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One-Slide Summary

• Test suite quality metrics help us decide which 

suite to use. Line coverage, the fraction of lines 

visited when running a suite, is simple but gives 

limited confidence. Branch coverage, which 

requires both true and false values for conditionals, 

is richer (incorporating data values indirectly).

• Mutation analysis measures the fraction of seeded 

defects detected by a suite; it is expensive but 

effective.

• Beta and A/B testing involve real users and their 

experiences.
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The Story So Far …

• Testing is the most common dynamic 

technique for software quality assurance.

• Testing is very expensive (e.g., 35% of total IT 

spending). [Capgemini World Quality Report. 2015]

• Not testing, or testing badly, is even more 

expensive: [Minimizing code defects to improve software quality 

and lower development costs. IBM 2008] (Remember the IBM Story?)
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Story Time

• Abboty Labs (St. Jude Medical) makes 

pacemakers

• In 2016, 465,000 of them were discovered to 

have security vulnerabilities
“The wireless protocol used for communication 
amongst St. Jude Medical cardiac devices has 
serious security vulnerabilities that make it 
possible to convert Merlin@home devices into 
weapons capable of disabling therapeutic care 
and delivering shocks to patients at distances of
 10 feet, a range that could be extended using 
off-the-shelf parts to modify Merlin@home units.”

https://medsec.com/stj_expert_witness_report.pdf
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Turtles All The Way Down

• “The “fix” is not a surgical replacement 

pacemaker, but a firmware update that takes 

about three minutes to complete and carries a 

“very low risk of update malfunction;” a very 

small percentage of people might experience 

a “complete loss of device functionality” 

during the firmware update. The patch covers 

St. Jude Medical’s pacemakers: Accent, 

Anthem, Accent MRI, Accent ST, Assurity and 

Allure.”
• https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
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Guiding Narrative

• How should we think about testing?

• Lens of Logic

• Lens of Statistics

• Lens of Adversity
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Lens of Logic
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The Motivation

• If testing is our best way to gain confidence in 

the quality of software, but testing is expensive, 

how can we ensure that we are testing in an 

effective manner?

• Informal Desideratum: The program passes the 

tests if and only if it does all the right things and 

none of the wrong things.

• Pass all tests → program adheres to 
requirements

• Each failing test → program behaves incorrectly
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Intuition (Gedankenexperiment)

• Suppose you were writing a sqrt program and 

one of the requirements was that it should 

abort gracefully on negative inputs.

• Suppose further that your test suite does not 

include any negative inputs.

• Can we conclude that passing all of the tests 

implies adhering to all of the requirements?

def safe_sqrt(x):

    if x < 0:

        raise ValueError("Cannot do sqrt of negative number")

   return math.sqrt(x)
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Coverage

• We desire all of the requirements to be 

covered (“checked”) by the test suite.

• For our purposes, X coverage is the degree to 

which X is executed/exercised by the test 

suite.

• Examples:

• Code coverage is the degree to which the source code is 
executed by the test suite.

• Statement coverage is the fraction of source statements 
that are executed by the test suite.
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Do Tests Cover All Requirements?

• In ideal world we would have traceability 

between requirements and test cases

• That is, each test case would have an 

annotation like “a program that passes this 

test satisfies requirement X” or “passing this 

test gives confidence that a program adheres 

to requirement Y”

• Outside of certain industries (e.g., Aerospace), 

such formal traceability is rare

• e.g., https://en.wikipedia.org/wiki/DO-178C

https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
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An Approximation 
• We will cover requirements and their 

elicitation later in this course (mid-semester)

• But suppose for now you don't have formal 

traceability to your requirements

• So testing that the program does all and only 

the good things that it is required to do is not 

possible (or not feasible)

• Analogy: “Lie of Omission”

 While at a lake, you see your friend is drowning.

 Are you obligated to rescue them?
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Aside: Ethics

• It is very tempting to say “yes, you are morally 

obligated to save your friend” (many would agree!)

