Test Suite
uality Metrics

ODAL SENGE OF CHALLENGING
SOME PERSON OR PERSPECTIVE,
~, EVEN THOUGH THE

S Y
e VR

5% EXTRA.

SmbC-ComICS.com

One-Slide Summary

» Test suite quality metrics help us decide which
suite to use. Line coverage, the fraction of lines
visited when running a suite, is simple but gives
limited confidence. Branch coverage, which
requires both true and false values for conditionals,
is richer (incorporating data values indirectly).

* Mutation analysis measures the fraction of seeded
defects detected by a suite; it is expensive but
effective.

 Beta and A/B testing involve real users and their
experiences.

The Story So Far ...

» Testing is the most common dynamic
technique for software quality assurance.

» Testing is very expensive (e.g., 35% of total IT
Spending). [Capgemini World Quality Report. 2015]

* Not testing, or testing badly, is even more

expensive: [Minimizing code defects to improve software quality
and lower development costs. IBM 2008] (Remember the IBM Story?)

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* o5X 10X 15X 30X

*X is a normalized unit of cost and can be expressed in terms of person-hours, dollars, etc.
Source: National Institute of Standards and Technology (NIST)t

By catching defects as early as possible in the development cycle, you can significantly reduce your
development costs.

Story Time

* Abboty Labs (St. Jude Medical) makes
pacemakers

* |n 2016, 465,000 of them were discovered to
have security vulnerabilities

“The wireless protocol used for communication //T\
amongst St. Jude Medical cardiac devices has) ; Sk
serious security vulnerabilities that make it I;j el A

possible to convert Merlin@home devices into V g

weapons capable of disabling therapeutic care
and delivering shocks to patients at distances of
10 feet, a range that could be extended using
off-the-shelf parts to modify Merlin@home units.”

https://medsec.com/stj_expert_witness_report.pdf

Turtles All The Way Down

« “The “fix” is not a surgical replacement
pacemaker, but a firmware update that takes
about three minutes to complete and carries a
“very low risk of update malfunction;” a very
small percentage of people might experience
a “complete loss of device functionality”
during the firmware update. The patch covers
St. Jude Medical’s pacemakers: Accent,
Anthem, Accent MRI, Accent ST, Assurity and

Allure.”

» https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

Guiding Narrative

How should we think about testing?

Lens of Logic v ey s
LockS % Three ’
Lens of Statistics (30“‘& Puckner & Marg Jsaeﬂ;?eqiy

Lens of Adversity

C,o.‘&'a&ﬂ“

IF P \S FALSE,
T WILL 8 SAD.

_, T DO NOT W\sW
& TO Bt SAD.

(

C ? THEREFORE, P \§ TRUE.

A/

Lens of Logic

There. Now you can skip 99% of philosophical debates.

The Motivation

If testing is our best way to gain confidence in
the quality of software, but testing is expensive,

how can we ensure that we are testing in an
effective manner?

Informal Desideratum: The program passes the
tests if and only if it does all the right things and
none of the wrong things.

Pass all tests — program adheres to
requirements

Each failing test — program behaves incorrectly

10

Intuition (Gedankenexperiment)jsm:

» Suppose you were writing a sqrt program and
one of the requirements was that it should
abort gracefully on negative inputs.

» Suppose further that your test suite does not
include any negative inputs.

» Can we conclude that passing all of the tests
implies adhering to all of the requirements?
def safe sqrt(x):
if x <
raise ValueError ("Cannot do sqrt of negative number")

return math.sqrt (x) 11

Coverage

0% con:_:ngg,ngg_
* We desire all of the requirements to be

covered (“checked”) by the test suite.

* For our purposes, X coverage is the degree to
which X is executed/exercised by the test
suite.

« Examples:

* Code coverage is the degree to which the source code is
executed by the test suite.

- Statement coverage is the fraction of source statements
that are executed by the test suite.

12

Do Tests Cover All Requirements?

