

33

Group Decision Making

[G. Stasser, W. Titus. Pooling of Unshared
Information in Group Decision Making: Biased
Information Sampling During Discussion. J. of
Personality and Social Psychology, 48(6) 1985.]

● Implications for SE: Both “formal code
inspection” and “modern multiperson
passaround code review” are group decision
making tasks. Reviewers/inspectors are
unlikely to start with uniformly perfect
information and are thus vulnerable to this
bias.

34

Do Code Reviews Work?

35

Code Review Goals

● Finding defects
● both low-level and high-level issues

(requirements/design/code)
● Code improvement

● readability, formatting, commenting, consistency, dead
code removal, naming, coding standards

● Identifying alternative solutions

● e.g., Is there something better than what I am using?
● Knowledge transfer

● learn about API usage, available libraries, best practices,
team conventions, system design, "tricks", "developer
education", especially for junior developers

36

Code Review Goals (cont'd)

● Team awareness and transparency
● let others "double check" changes
● announce changes to specific developers or

entire team ("FYI")
● Shared code ownership

● openness toward critique and changes
● makes developers "less protective" of their

code

37

38

Let's
Ask

Wes!

39

Outcomes
(200 Microsoft reviews, 570 comments)

● Most frequent: code improvements (29%)
● 58 better coding practices
● 55 removing unused/dead code
● 52 improving readability

● Moderate: defect finding (14%)
● 65 logical issues (“uncomplicated logical errors, e.g., corner

cases, common configuration values, operator precedence”)
● 6 high-level issues
● 5 security issues
● 3 wrong exception handling

● Rare: knowledge transfer
● 12 pointers to internal/external documentation, etc.

40

Outcomes

41

Aside: Philosophy

● One definition of the source of unhappiness is
unrealized desires
● You are unhappy when you desire reality (or your

experience) to have property X but it does not
● Buddhism: “craving is the cause of all suffering”

● You can either change what you want
● … or try to change reality / your experiences
● Both are usually very difficult!

42

Expectation/Outcome Mismatch

● Low quality of code reviews
● Reviewers look for easy errors (formatting issues)
● Miss serious errors

● Understanding is the main challenge
● Understanding the reason for a change
● Understanding the code and its context
● Feedback channels to ask questions often needed

● No quality assurance on the outcome

43

Formal Code Inspections

● In a formal code inspection a group of
developers meets to review code or other
artifacts
● Popularized by IBM in the 1970s, broadly adopted

in the 1980s, subject of much research
● Viewed as the most effective approach to

finding bugs
● 60-90% of bugs were found with inspections

● Very expensive and labor-intensive

44

Inspection Team and Roles

● Typically 4-5 people (at least 3 if “formal”)
● Author
● Inspector(s)

● Find faults and broader issues
● Reader

● Presents the code or document at inspection meeting
● Scribe

● Records results
● Moderator

● Manages process, facilitates, reports

45

Inspection Steps
● Planning (select Moderator)

● Overview (brief) – Author presents context in meeting

● Preparation (1-2h) – Every reviewer inspects the code
separately

● Meeting (1h)
● Reader presents the code
● All reviewers identify issues
● Meetings only discover issues, do not discuss solution or

whether it really is an issue
● Rework

● Followup (Verifier checks changes)

46

Inspection Process

Planning

Overview

Preparation

Meeting

Rework

Followup

Moderator

Author

Inspectors
(one scribe,
one reader,
one verifier)

47

Act The Core Of It Out!
● Three actors

● Code Author
● Code Reader
● Another Inspector

Volunteer ???

48

Code Inspection Acted Out (1 / 5)
● Code author distributes code to others

49

Code Inspection Acted Out (2 / 5)
● Code author distributes code to others
● Others read it separately before the meeting

50

Code Inspection Acted Out (3 / 5)
● Code author distributes code to others
● Others read it separately before the meeting
● The reader presents the code at the meeting

51

Code Inspection Acted Out (4 / 5)
● Code author distributes code to others
● Others read it separately before the meeting
● The reader presents the code at the meeting
● The (other) inspector makes suggestions

52

Code Inspection Acted Out (5 / 5)
● Code author distributes code to others
● Others read it separately before the meeting
● The reader presents the code at the meeting
● The (other) inspector makes suggestions
● The author takes the recorded suggestions and

incorporates them separately

53

Inspection Checklists

● Reminder of what to look for
● Include issues detected in the past
● Preferably focus on few important items
● Examples:

● Are all variables initialized before use? Are all variables used?

● Is the condition of each if/while statement correct?

● Does each loop terminate?

● Do function parameters have the right types and appear in the right
order?

● Are linked lists efficiently traversed?

● Is dynamically allocated memory released?