• However, it can be surprisingly difficult to make a 

consistent moral system that requires particular 

positive actions, as opposed to just forbidding 

negative actions

• cf. “Thou shalt not kill” (Old Testament) or “An it harm none, 
do what ye will” (Wiccan Rede) or “Everything which is not 
forbidden is allowed” (English law), etc.

• For more information, take a class on Ethics 

(normative ethics) from the Philosophy department
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Don't Do Bad Things
(How does good/bad intuition relate to testing?)

• We can at least test that the program does not 

do certain bad things

• e.g., “don't segfault”, “don't send my 
password to Microsoft”, “on this one particular 
input, don't get the wrong answer”

• Note that “I never do bad things” is not the 

same as “I always/eventually do good things”

• For more information, take a class on Modal 
Logic or read about Liveness vs. Safety 
properties
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Testing to Find Bugs 

• So now we want to test to gain confidence 

that the program does not do “bad things”

• That is, that the program does not have bugs

• Key Logical Observation: If we never test line 

X then testing cannot rule out the presence 

of a bug on line X

• (You could read line X, but this lecture is on 

testing. Later this semester: code review.)
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If this seems “too obvious” so far, 

just wait …



19

P → Q

“No test covers X → may have bug in X”

• Note that you could test line X and still have a 

bug on line X:

foo(a,b) { return a/b; }  

test: foo(6,2)

• But testing X gives us some small but non-zero 

confidence in the correctness of X
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“All Other Things Being Equal”
• If test A visits lines 1 and 2

• And test B visits lines 1, 2, 3 and 4

• Then, all other things being equal, we prefer 

test B

• Test A gives some confidence about 1 and 2 and no 
confidence (no information) about 3 and 4

• Test B gives some confidence about 1, 2, 3 and 4

• If the confidence/info gained per tested line is 

c>0, test A gives us 2c+0 and test B gives us 4c.

• Because c>0, we have 4c > 2c. So B > A.
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Simplifying Assumptions

• Assumption 1. We gain the same amount of 

confidence (or information) for each visited 

line.

• Assumption 2. The amount of confidence (or 

information) we gain per visited line is 

positive.

• Assumption 3. …
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Line Coverage:

A Test Suite Quality Metric

• A test suite quality metric or test suite 

adequacy criterion assesses the quality of a 

test suite (with respect to an external notion 

of utility) and allows test suites to be 

compared.

• Line (or statement) coverage is a test suite 

quality metric: it is the number of unique lines 

(statements) visited (exercised) by the 

program when running the test suite.

• (Informally: visiting more lines is better because you 
have no information about un-visited lines.)
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Using Line Coverage
(What can we do with it?)

• Given two test suites that both run within your 

resource budget (“AOTBE”, etc.), if we can 

only run one, we prefer the test suite with 

higher line coverage

• Thus coverage is a metric that allows us to 

compare two test suites and pick the “better” 

one (remember we managers want us to get better!)

• We use this information to guide decision-

making in a software process (“how should we 

do testing?”)
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Collecting Line Coverage
(How do we measure it?)

• At its simplest, this is just print-statement 

debugging

• Put a print statement before every line of 

the program

• Run all the tests, collect all the printed 
information, remove duplicates, count

• Practical concern: 

• the observer effect (from physics) is the fact 
that simply observing a situation or 
phenomenon necessarily changes that 
phenomenon.
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Coverage Instrumentation
(How do we measure it?)

• Coverage instrumentation modifies a program 

to record coverage information in a way that 

minimizes the observer effect.

• This can be done at the source or binary level.

• Don't actually print to stdout/stderr

• Don't slow things down too much

• Pre-check before printing a duplicate?

• Don't introduce infinite loops

• Instrument “print” with a call to “print”?
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Good News: “Solved” Problem

• This is a well-studied problem and many push-

button solutions exist for various forms of 

coverage

• Either built in to your IDE or as external tools

• You will use three in the Homework

• Python's coverage, gcc's gcov, Java's cobertura

• For more information on how to write one yourself, 

take a (graduate?) PL or Compilers class.
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Problems with Line Coverage

• What could go wrong with line coverage?

