
Test Inputs,
Oracles and
Generation

2

One-Slide Summary
● Formally, a test case consists of an input (data), an

oracle (output), and a comparator.

● Test inputs determine the behavior of the program.
High-coverage inputs can be generated
automatically through path enumeration, path
predicates and mathematical constraint solving.

● Test oracles correspond to what the program should
do. Generating them is an expensive problem; it can
be done automatically through invariants and
mutation.

● Test suite minimization finds the smallest subset of
tests that meet a coverage goal.

3

The Story So Far …
● Testing is very expensive (e.g., 35% of total IT

spending).
● Test suite quality metrics support informed

comparisons between tests.
● But where do we get one test, much less many

to compare?

4

Outline

● Test inputs
● Test input generation
● Test oracles
● Test oracle generation
● Test minimization

● “Kill it with Math” vs. “Humans Are Central”

5

What is a test?

● Formally, a test case has three components:
the test input (or data), the test oracle (or
expected output), and the comparator.
● Sometimes called the Oracle-Comparator model.

./prog < input > output ; diff -b output oracle

Su
bj

ec
t

Un
de

r
Te

st

In
pu

t

O
ut

pu
t

O
ra

cl
e

Co
m

pa
ra

to
r

6

Comparator

● Many test cases use “must match exactly” as
the comparator

● But officially it could be more general
● Known random output, precision limits, embedded

dates, etc.

8

Test Data

● What are all the inputs to a test?
● Many programs (especially student programs) read

from a file or stdin …
● But what else is “read in” by a program and may

influence its behavior?

Test Inputs

● User Input (e.g., GUI)
● Environment Variables, Command-Line Args
● Scheduler Interleavings
● Data from the Filesystem

● User configuration, data files

● Data from the Network
● Server and service responses

10

Operating System Philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection,

reading from the user's keyboard boils down to
opening a special device file (e.g., /dev/ttyS0)
and reading from it
● Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the
outside world through system calls
● open, read, write, socket, fork, gettimeofday
● Those (plus OS scheduling, etc.) are the full inputs

11

Test Input Generation

● We want to generate high quality tests
● Automatically!

● Using test suite metrics to prefer some tests

● Statement Coverage: visit every line
● Branch Coverage: visit every true, false→ →
● Path Coverage: visit every path

12

Path Coverage

foo(a,b,c,d,e,f):

 if a < b: this

 else: that

 if c < d: foo

 else: bar

 if e < f: baz

 else: quoz

● How many paths?

if
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz

13

Path Coverage

foo(a,b,c,d,e,f):

 if a < b: this

 else: that

 if c < d: foo

 else: bar

 if e < f: baz

 else: quoz

● There are 8 paths, but only 6 branch coverage
edges

if
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz

14

Branch vs. Path

● If you have N sequential (or serial) if-
statements …

● There are 2N branch edges
● Which you could cover in 2 tests!

● One always goes left, one always right

● But there are 2N paths
● You need 2N tests to cover them

● Path coverage subsumes branch coverage

if
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz

15

Path Test Input Generation

● Consider generating test inputs
to cover a path
● If we could do that, branch, stmt,

etc., would be easy!

● Solve this problem with math
● A path predicate (or path

condition, or path constraint) is
a boolean formula over program
variables that is true when the
program executes the given path

16

Path Predicate Example

● Consider the highlighted path
● a.k.a. “False, False, True”

● Its path predicate is
● a >= b && c >= d && e < f

● When the path predicate is true,
control flow follows the given
path

● So what should we do to make a
test input that covers this path?

if
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz

17

Solving Systems of Equations

● A satisfying assignment is a mapping from
variables to values that makes a predicate
true.

● One satisfying assignment for
a >= b && c >= d && e < f

● Is
a=5, b=4, c=3, d=2, e=1, f=2

● Another Is
a=0, b=0, c=0, d=0, e=0, f=1

18

Producing Satisfying Assignments

● Ask Humans (HW1?)
● Labor-intensive, expensive, etc.

● Repeatedly guess randomly
● Works surprisingly well (when answers are not

sparse)

● Use an automated theorem prover
● cf. Wolfram, MatLab, Mathematica, ChatGPT, etc.
● Works very well on restricted types of equations

(e.g., linear but not arbitrary polynomial, etc.)

19

Test Input Generation Plan

● Consider generating high-branch-coverage
tests for a method …

● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

● A solution is a satisfying assignment of values to
input variables those are your test input→

● None found? Dead code, tough predicate, etc.

20

Enumerating Paths

● What could go wrong with enumerating paths
in a method?

21

Enumerating Paths

● What could go wrong with enumerating paths
in a method?