54

Process Details
● Authors do not explain or defend the code –

not objective
● Author != moderator, != scribe, != reader
● Author observes questions and misunderstandings

and clarifies issues if necessary
● Reader (optional) walks through the code line

by line, explaining it
● Reading the code aloud requires deeper

understanding
● Verbalizes interpretations, thus observing

differences in interpretation

55

Social Issues: Egos in Inspections

● Authors should separate self-worth from code
● Identify defects, not alternatives; do not

criticize authors
● Inspector: “you didn’t initialize variable x” “I →

don’t see where variable x is initialized”
● Avoid defending code. Avoid discussions of

solutions or alternatives
● Reviewers should not “show off” as smarter

● Don’t do the “well actually” thing

● Author decides how to resolve defects

56

Social Issues: Inspection Incentives

● Meetings should not include management
● Do not use code reviews for HR evaluations!

● Bad: “finding more than 5 bugs during inspection
counts against the author”

● Leads to avoidance, fragmented submission, not
pointing out defects, holding pre-reviews

● Responsibility for quality with authors, not
reviewers
● “why fix this, reviewers will find it”

● cf. lecture on Metrics and Incentives

57

Root Cause Analysis

● An overarching goal is look beyond the
immediate puzzle

● Identify way to improve the development
process to avoid this problem in the future
● Restructure the development process
● Introduce new policies
● Use new development tools, languages, analyses,

etc.
● You want to avoid having the same mistake

caught twice

58

When to Inspect

● Inspect before milestones
● Incremental inspections during development

● Earlier often better than later: smaller fragments,
chance to influence further development

● Large code bases can be expensive and frustrating
to review

● Break down, divide and conquer
● Focus on critical components
● Identify defect density in first sessions to guide further

need of inspections

59

Guidelines for Inspections

● Collected over many companies in many
projects and experiments

● Several metrics are easily measurable
● Effort, issues found, lines of code inspected, etc.

[Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter 18 and
papers reviewed therein.]

60

Focus Fatigue

Recommendation:
Do not exceed
60 minute session

61

Inspection Speed

Above 400 LOC/h reviews get shallow
Recommendation: Schedule fewer than 400 LOC

for a 1h review session

62

Inspection Meeting Efficacy

Most issues found during preparation, not in meeting
Suggested synergy seems to have only low impact
Claim: Defects found in meetings often more subtle

63

Self-Checks Matter

Authors have
self-checked
documents
before inspection

64

Inspection Accuracy

● About 25% of found issues are false positives
● We'll return to this issue later in the course: it

turns out humans are not perfect …
● Avoid discussing during meeting
● Confusion during meeting is an indicator that

document could be clearer
● For maintainability, if someone says “I don't think

the code does X”, it does not actually matter if
the code does X or not!

65

66

67

The Goal Is Not To Be “Right”
(cf. “save effort/money”)

● “A Pyrrhic victory is a victory that inflicts such
a devastating toll on the victor that it is
tantamount to defeat. Someone who wins a
Pyrrhic victory has also taken a heavy toll that
negates any true sense of achievement or
damages long-term progress.”

● Perhaps counter-intuitively, whether you (the
code author) are right or not is usually
irrelevant
● “I don't think X has Y” means “Clarify X's use of Y”

68

Inspections vs. Reviews: Costs

● Formal inspections and modern code
reviews
● Formal inspections very expensive (about

one developer-day per session)
● Passaround review is distributed,

asynchronous
● Code reviews vs. testing

● Code reviews claimed more cost effective
● Code reviews vs. not finding the bug

69

For Exam:
Code Review by Formality

● Ad hoc review
● Passaround (“modern code reviews”)
● Pair programming
● Walkthrough
● Inspection

(When should you use which type?)

M
ore Form

al

70

For Exam:
Review Type and Differences

Review Type Planning Preparation Meeting Correction Verification

Formal
Inspection

Yes Yes Yes Yes Yes

Walkthrough Yes Yes Yes Yes No

Pair
Programming

Yes No Continuous Yes Yes

Passaround
(modern code
review)

No Yes Rarely Yes No

Ad Hoc Review No No Yes Yes No

71

Studies, Claims, Results
● Raytheon review study

● Reduced “rework” from 41% of costs to 20%

● Reduced integration effort by 80%

● Paulk et al. – costs to fix a space shuttle software

● $1 if found in inspection

● $13 during system test

● $92 after delivery

● IBM – 1h of inspection saves 20h of testing

● R. Grady – efficiency data from HP

● System use 0.21 defects/h

● Black box testing 0.28 defects/h

● White box testing 0.32 defects/h

● Reading/inspection 1.06 defects/h

72

Questions?
● Homework continues …
● You can ask the course staff about homeworks

“early” (e.g., how to get started, common
pitfalls, etc.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