• Can you think of situations with 100% line 

coverage where the program might still have 

bugs?



Example Where

Statement Coverage is Inadequate

●Cross-site scripting (XXS) attacks: [2016 Vulnerability 

Statistics Report, edgescan]

28

Browser Attack 
61%

XXS Attack
86%

Browser 
Attack 

61%
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Example Where

Statement Coverage is Inadequate

●Cross-site scripting (XXS) attacks: [2016 Vulnerability 

Statistics Report, edgescan]

Testing Data Values Matter Too!
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Data Values and 

Implicit Control Flow
return a/b

print ptr->fld

if (b != 0)

  return a/b

else

  ABORT

if (ptr != NULL)

  print ptr->fld

else

  ABORT
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Intuition

• Many interesting data values cause implicit or 

explicit changes of control

• That is, they cause different branches of 
conditionals to execute

• Informally, the problem of ensuring that we 

cover interesting data values may reduce to 

the problem of ensuring that we cover all 

branches of conditionals
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Branch Coverage

• Branch coverage is a test suite quality metric 

that counts the total number of conditional 

branches exercised by that test suite (i.e., 

if→true and if→false are counted separately)

• Note that branch coverage can subsume line 

coverage:

def foo(a):

  if a > 5:

    print(“x”)

  print(“y”)

Test Suite {foo(7)} has 100%
line coverage but 50% branch
coverage.

Test Suite {foo(7), foo(0)}
has 100% line and 100%
branch coverage.
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Branch vs. Line

• Branch coverage typically gives us more 

confidence than line coverage

• Typically, 100% branch coverage implies 100% 

line coverage

• However, branch coverage is “more 

expensive” in the sense that it is harder for a 

test suite to have high branch coverage than 

to have high line coverage

• Note: quality isn't really “more expensive”, you 
were just fooling yourself before by thinking line 
coverage was OK. Being correct is expensive.



34

Other Flavors

• Function Coverage: what fraction of functions 

have been called?

• Condition Coverage: what fraction of boolean 

subexpressions have been evaluated to both 

true and also (e.g., on another run) to false?

• Comparing this to branch coverage is a not-
uncommon test question …

• Modified Condition / Decision Coverage 

(MCDC): function coverage + branch coverage 
(this is a simplification)

• Used in mission critical (e.g., avionics) software
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Trivia: Statistics

• This English social reformer and statistician 

(among other activities, ~1850) was a pioneer 

in the use of infographics: the effective 

graphical presentation of statistical data.



36

Trivia: Geography
• This is the capital of, and most populous city in, 

Malaysia. Its name means “muddy confluence” in Malay. 

It was captured by Japan in 1942 and gained 
independence from British rule in 1957. Islam and 

Buddhism are the majority religions.



37

Psychology: Recall

• 120 students (age 18 to 24) were asked to 

study prose passages (e.g., 300 words on “Sea 

Otters”) and also do math problems

• Group 1: Read for 7m, math for 2m, re-read 

for 7m, math for 5m

• Group 2: Read for 7m, math for 2m, test for 

10m, math for 5m

• Both groups: later →  test for 10 minutes

• Which group did better? By how much?
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Psychology: Recall
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Psychology: Testing Effect

• The testing effect: long-term memory is 

increased when some of the learning period is 

devoted to retrieving the to-be-remembered 

information through testing with feedback.

• “They found that re-studying or re-reading 

memorized information had no effect, but 

trying to recall the information had an 

effect.”

• Implication for SE: Code comprehension.

[  Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory Tests 

Improves Long-Term Retention". Psychological Science. 17 (3): 249–255. ]
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Lens of 

Statistics



41

Alternate View

• The bugs experienced by users are the ones 

that matter.

• Dually, bugs never experienced by users do not 

matter.
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Positive User View

• Suppose you are writing a point-of-sale cashier 

application that makes change for a dollar ($1). 

Given any price between 1 and 100 cents, you 

must indicate the coins to give out as change.