● There could be infinitely many!
while a<b:

 a = a + 1

return a

● One path corresponds to executing the loop
once, another to twice, another to three
times, etc.

if
a<b

a=
a+1

ret
a

22

Path Enumeration Approximations

● Typical Approximations
● Consider only acylic paths (corresponds to taking

each loop zero times or one time)
● Consider only taking each loop at most k times
● Enumerate paths breadth-first or depth-first and

stop after k paths have been enumerated

● (For more information, take a Programming
Languages, Compilers or Theory class)

23

Collecting Path Predicates

● Now we have a path through the
program

● What could go wrong with
collecting the path predicate?

if
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz

24

Path Predicate

● The path predicate may not be expressible in
terms of the inputs we control

foo(a,b):

 str1 = read_from_url(“abc.com”)

 str2 = read_from_url(“xyz.com”)

 if (str1 == str2):

 bar()

● Suppose we want to exercise the path that
calls bar. One predicate is str1==str2.
What do you assign to a and b?

25

Path Predicate Woes

● Typical solutions:
● “We don't care.”
● Collect up the path predicate as best you can
● Ask the solver to solve it in terms of the input

variables
● If it can't

… either because the math is too hard

… or because the variables are out of our control

● Then we don't generate a test input exercising that
path. Best effort.

26

Trivia: Worldwide Box Office

● Identify the top-six grossing worldwide
cinematic franchise associated with:
● The most versatile substance on the planet, and

they used it to make a Frisbee. ($38B)
● With great power comes great responsibility.

($10B)
● Do. Or do not. There is no try. ($10B)
● You'll be next Mudbloods! ($9.6B)
● A martini. Shaken, not stirred. ($7.1B)
● I live my life a quarter mile at a time. ($7.3B)

28

Psychology: Memory

● Which factors make it more likely that you will
remember something that happened to you:
● The memory was happy
● The memory was calm
● The memory was sad
● The memory was from long ago
● The memory was recent

29

Psychology: Memory

● In three experiments involving hundreds of
participants, researchers found that “intensity
affects the properties of autobiographical
memories more so than does valence”
● Valence = positive or negative emotion
● Intensity = strong or weak emotion

31

Emotional Intensity Predicts
Autobiographical Memory Experience

● “intensity affects the properties of autobiographical
memories more so than does valence … these
intensity differences are not the result of a simple
retention difference, because the age of the memory
was also included in the analyses and it was less
influential than intensity or valence … not only will
highly intense events tend to be remembered longer,
but they will also tend to be remembered with
greater vividness, a greater sense of recollection”
[JENNIFER M. TALARICO, KEVIN S. LABAR, and DAVID C. RUBIN. Memory &
Cognition, 2004, 32 (7) 1118-1132.]

33

Test Data Generation

● One of the earliest approaches was DART
(Directed Automatic Random Testing)

● Their example program has three paths:
● False, True-False, True-True

● Predicates:
● z=y && x!=z
● z=y && x=z && y!=x+10
● z=y && x=z && y=x+10

● Participation: For each of those 3 predicates,
give 1 solution in terms of x and y.

34

Microsoft's Pex Tool

● Pex is a test input generation tool integrated
into Visual Studio
● It has special handling for pointers, is language-

independent, etc., but otherwise works just like
what we covered here

● Other tools (e.g., jCUTE for Java) exist

35

Does it Work?

● Why are these MS Dot.Net classes anonymous?
● What are block and arc coverage?

36

So, did we win?

● We want to automatically generate test cases
● We have an approach that works well in

practice:
● Enumerate some paths
● Extract their path constraints
● Solve those path constraints

● What are we missing?

37

We Forgot Oracles!

● We know to generate test inputs
● e.g., “for high coverage, run f(1,0) and f(-5,-7)”

● But we don't know what the answer is
supposed to be when you do that!

● So we cannot tell if a program is passing or
failing.

● Well … maybe we can still salvage something.
Thoughts?

38

Test Generation Bug Finding→
● If your program crashes on that input bad→
● “This paper presents EXE, an effective bug-

finding tool that automatically generates
inputs that crash real code … EXE works well
on real code, finding bugs along with inputs
that trigger them in: the BSD and Linux packet
filter implementations, the udhcpd DHCP
server, the pcre regular expression library, and
three Linux file systems.”
[Cadar et al. EXE: Automatically Generating Inputs of Death. CCS 2006.]

39

Big Problem

● In general, though, we're
going to need both the
question and the answer!

● But don't panic yet …
● No need to throw in the

towel …

40

Oracles

● “If Croesus goes to war he will destroy a great
empire.”

– Barbara Gordon The Oracle at Delphi, on whether
Croesus should go to war against the Persians

● Oracles are tricky.
● Many believe that formally writing down what

a program should do is as hard as coding it.
● (We return to this topic later.)

