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One-Slide Summary
● Formally, a test case consists of an input (data), an 

oracle (output), and a comparator. 

● Test inputs determine the behavior of the program. 
High-coverage inputs can be generated 
automatically through path enumeration, path 
predicates and mathematical constraint solving. 

● Test oracles correspond to what the program should 
do. Generating them is an expensive problem; it can 
be done automatically through invariants and 
mutation. 

● Test suite minimization finds the smallest subset of 
tests that meet a coverage goal. 



3

The Story So Far …
● Testing is very expensive (e.g., 35% of total IT 

spending). 
● Test suite quality metrics support informed 

comparisons between tests.
● But where do we get one test, much less many 

to compare?
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Outline

● Test inputs
● Test input generation
● Test oracles
● Test oracle generation
● Test minimization

● “Kill it with Math” vs. “Humans Are Central”
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What is a test?

● Formally, a test case has three components: 
the test input (or data), the test oracle (or 
expected output), and the comparator. 
● Sometimes called the Oracle-Comparator model.

./prog < input > output ; diff -b output oracle
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Comparator

● Many test cases use “must match exactly” as 
the comparator

● But officially it could be more general
● Known random output, precision limits, embedded 

dates, etc. 
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Test Data

● What are all the inputs to a test?
● Many programs (especially student programs) read 

from a file or stdin … 
● But what else is “read in” by a program and may 

influence its behavior?



Test Inputs

● User Input (e.g., GUI)
● Environment Variables, Command-Line Args
● Scheduler Interleavings
● Data from the Filesystem

● User configuration, data files

● Data from the Network
● Server and service responses
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Operating System Philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, 

reading from the user's keyboard boils down to 
opening a special device file (e.g., /dev/ttyS0) 
and reading from it
● Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the 
outside world through system calls
● open, read, write, socket, fork, gettimeofday
● Those (plus OS scheduling, etc.) are the full inputs
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Test Input Generation

● We want to generate high quality tests
● Automatically!

● Using test suite metrics to prefer some tests

● Statement Coverage: visit every line
● Branch Coverage: visit every true, false→ →
● Path Coverage: visit every path
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Path Coverage

foo(a,b,c,d,e,f):

  if a < b: this

  else: that

  if c < d: foo

  else: bar

  if e < f: baz

  else: quoz

● How many paths?

if 
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz
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Path Coverage

foo(a,b,c,d,e,f):

  if a < b: this

  else: that

  if c < d: foo

  else: bar

  if e < f: baz

  else: quoz

● There are 8 paths, but only 6 branch coverage 
edges

if 
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz
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Branch vs. Path

● If you have N sequential (or serial) if-
statements … 

● There are 2N branch edges
● Which you could cover in 2 tests!

● One always goes left, one always right

● But there are 2N paths
● You need 2N tests to cover them

● Path coverage subsumes branch coverage

if 
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz
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Path Test Input Generation

● Consider generating test inputs 
to cover a path
● If we could do that, branch, stmt, 

etc., would be easy!

● Solve this problem with math
● A path predicate (or path 

condition, or path constraint) is 
a boolean formula over program 
variables that is true when the 
program executes the given path
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Path Predicate Example

● Consider the highlighted path
● a.k.a. “False, False, True”

●  Its path predicate is
● a >= b && c >= d && e < f

● When the path predicate is true, 
control flow follows the given 
path

● So what should we do to make a 
test input that covers this path?

if 
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz
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Solving Systems of Equations

● A satisfying assignment is a mapping from 
variables to values that makes a predicate 
true.

● One satisfying assignment for
a >= b && c >= d && e < f

● Is
a=5, b=4, c=3, d=2, e=1, f=2

● Another Is
a=0, b=0, c=0, d=0, e=0, f=1
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Producing Satisfying Assignments

● Ask Humans (HW1?)
● Labor-intensive, expensive, etc.

● Repeatedly guess randomly
● Works surprisingly well (when answers are not 

sparse)

● Use an automated theorem prover
● cf. Wolfram, MatLab, Mathematica, ChatGPT, etc. 
● Works very well on restricted types of equations 

(e.g., linear but not arbitrary polynomial, etc.)
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Test Input Generation Plan

● Consider generating high-branch-coverage 
tests for a method … 

● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

● A solution is a satisfying assignment of values to 
input variables  those are your test input→

● None found? Dead code, tough predicate, etc.
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Enumerating Paths

● What could go wrong with enumerating paths 
in a method?
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Enumerating Paths

● What could go wrong with enumerating paths 
in a method?