• e.g., Price is 23 cents, User Gives you a $1                 
→ return 3 quarters and 2 pennies (77 cents)

• In this scenario, you can exhaustively test all 

100 inputs that will occur to real users in the 

real world

• In some sense, it does not matter if that is 100% 
statement or code coverage (e.g., dead code)
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Negative User View

• Suppose users will only ever cause lines 1, 2 

and 3 of your program to be executed

• Then you do not need to test line 4

• Even if it has a bug, users will never encounter 
that bug

• Note “will” →  this either requires a 

prediction of the future or a finite input 

domain
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Testing as Sampling

• If user-experienced bugs are the ones that 

matter, testing should be devoted to sampling 

those inputs that users will provide

• Two views:

• Sample what users do most commonly

• Sample what causes the most harm if users do it

• Compare:

• Risk = (Prob. of Event) * (Damage if Event Occurs)
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Sampling Error

• In statistics, sampling error occurs when the 

statistical characteristics of a population are 

estimated from a subset, or sample, of that 

population.

• “Our test suite is a sample of inputs that could 
occur in the real world. Our program behaves well 
on our test suite.” → later → “Our program 
behaves badly on some other untested real input. 
Sampling error!”

• Testing gives confidence the same 

way sampling (or polling) gives 

confidence.
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Sampling Bias

• In statistics, sampling bias is a bias in which a 

sample is collected in such a way that some 

members of the intended population are less 

likely to be included than others.

• Suppose you are conducting a 
poll to see who will win the 
next election, but you only poll  
republicans.

• Suppose you are creating tests 
to see if your program will 
crash, but you only poll nice, 
small, inputs.
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Solution?

• There are a number of well-established 

sampling techniques in the field of statistics to 

help address such biases

• They often require knowing something about 
the distribution of the full population from 
which you want to sample a subpopulation

• The basic problem in SE is that the underlying 

distribution of real user inputs is not known
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Beta Testing
(What can we do? Ask Users!)

• Alpha testing is testing done by developers.

• Beta testing is testing done by external users 

(often using a special beta version of the 

program).

• Beta testing can be viewed as directly sampling the space of 
user inputs
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A/B Testing

• A/B testing involves two variants of your 

software, A and B, which differ only in one 

feature. Different users are shown different 

variants and responses are recorded. It is an 

instance of two-sample statistical hypothesis 

testing.
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Likely or Damaging?

• Recall two guiding approaches:

• (1) Sample what users will do most commonly

• (2) Sample what will cause the most harm

• The former (1) is sometimes called workload 

generation

Common for databases, webservers, etc. (Youtube?)

• The latter (2) often relates to computer 

security

• Exploit generation, penetration testing, etc.

• cf. AFL in Homework 2
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Non-Security Damage
• For Amazon (etc.), “damaging” is “customer 

does not complete the purchase”

[ Dobolyi et al. Modeling Consumer-Perceived
Web Application Fault Severities for Testing.
ISSTA 2010. ]
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Lens of Adversity
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Finding Bugs

• Suppose you wanted to evaluate the quality of 

two truffle-sniffing pigs (or bomb-sniffing 

dogs)

• You might hide some truffles and see how 

many each pig finds (etc.)

• The pig that finds more of the hidden truffles 
in your backyard is assumed to find more real 
truffles in the wild

• Suppose you wanted to evaluate the quality of 

two bug-finding test suites …
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Mutation Testing
• Mutation testing (or mutation analysis) is a 

test suite adequacy metric in which the 

quality of a test suite is related to the number 

of intentionally-added defects it finds.

• Informally: “You claim your test suite is really 

great at finding security bugs? Well, I'll just 

intentionally add a bug to my source code and 

see if your test suite finds it!”
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How Close is this to Real Life?

• In the truffle-pig example, if every truffle I 

hide in my back yard is next to a smelly red 

flower, a pig that finds them all may not 

actually do well in the real world

• The truffle placements I made up were not 
indicative of real-world truffles

• Similarly, if I add a bunch of defects to my 

software that are not at all the sort of defects 

real humans would make, then mutation 

testing is uninformative
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Defect Seeding

• Defect seeding is the process of intentionally 

introducing a defect into a program. The 

defect introduced is typically intentionally 

similar to defects introduced by real 

developers. The seeding is typically done by 

changing the source code.