In ideal world we would have traceability
between requirements and test cases

That is, each test case would have an
annotation like “a program that passes this
test satisfies requirement X” or “passing this
test gives confidence that a program adheres
to requirement Y”

Outside of certain industries (e.g., Aerospace),
such formal traceability is rare

e.g., https://en.wikipedia.org/wiki/D0O-178C

13

https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C

An Approximation

We will cover requirements and their
elicitation later in this course (mid-semester)

But suppose for now you don't have formal
traceability to your requirements

So testing that the program does all and only
the good things that it is required to do is not
possible (or not feasible)

Analogy: “Lie of Omission”

While at a lake, you see your friend is drowning.

Are you obligated to rescue them?

14

Aside: Ethics

It is very tempting to say “yes, you are morally
obligated to save your friend” (many would agree!)

However, it can be surprisingly difficult to make a
consistent moral system that requires particular
positive actions, as opposed to just forbidding
negative actions

cf. “Thou shalt not kill” (Old Testament) or “An it harm none,
do what ye will” (Wiccan Rede) or “Everything which is not
forbidden is allowed” (English law), etc.

For more information, take a class on Ethics
(normative ethics) from the Philosophy department

Don't Do Bad Things

(How does good/bad intuition relate to testing?)

We can at least test that the program does not
do certain bad things

e.g., “don't segfault”, “don't send my
password to Microsoft”, “on this one particular
input, don't get the wrong answer”

Note that “l never do bad things” is not the
same as “l always/eventually do good things”

For more information, take a class on Modal
Logic or read about Liveness vs. Safety
properties

16

Testing to Find Bugs
So now we want to test to gain confidence
that the program does not do “bad things”
That is, that the program does not have bugs

Key Logical Observation: If we never test line
X then testing cannot rule out the presence
of a bug on line X

(You could read line X, but this lecture is on
testing. Later this semester: code review.)

If this seems “too obvious” so far,
just wait ...

— -—— g
o e E =

Oy e

= = : \ R N "‘ & —gigr \ '\ = : SR |
KEYS TO THE GAME |

» SCORE MORE RUNS THAN THE ROCKIES {

> PADRES ARE 12-0 WHEN THEY OUTSCORE THEIR OPPONENTS J

WGC Roundofl6 : 2&1 (49) Willett def. (27) Westwood 3 & 2 @

P—-Q

“No test covers X — may have bug in X”

* Note that you could test line X and still have a
bug on line X:

foo(a,b) { return a/b; }
test: foo(6,2)

« But testing X gives us some small but non-zero
confidence in the correctness of X

19

“All Other Things Being Equal”

If test A visits lines 1 and 2
And test B visits lines 1, 2, 3 and 4

Then, all other things being equal, we prefer
test B

« Test A gives some confidence about 1 and 2 and no
confidence (no information) about 3 and 4

« Test B gives some confidence about 1, 2, 3 and 4

If the confidence/info gained per tested line is
c>0, test A gives us 2¢+0 and test B gives us 4c.

Because c>0, we have 4c > 2c. So B > A.

20

Simplifying Assumptions

« Assumption 1. We gain the same amount of
confidence (or information) for each visited
line.

» Assumption 2. The amount of confidence (or
information) we gain per visited line is
positive.

* Assumption 3. ... ASUME A

SPHERICAL g

COW

IN A VACUU™M

Line Coverage:
A Test Suite Quality Metric

A test suite quality metric or test suite
adequacy criterion assesses the quality of a
test suite (with respect to an external notion

of utility) and allows test suites to be
compared.

Line (or statement) coverage is a test suite
quality metric: it is the number of unique lines
(statements) visited (exercised) by the
program when running the test suite.

(Informally: visiting more lines is better because you

have no information about un-visited lines.) ”

Using Line Coverage

(What can we do with it?)

* Given two test suites that both run within your
resource budget (“AOTBE”, etc.), if we can
only run one, we prefer the test suite with
higher line coverage

* Thus coverage is a metric that allows us to
compare two test suites and pick the “better”
ONe (remember we managers want us to get better!)

* We use this information to guide decision-
making in a software process (“how should we
do testing?”)

23

Collecting Line Coverage

(How do we measure it?)