● There could be infinitely many!
while a<b:

  a = a + 1

return a

● One path corresponds to executing the loop 
once, another to twice, another to three 
times, etc. 

if
a<b

a=
a+1

ret
a
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Path Enumeration Approximations

● Typical Approximations
● Consider only acylic paths (corresponds to taking 

each loop zero times or one time)
● Consider only taking each loop at most k times
● Enumerate paths breadth-first or depth-first and 

stop after k paths have been enumerated

● (For more information, take a Programming 
Languages, Compilers or Theory class)
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Collecting Path Predicates

● Now we have a path through the 
program

● What could go wrong with 
collecting the path predicate?

if 
a<b

this that

if
c<d

foo bar

if
e<f

baz quoz
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Path Predicate

● The path predicate may not be expressible in 
terms of the inputs we control

foo(a,b): 

  str1 = read_from_url(“abc.com”)

  str2 = read_from_url(“xyz.com”)

  if (str1 == str2):

    bar()

● Suppose we want to exercise the path that 
calls bar. One predicate is str1==str2. 
What do you assign to a and b?
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Path Predicate Woes

● Typical solutions:
● “We don't care.”
● Collect up the path predicate as best you can 
● Ask the solver to solve it in terms of the input 

variables
● If it can't

… either because the math is too hard

… or because the variables are out of our control

● Then we don't generate a test input exercising that 
path. Best effort.
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Trivia: Worldwide Box Office

● Identify the top-six grossing worldwide 
cinematic franchise associated with:
● The most versatile substance on the planet, and 

they used it to make a Frisbee. ($38B)
● With great power comes great responsibility. 

($10B)
● Do. Or do not. There is no try. ($10B) 
● You'll be next Mudbloods! ($9.6B) 
● A martini. Shaken, not stirred. ($7.1B) 
● I live my life a quarter mile at a time. ($7.3B)
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Psychology: Memory

● Which factors make it more likely that you will 
remember something that happened to you:
● The memory was happy
● The memory was calm 
● The memory was sad
● The memory was from long ago
● The memory was recent



29

Psychology: Memory

● In three experiments involving hundreds of 
participants, researchers found that “intensity 
affects the properties of autobiographical 
memories more so than does valence”
● Valence = positive or negative emotion
● Intensity = strong or weak emotion
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Emotional Intensity Predicts 
Autobiographical Memory Experience

● “intensity affects the properties of autobiographical 
memories more so than does valence … these 
intensity differences are not the result of a simple 
retention difference, because the age of the memory 
was also included in the analyses and it was less 
influential than intensity or valence … not only will 
highly intense events tend to be remembered longer, 
but they will also tend to be remembered with 
greater vividness, a greater sense of recollection”
[ JENNIFER M. TALARICO, KEVIN S. LABAR, and DAVID C. RUBIN. Memory & 
Cognition, 2004, 32 (7) 1118-1132. ] 
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Test Data Generation

● One of the earliest approaches was DART 
(Directed Automatic Random Testing)

● Their example program has three paths:
● False, True-False, True-True

● Predicates:
● z=y && x!=z
● z=y && x=z && y!=x+10
● z=y && x=z && y=x+10

● Participation: For each of those 3 predicates, 
give 1 solution in terms of x and y.
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Microsoft's Pex Tool

● Pex is a test input generation tool integrated 
into Visual Studio
● It has special handling for pointers, is language-

independent, etc., but otherwise works just like 
what we covered here

● Other tools (e.g., jCUTE for Java) exist
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Does it Work?

● Why are these MS Dot.Net classes anonymous?
● What are block and arc coverage?
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So, did we win?

● We want to automatically generate test cases
● We have an approach that works well in 

practice:
● Enumerate some paths
● Extract their path constraints
● Solve those path constraints

● What are we missing?
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We Forgot Oracles!

● We know to generate test inputs 
● e.g., “for high coverage, run f(1,0) and f(-5,-7)” 

● But we don't know what the answer is 
supposed to be when you do that!

● So we cannot tell if a program is passing or 
failing.

● Well … maybe we can still salvage something. 
Thoughts?
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Test Generation  Bug Finding→
● If your program crashes on that input  bad→
● “This paper presents EXE, an effective bug-

finding tool that automatically generates 
inputs that crash real code … EXE works well 
on real code, finding bugs along with inputs 
that trigger them in: the BSD and Linux packet 
filter implementations, the udhcpd DHCP 
server, the pcre regular expression library, and 
three Linux file systems.” 
[Cadar et al. EXE: Automatically Generating Inputs of Death. CCS 2006.]
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Big Problem

● In general, though, we're 
going to need both the 
question and the answer!

● But don't panic yet …
● No need to throw in the 

towel … 
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Oracles

● “If Croesus goes to war he will destroy a great 
empire.”

– Barbara Gordon The Oracle at Delphi, on whether 
Croesus should go to war against the Persians

● Oracles are tricky. 
● Many believe that formally writing down what 

a program should do is as hard as coding it.
● (We return to this topic later.)
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The Oracle Problem

● The Oracle Problem is the difficulty and cost 
of determining the correct test oracle (i.e., 
output) for a given input.
● “What should the program do?”