41

The Oracle Problem

● The Oracle Problem is the difficulty and cost
of determining the correct test oracle (i.e.,
output) for a given input.
● “What should the program do?”

● It is expensive both for humans and for
machines.

● An implicit oracle is one associated with the
language or architecture, rather than
program-specific semantics (e.g., “don't
segfault”, “don't loop forever”).

42

Aside: Philosophy

● The difficulty here should not be surprising.
● Recall from Ethics that it is often easier to

make negative moral edicts (“Do not steal”)
than it is to elaborate positive ones (“Here is
what it means to be a generous person ...”)

● Similarly, it is much easier to make negative
program edicts (“Do not crash”) than it is to
elaborate positive ones (“Here is what it
means to be a good webserver ...”)

43

Idea: Use The Program

● In this setting we do have the program
● We're trying to generate tests for it …

● Perhaps the program itself can somehow tell
us what its correct behavior should be
● But how?

44

Insight: Competent Programmers

● We return to the assumption that the program
is mostly correct (where was this from?)

● If I run the program ten different times and
every time we have index == array_len - 1
● … perhaps that is the test oracle we want:

assertEquals(index, array_len-1);

● That is, “it should be true every time”

● An invariant is a predicate over program
expressions that is true on every execution.
● High-quality invariants can serve as test oracles

45

Learning Invariants

● We can learn (or infer) program invariants by
running the program many times and noting
what is always true of the output
● e.g., if we run sqrt() many times, we may learn

retval>=0

46

Learning Invariants

● We can learn (or infer) program invariants by
running the program many times and noting
what is always true of the output
● e.g., if we run sqrt() many times, we may learn

retval>=0

● Simple implementation: start with a big list of
possible invariants (e.g., retval=0, retval=5,
retval>=0, etc.) and, on every run, cross off
those that are falsified
● Recall: by definition an invariant is true on all runs

47

Common vs. Correct

● In some sense, we are assuming that common
behavior (or behavior we can observe) is
correct behavior

● This is like learning the rules of English by
reading high school essays. What could go
wrong?

48

Bad Invariants

● Consider the following situations

● We test sqrt once, on sqrt(9), and learn the
invariant: retval==3

● We test findNode thousands of times, and
learn the invariant: pointer%4==0

49

Fixing This Mess

● The “sqrt == 3” issue can be partially
addressed with more random inputs

● The “ptr % 4 == 0” issue is more troubling
● It is only coincidentally correct here
● (Why do we care? Hint: cost!)

● Competent Programmers: in general, every
line of code matters to correctness
● When did we introduce this hypothesis?

50

The Chain of Reasoning

● Competent Programmers: in general, every
line of human-written code matters to human-
intended correctness

● So if an invariant or oracle captures human-
intended correctness, there must be at least
one line of code that ensures it

● So if I poke and mutate your programs, I
should be able to falsify the invariant!
● If I can't, that candidate invariant was coincidental

and not a product of the code you actually wrote!

51

Example

● Suppose we have
tested this on 1,
9, 16, 30

● Candidate
Invariants:
● retval < retval+1
● retval <= 6
● x >= retval*retval

● What do we do?

52

Example

● Suppose we have
tested this on 1,
9, 16, 30

● Candidate
Invariants:
● retval < retval+1
● retval <= 6
● x >= retval*retval

● What do we do?

Never ruled out by any
mutation, dropped!

Ruled out by trying
more inputs (e.g., 81),
dropped!

Falsified by some
mutations (which?),
retained!

53

Test-Making Tools

● This oracle-generation approach is used tools
such as Randoop
● Randoop generates unit tests using feedback-

directed random test generation. This
technique ... generates sequences of
method/constructor invocations for the classes
under test. Randoop executes the sequences it
creates, using the results of the execution to
create assertions that capture the behavior of your
program.

● You will get a chance to try it in Homework 2!

54

An Embarrassment of Riches

● At this point, we may actually have too many
test cases
● Surprisingly, this is normal in industry: you almost

always have far too few or far too many!
● Recall Google optional reading from last week

● This is especially true when using automated
test generation tools
● Which many produce many tests but lower-quality

ones than humans would produce
● A big cost problem!

55

Test Suite Minimization

● Given a set of test cases and coverage
information for each one, the test suite
minimization problem is to find the minimal
number of test cases that still have the
maximum coverage.

● Example
● T1 covers lines 1,2,3
● T2 covers lines 2,3,4,5
● T3 covers lines 1,2
● T4 covers lines 1, 6

56

Revenge of CS Theory
● You can add in details like the tests have

different costs to run, but ignore that for now
● How hard is it to solve the test suite

minimization problem?
● What is a correct algorithm for it? Can we do

better?

57

Questions?
● Homework 1b, 1c, 1d, Reflection all due!

● They are viewed as much harder than 1a

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