At its simplest, this is just print-statement
debugging

Put a print statement before every line of
the program

Run all the tests, collect all the printed
information, remove duplicates, count

Pra Ct] ca l concern: NOT SURE IF | FIXED HEISENBUG

the observer effect (from physics) is the fact

that simply observing a situation or 5 JUSTINOT HAPPENING
. AT 'MTRYING T0O FIX IT

phenomenon necessarily changes that

phenomenon.

24

Coverage Instrumentation

(How do we measure it?)

Coverage instrumentation modifies a program
to record coverage information in a way that
minimizes the observer effect.

» This can be done at the source or binary level.
Don't actually print to stdout/stderr

Don't slow things down too much
* Pre-check before printing a duplicate?

Don't introduce infinite loops

* Instrument “print” with a call to “print”?

25

Good News: “Solved” Problem

* This is a well-studied problem and many push-
button solutions exist for various forms of
coverage

« Either built in to your IDE or as external tools

* You will use three in the Homework

* Python's coverage, gcc's gcov, Java's cobertura

* For more information on how to write one yourself,
take a (graduate?) PL or Compilers class.

26

Problems with Line Coverage

What could go wrong with line coverage?

Can you think of situations with 100% line

coverage where the program might still have
bugs?

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH T-‘mL‘

154

27

Example Where
Statement Coverage is Inadequate

.Cross-site scripting (XXS) attacks: 2016 vulnerability
Statistics Report, edgescan]

Insecure Deployment: Availability: CSRF: Open Redirection:
1% 1% — 5% 2%

Information Leakage:
3% . \

HTML Injection:

5 - 3%

b /
Authorisation: / Response Splitting:
4% % 1%

Injection Attacks: / s
4% / y DY Browser DOM
Attack \ Vulnerabilities:
7 0/
Session 61% 578

Application
Layer

Management: /
0% _ /

\

XXS Attack
R
s 61%
28

Insecure Deployment:
1%

Example Where
Statement Coverage is Inadequate

.Cross-site scripting (XXS) attacks: 2016 vulnerability

Statistics Report, edgescan]

Availability:
1%

Information Leakage:

HI, THIS 15

YOUR S0N'S SCHOOL.

WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

Cryptography:
17%

ﬁ,_\
N\
N\

OH, DEAR — DID HE
BREAK SOMETHING?

IN Pt ‘I.-.I’Fl‘f'

%4

T

5%

Open Redirection:
2%

,’/
/
/

DID YOU REALLY WELL, WE'VE LOST THIS
NAME YOUR SON YEAR'S STUDENT RECORDS.
Robert'); DROP I HOPE YOURE HAPPY.
TRBLE Studerts:-- 7 ‘ll
AND I HOFE
~0OH,YES LITTLE “~ YOU'VE LEARNED
ROBBY TABRLES, L TOSANMIZE YOUR
WE CALL HIM. DATABASE INPUTS.

/N Testing Data Values Matter Too!

29

Data Values and
Implicit Control Flow

return a/b if (b '= 0)
return a/b
else
ABORT

print ptr->fld > if (ptr != NULL)
print ptr->fld
else

ABORT

30

Intuition

* Many interesting data values cause implicit or
explicit changes of control

* That is, they cause different branches of
conditionals to execute

* Informally, the problem of ensuring that we
cover interesting data values may reduce to
the problem of ensuring that we cover all

branches of conditionals
Fated 1o Exeate Query_

‘ Failed to insert optional class information: Error was ToString() takes at
least 2147483647 arguments (1 given)

Lok |

Branch Coverage

* Branch coverage is a test suite quality metric
that counts the total number of conditional
branches exercised by that test suite (i.e.,
if ->true and if—»false are counted separately)

* Note that branch coverage can subsume line

coverage. _
Test Suite {foo(7)} has 100%
def foo(a) : line coverage but 50% branch
coverage.

1f a > 5:
Test Suite {foo(7), foo(0)}
print (Y“x”) has 100% line and 100%
branch coverage.

print (“y”) N

Branch vs. Line

* Branch coverage typically gives us more
confidence than line coverage

» Typically, 100% branch coverage implies 100%
line coverage

* However, branch coverage is “more
expensive” in the sense that it is harder for a
test suite to have high branch coverage than
to have high line coverage
* Note: quality isn't really “more expensive”, you

were just fooling yourself before by thinking line
coverage was OK. Being correct is expensive.