● It is expensive both for humans and for 
machines.

● An implicit oracle is one associated with the 
language or architecture, rather than 
program-specific semantics (e.g., “don't 
segfault”, “don't loop forever”). 
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Aside: Philosophy

● The difficulty here should not be surprising.
● Recall from Ethics that it is often easier to 

make negative moral edicts (“Do not steal”) 
than it is to elaborate positive ones (“Here is 
what it means to be a generous person ...”)

● Similarly, it is much easier to make negative 
program edicts (“Do not crash”) than it is to 
elaborate positive ones (“Here is what it 
means to be a good webserver ...”)
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Idea: Use The Program

● In this setting we do have the program
● We're trying to generate tests for it … 

● Perhaps the program itself can somehow tell 
us what its correct behavior should be
● But how?
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Insight: Competent Programmers

● We return to the assumption that the program 
is mostly correct (where was this from?)

● If I run the program ten different times and 
every time we have index == array_len - 1
● … perhaps that is the test oracle we want:

assertEquals(index, array_len-1);

● That is, “it should be true every time” 

● An invariant is a predicate over program 
expressions that is true on every execution.
● High-quality invariants can serve as test oracles



45

Learning Invariants

● We can learn (or infer) program invariants by 
running the program many times and noting 
what is always true of the output
● e.g., if we run sqrt() many times, we may learn 

retval>=0 
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Learning Invariants

● We can learn (or infer) program invariants by 
running the program many times and noting 
what is always true of the output
● e.g., if we run sqrt() many times, we may learn 

retval>=0 

● Simple implementation: start with a big list of 
possible invariants (e.g., retval=0, retval=5, 
retval>=0, etc.) and, on every run, cross off 
those that are falsified
● Recall: by definition an invariant is true on all runs
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Common vs. Correct

● In some sense, we are assuming that common 
behavior (or behavior we can observe) is 
correct behavior

● This is like learning the rules of English by 
reading high school essays. What could go 
wrong?
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Bad Invariants

● Consider the following situations

● We test sqrt once, on sqrt(9), and learn the 
invariant: retval==3

● We test findNode thousands of times, and 
learn the invariant: pointer%4==0 



49

Fixing This Mess

● The “sqrt == 3” issue can be partially 
addressed with more random inputs 

● The “ptr % 4 == 0” issue is more troubling
● It is only coincidentally correct here
● (Why do we care? Hint: cost!) 

● Competent Programmers: in general, every 
line of code matters to correctness
● When did we introduce this hypothesis? 
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The Chain of Reasoning

● Competent Programmers: in general, every 
line of human-written code matters to human-
intended correctness

● So if an invariant or oracle captures human-
intended correctness, there must be at least 
one line of code that ensures it

● So if I poke and mutate your programs, I 
should be able to falsify the invariant!
● If I can't, that candidate invariant was coincidental 

and not a product of the code you actually wrote! 
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Example

● Suppose we have 
tested this on 1, 
9, 16, 30

● Candidate 
Invariants:
● retval < retval+1
● retval <= 6
● x >= retval*retval

● What do we do?
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Example

● Suppose we have 
tested this on 1, 
9, 16, 30

● Candidate 
Invariants:
● retval < retval+1
● retval <= 6
● x >= retval*retval

● What do we do?

Never ruled out by any
mutation, dropped!

Ruled out by trying
more inputs (e.g., 81),
dropped!

Falsified by some
mutations (which?),
retained!
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Test-Making Tools

● This oracle-generation approach is used tools 
such as Randoop
● Randoop generates unit tests using feedback-

directed random test generation. This 
technique ... generates sequences of 
method/constructor invocations for the classes 
under test. Randoop executes the sequences it 
creates, using the results of the execution to 
create assertions that capture the behavior of your 
program. 

● You will get a chance to try it in Homework 2!
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An Embarrassment of Riches

● At this point, we may actually have too many 
test cases
● Surprisingly, this is normal in industry: you almost 

always have far too few or far too many!
● Recall Google optional reading from last week

● This is especially true when using automated 
test generation tools
● Which many produce many tests but lower-quality 

ones than humans would produce
● A big cost problem!
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Test Suite Minimization

● Given a set of test cases and coverage 
information for each one, the test suite 
minimization problem is to find the minimal 
number of test cases that still have the 
maximum coverage. 

● Example
● T1 covers lines 1,2,3
● T2 covers lines    2,3,4,5
● T3 covers lines 1,2
● T4 covers lines 1,           6
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Revenge of CS Theory
● You can add in details like the tests have 

different costs to run, but ignore that for now
● How hard is it to solve the test suite 

minimization problem?
● What is a correct algorithm for it? Can we do 

better?
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Questions?
● Homework 1b, 1c, 1d, Reflection all due!

● They are viewed as much harder than 1a
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