• For mutation testing, defect seeding is 

typically done automatically (given a model of 

what human bugs look like)

• You will do this in Homework 3
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Mutation Operators
(How do we seed defects?)

• A mutation operator systematically changes a 

program point. In mutation testing, the 

mutation operators are modeled on historical 

human defects. Example mutations:

 if (a < b)   →  if (a <= b)

 if (a == b)   →  if (a != b)

 a = b + c   →  a = b – c

 f(); g();   →  g(); f();

 x = y;   →  x = z;
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Mutant
• A mutant (or variant) is a version of the 

original program produced by applying one or 

more mutation operators to one or more 

program locations. 

• The order of a mutant is the number of 

mutation operators applied.

// original        // 2nd-order mutant

if (a < b):     if (a <= b):

  x = a + b   →    x = a – b

print(x)       print(x)
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Competent Programmers

• The competent programmer hypothesis holds 

that program faults are syntactically small and 

can be corrected with a few keystrokes.

• Programmers write programs that are largely 

correct. Thus, the mutants simulate the likely 

effect of real faults. 

• Therefore, if the test suite is good at catching 

the artificial mutants, it will also be good at 

catching the unknown but real faults in the 

program.
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Do Humans Really 

Make Simple Mistakes?
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Competent?

• Is the competent programmer hypothesis true?
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Competent?

• Is the competent programmer hypothesis true?

• Yes and no.

• It is certainly true that humans often make 

simple typos (e.g., + to -).

• But it is also true that some bugs are more 

complex than that.
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Coupling Effect

• The coupling effect hypothesis holds that 

complex faults are “coupled” to simple faults 

in such a way that a test suite that detects all 

simple faults in a program will detect a high 

percentage of the complex faults.

• Is it true?

• Tests that detect simple mutants were also able to  
detect over 99% of second- and third-order  
mutants historically [A. J. Offutt.  Investigations of the software testing 

coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, Jan. 1992. ]
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Mutation Testing

• A test suite is said to kill (or detect, or 

reveal) a mutant if the mutant fails a test 

that the original passes.

• Mutation testing (or mutation analysis) of a 

test suite proceeds by making a number of 

mutants and measuring the fraction of them 

killed by that test suite. This fraction is called 

the mutation adequacy score (or mutation 

score).

• A test suite with a higher score is better.
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The wording can be tricky, I know …
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Mutation Analysis: Pros and Cons

• Has the potential to subsume other test suite 

adequacy criteria (it can be very good)

• Which mutation operators do you use?

• Where do you apply them? How often do you 

apply them?

• Typically done at random, but how?

• It is very expensive. If you make 1,000 

mutants, you must now run your test suite 

1,000 times!

• We started by saying testing (1x) was expensive!
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Equivalent Mutant Problem

• Suppose you have “x = a + b; y = c + d;” and 

you swap those two statements.

• The resulting program is a mutant, but it is 

semantically equivalent to the original.

• So it will pass and fail all of the tests that the 
original passes and fails.

• So it will dilute the mutation score (make 

worse)

• Detecting equivalent mutants is a big deal. 

How hard is it?
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Equivalent Mutant Problem

• Detecting equivalent mutants is a big deal. 

How hard is it?

• It is undecidable!

• By direct reduction to the halting problem, or by 
Rice's Theorem

def foo():     # foo halts if and only if

 if p1() == p2():  # p1 is equivalent to p2

  return 0

foo()
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Questions?

• Lens of Logic: “no visit X → no find bug in X”

• Leads to statement and branch coverage.

• Lens of Statistics: “sample the inputs the users 

will make”

• Leads to beta testing, A/B testing.

• Lens of Adversity: “poke realistic holes in the 

program and see if you find them”

• Leads to mutation testing.

• Don't neglect HW 1 components!
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