33

Other Flavors

* Function Coverage: what fraction of functions
have been called?

» Condition Coverage: what fraction of boolean
subexpressions have been evaluated to both
true and also (e.g., on another run) to false?

« Comparing this to branch coverage is a not-
uncommon test question ...

* Modified Condition / Decision Coverage
(MCDC): function coverage + branch coverage
(this is a simplification)

« Used in mission critical (e.g., avionics) software y

Trivia: Statistics

This English social reformer and statistician
among other activities, ~1850) was a pioneer
in the use of infographics: the effective
graphical presentation of statistical data.

. DIAGRAM or rue CAUSES or MORTALITY "
APRIL 1855 ro MARCH 1856 IN THE ARMY IN THE EAST. APRIL 1854 ro MARCH 1855,

e

oLy

The Areas of the Nue: red, & black wedges are tack measured. from.
lhe: cenlre as the comumen. pertexr.

The Wice wedges measured fromy the cenlre of the eircle rgpvsent areas
for arca the dealhs freme Freventible ar Mitigable Zymolee diseases, the
red wedges measured frem the cenlre e dealhs from. wovrnds, & e
lack wedges measured. from. the cerdre Ve deaths from all dher caues.

The back line acress e ved triangle in Neol (854 marks the boundary
of Ve deadhs from all dther cawres durig Ve nonidle

Ine Celober 1854, & April (855, Ve black area covrcides wnlly the red.
v Janwary & Fruary 85 e Wi cotnctdes with e bladc

The enlire areas may be compared by following the-blue. thered & the
HNadk lines encloning them

Trivia: Geography
This is the capital of, and most populous city in,
Malaysia. Its name means “muddy confluence” in Malay.
It was captured by Japan in 1942 and gained
independence from British rule in 1957. Islam and
Buddhism are the majority religions.

Psychology: Recall

120 students (age 18 to 24) were asked to
study prose passages (e.g., 300 words on “Sea
Otters”) and also do math problems

Group 1: Read for /m, math for 2Zm, re-read
for 7m, math for bm

Group 2: Read for 7/m, math for 2m, test for
10m, math for bm

Both groups: later — test for 10 minutes
Which group did better? By how much?

Psychology: Recall

M Study, Study
Study, Test

I

o
o
©
O
15
o
wn
=
c
-
)
D
o
(-
o
c
O
=
o
=
=
a.

5 Minutes 2 Days 1 Week
Retention Interval

Psychology: Testing Effect

* The testing effect: long-term memory is
increased when some of the learning period is
devoted to retrieving the to-be-remembered
information through testing with feedback.

“They found that re-studying or re-reading
memorized information had no effect, but
trying to recall the information had an
effect.”

* Implication for SE: Code comprehension.

[Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory Tests
Improves Long-Term Retention”. Psychological Science. 17 (3): 249-255.]

39

Lens of
Statistics

Alternate View

* The bugs experienced by users are the ones
that matter.

« Dually, bugs never experienced by users do not
matter.

You chose to end the nonresponsive program, BuggyApp.

The program is not responding.

Please tell Microsoft about this problem.

We have created an eror report that you can send to us. We will treat
this report as confidential and anonymous.

To see what data this error report contains, click here.

Send Ermor Report Don't Send

41

ONEDOLLAR

‘@e_ ev? o

Positive User View

* Suppose you are writing a point-of-sale cashier
application that makes change for a dollar (51).
Given any price between 1 and 100 cents, you
must indicate the coins to give out as change.

« e.g., Priceis 23 cents, User Gives you a S1
— return 3 quarters and 2 pennies (77 cents)

 In this scenario, you can exhaustively test all
100 inputs that will occur to real users in the
real world

* |n some sense, it does not matter if that is 100%
statement or code coverage (e.g., dead code)

42

Negative User View

» Suppose users will only ever cause lines 1, 2
and 3 of your program to be executed

* Then you do not need to test line 4

« Even if it has a bug, users will never encounter
that bug

* Note “will” — this either requires a
prediction of the future or a finite input
domain

43

Testing as Sampling

If user-experienced bugs are the ones that
matter, testing should be devoted to sampling
those inputs that users will provide

Two views:
« Sample what users do most commonly
« Sample what causes the most harm if users do it

Compare:
* Risk = (Prob. of Event) * (Damage if Event Occurs)

44

Sampling Error

 In statistics, sampling error occurs when the
statistical characteristics of a population are
estimated from a subset, or sample, of that
population.

« “Our test suite is a sample of inputs that could
occur in the real world. Our program behaves well
on our test suite.” — later — “Our program
behaves badly on some other untested real input.
Sampling error!”

» Testing gives confidence the same
way sampling (or polling) gives
confidence.

45

 In statistics, sampling bias is a bias in which a

Sampling Bias

sample is collected in such a way that some
members of the intended population are less
likely to be included than others.

Suppose you are conducting a
poll to see who will win the
next election, but you only poll
republicans.

Suppose you are creating tests
to see if your program will
crash, but you only poll nice,
small, inputs.

GTATISTICS
CONFERENCE

kil

~7022~

RAISE YOUR HAND
IF YOURE FAMILIAR
LJ!TH SELECTION BIAS.

AS YOU CAN SEE,
IT'S A TERM MOST
PEOPLE KNOW...

|

46

Solution?

* There are a number of well-established
sampling techniques in the field of statistics to
help address such biases

* They often require knowing something about
the distribution of the full population from
which you want to sample a subpopulation

* The basic problem in SE is that the underlying
distribution of real user inputs is not known

47

Beta Testing

(What can we do? Ask Users!)

» Alpha testing is testing done by developers.

* Beta testing is testing done by external users
(often using a special beta version of the

program).

* Beta testing can be viewed as directly sampling the space of
user inputs

s L@ Enghen (UE)
5

MONSTER HUNTER

Open Beta Test 2

LSS QR P
PT: February 6 - 9, 2025
PT: February 13 - 16, 2025 48

A/B Testing

* A/B testing involves two variants of your
software, A and B, which differ only in one
feature. Different users are shown different
variants and responses are recorded. It is an

instance of two-sample statistical hypothesis

testing. XX KXy

Welcome to our website Welcome to our website

Lomm ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolone magna
aliqua. Ut enim ad mindm weniam, quis nostrud exencitation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do elusmod tempor incididunt ut labone et dolone magna

aliqua. Ut enim ad minim wendam, quis nostrud exercitation
ullamco laboris nisl ut aliquip ex ea commodo consequat ’ ullamco laboris nisi ut aliquip ex ea commodo consegquat.

Leam more

Click rate: 52 % 72 % 49

Likely or Damaging?

* Recall two guiding approaches:
* (1) Sample what users will do most commonly
* (2) Sample what will cause the most harm
« The former (1) is sometimes called workload
generation
Common for databases, webservers, etc. (Youtube?)
* The latter (2) often relates to computer
security
« Exploit generation, penetration testing, etc.
« cf. AFL in Homework 2

50

Non-Security Damage

For Amazon (etc.), “damaging” is “customer
does not complete the purchase”

Cascading Stylesheet Error. An error in loading
the stylesheet between the current and next pages.

Code on the Screen. Any error that results in pro- = -
gramming language code appear on screen, including Feature Correlation F PI‘(:} F)

any error referring to a line number (with the excep- Code on the Screen T 19.47 0.00

tion of visible HI'TML code). . —
Cosmetic - 13.23 0.00

Other Error/Error Message. Either any error mes- -
sage, or any error that cannot be classified in any other Database 12.36 0.00

+|+

category. Authentication 6.99 0.01

Form Error. Missing, malformed, or extra buttons, Functional Diﬁ[}lﬂ}’ - 6.00 0.01

form fields, drop-down menus, etc, including incor-

rectly validating forms. Other Error + 4.40 0.03
Missing Information. Any part of a webpage that

is missing, not including images.

Wrong Page/No Redirect. An unexpected page is

loaded.

Authentication. Any errors that occur during login.

Permission. Any errors occurring with respect to [DObOly] et al. MOdeling Consumer-Perceived
user permissions in an application, such as access being Web Application Fault Severities for Test-ing

incorrectly denied to a user.

ISSTA 2010.] o1

Lens of Adversity

10 I Flask

200

Finding Bugs

Suppose you wanted to evaluate the quality of
two truffle-sniffing pigs (or bomb-sniffing
dogs)

You might hide some truffles and see how
many each pig finds (etc.)
The pig that finds more of the hidden truffles

in your backyard is assumed to find more real
truffles in the wild

Suppose you wanted to evaluate the quality of
two bug-finding test suites ...

53

Mutation Testing

* Mutation testing (or mutation analysis) is a
test suite adequacy metric in which the
quality of a test suite is related to the number
of intentionally-added defects it finds.

* Informally: “You claim your test suite is really
great at finding security bugs? Well, I'll just
intentionally add a bug to my source code and
see if your test suite finds it!”

54

How Close is this to Real Life?

* In the truffle-pig example, if every truffle |
hide in my back yard is next to a smelly red
flower, a pig that finds them all may not
actually do well in the real world

* The truffle placements | made up were not
indicative of real-world truffles

« Similarly, if | add a bunch of defects to my
software that are not at all the sort of defects
real humans would make, then mutation
testing is uninformative

55

Defect Seeding

» Defect seeding is the process of intentionally
introducing a defect into a program. The
defect introduced is typically intentionally
similar to defects introduced by real
developers. The seeding is typically done by
changing the source code.

* For mutation testing, defect seeding is
typically done automatically (given a model of
what human bugs look like)

 You will do this in Homework 3

56

Mutation Operators
(How do we seed defects?)
A mutation operator systematically changes a
program point. In mutation testing, the
mutation operators are modeled on historical
human defects. Example mutations:

if (a <Db) — if (a <= D)
if (a == D) — if (a !=D)
a=b+c — a=b-c
f(); 8(); — g(); f0);
X=Y; — X =1Z;

57

Mutant

A mutant (or variant) is a version of the
original program produced by applying one or
more mutation operators to one or more
program locations.

« The order of a mutant is the number of
mutation operators applied.

// original // 2"d-order mutant
if (a < Db): if (a <= b):
X = a + b — X = a = b

print (x) print (x)

58

Competent Programmers

 The competent programmer hypothesis holds
that program faults are syntactically small and
can be corrected with a few keystrokes.

* Programmers write programs that are largely
correct. Thus, the mutants simulate the likely
effect of real faults.

* Therefore, if the test suite is good at catching
the artificial mutants, it will also be good at
catching the unknown but real faults in the
program.

59

Do Humans Really
Make Simple Mistakes?

Competent?

* |Is the competent programmer hypothesis true?

I u_w"u DEA

I Al T | & A\ -

& R

'\ l ji =
oy

I‘Iﬁllﬂ e

S _1g

61

Competent?

Is the competent programmer hypothesis true?

Yes and no.

It is certainly true that humans often make
simple typos (e.g., + to -).

But it is also true that some bugs are more
complex than that.

62

Coupling Effect

* The coupling effect hypothesis holds that
complex faults are “coupled” to simple faults
in such a way that a test suite that detects all

simple faults in a program will detect a high
percentage of the complex faults.

e |s it true?

« Tests that detect simple mutants were also able to
detect over 99% of second- and third-order

mutants hiStOrically [A. J. Offutt. Investigations of the software testing
coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5-20, Jan. 1992.]

63

Mutation Testing

» A test suite is said to kill (or detect, or
reveal) a mutant if the mutant fails a test
that the original passes.

* Mutation testing (or mutation analysis) of a
test suite proceeds by making a number of
mutants and measuring the fraction of them
killed by that test suite. This fraction is called
the mutation adequacy score (or mutation
score).

» A test suite with a higher score is better.

64

The wording can be tricky, | know ...

———

65

Mutation Analysis: Pros and Cons

Has the potential to subsume other test suite
adequacy criteria (it can be very good)

Which mutation operators do you use?

Where do you apply them? How often do you
apply them?
» Typically done at random, but how?

It is very expensive. If you make 1,000

mutants, you must now run your test suite
1,000 times!

« We started by saying testing (1x) was expensive!

Suppose you have “x =a + b; y = c + d;” and ‘
you swap those two statements.

The resulting program is a mutant, but it is
semantically equivalent to the original.

« So it will pass and fail all of the tests that the
original passes and fails.

So it will dilute the mutation score (make
worse)

Detecting equivalent mutants is a big deal.
How hard is it?

67

Equivalent Mutant Problem

» Detecting equivalent mutants is a big deal.
How hard is it?

* |t is undecidable!

« By direct reduction to the halting problem, or by
Rice's Theorem

def foo(): # foo halts if and only if
if pl() == p2(): # pl is equivalent to p2
return 0

foo ()
68

Questions’

Lens of Logic: “no visit X — no find bug in X”
* Leads to statement and branch coverage.

Lens of Statistics: “sample the inputs the users
will make”

* Leads to beta testing, A/B testing.

Lens of Adversity: “poke realistic holes in the
program and see if you find them”

* Leads to mutation testing.

Don’t neglect HW 1 components!

69

	Slide 2
	Slide 3: One-Slide Summary
	Slide 4: The Story So Far …
	Slide 6: Story Time
	Slide 7: Turtles All The Way Down
	Slide 8: Guiding Narrative
	Slide 9: Lens of Logic
	Slide 10: The Motivation
	Slide 11: Intuition (Gedankenexperiment)
	Slide 12: Coverage
	Slide 13: Do Tests Cover All Requirements?
	Slide 14: An Approximation
	Slide 15: Aside: Ethics
	Slide 16: Don't Do Bad Things (How does good/bad intuition relate to testing?)
	Slide 17: Testing to Find Bugs
	Slide 18: If this seems “too obvious” so far, just wait …
	Slide 19: P → Q
	Slide 20: “All Other Things Being Equal”
	Slide 21: Simplifying Assumptions
	Slide 22: Line Coverage: A Test Suite Quality Metric
	Slide 23: Using Line Coverage (What can we do with it?)
	Slide 24: Collecting Line Coverage (How do we measure it?)
	Slide 25: Coverage Instrumentation (How do we measure it?)
	Slide 26: Good News: “Solved” Problem
	Slide 27: Problems with Line Coverage
	Slide 28: Example Where Statement Coverage is Inadequate
	Slide 29: Example Where Statement Coverage is Inadequate
	Slide 30: Data Values and Implicit Control Flow
	Slide 31: Intuition
	Slide 32: Branch Coverage
	Slide 33: Branch vs. Line
	Slide 34: Other Flavors
	Slide 35: Trivia: Statistics
	Slide 36: Trivia: Geography
	Slide 37: Psychology: Recall
	Slide 38: Psychology: Recall
	Slide 39: Psychology: Testing Effect
	Slide 40: Lens of Statistics
	Slide 41: Alternate View
	Slide 42: Positive User View
	Slide 43: Negative User View
	Slide 44: Testing as Sampling
	Slide 45: Sampling Error
	Slide 46: Sampling Bias
	Slide 47: Solution?
	Slide 48: Beta Testing (What can we do? Ask Users!)
	Slide 49: A/B Testing
	Slide 50: Likely or Damaging?
	Slide 51: Non-Security Damage
	Slide 52: Lens of Adversity
	Slide 53: Finding Bugs
	Slide 54: Mutation Testing
	Slide 55: How Close is this to Real Life?
	Slide 56: Defect Seeding
	Slide 57: Mutation Operators (How do we seed defects?)
	Slide 58: Mutant
	Slide 59: Competent Programmers
	Slide 60: Do Humans Really Make Simple Mistakes?
	Slide 61: Competent?
	Slide 62: Competent?
	Slide 63: Coupling Effect
	Slide 64: Mutation Testing
	Slide 65: The wording can be tricky, I know …
	Slide 66: Mutation Analysis: Pros and Cons
	Slide 67: Equivalent Mutant Problem
	Slide 68: Equivalent Mutant Problem
	Slide 69: Questions?

