
Test Suite

Quality Metrics

3

One-Slide Summary

• Test suite quality metrics help us decide which

suite to use. Line coverage, the fraction of lines

visited when running a suite, is simple but gives

limited confidence. Branch coverage, which

requires both true and false values for conditionals,

is richer (incorporating data values indirectly).

• Mutation analysis measures the fraction of seeded

defects detected by a suite; it is expensive but

effective.

• Beta and A/B testing involve real users and their

experiences.

4

The Story So Far …

• Testing is the most common dynamic

technique for software quality assurance.

• Testing is very expensive (e.g., 35% of total IT

spending). [Capgemini World Quality Report. 2015]

• Not testing, or testing badly, is even more

expensive: [Minimizing code defects to improve software quality

and lower development costs. IBM 2008] (Remember the IBM Story?)

6

Story Time

• Abboty Labs (St. Jude Medical) makes

pacemakers

• In 2016, 465,000 of them were discovered to

have security vulnerabilities
“The wireless protocol used for communication
amongst St. Jude Medical cardiac devices has
serious security vulnerabilities that make it
possible to convert Merlin@home devices into
weapons capable of disabling therapeutic care
and delivering shocks to patients at distances of
 10 feet, a range that could be extended using
off-the-shelf parts to modify Merlin@home units.”

https://medsec.com/stj_expert_witness_report.pdf

7

Turtles All The Way Down

• “The “fix” is not a surgical replacement

pacemaker, but a firmware update that takes

about three minutes to complete and carries a

“very low risk of update malfunction;” a very

small percentage of people might experience

a “complete loss of device functionality”

during the firmware update. The patch covers

St. Jude Medical’s pacemakers: Accent,

Anthem, Accent MRI, Accent ST, Assurity and

Allure.”
• https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

8

Guiding Narrative

• How should we think about testing?

• Lens of Logic

• Lens of Statistics

• Lens of Adversity

9

Lens of Logic

10

The Motivation

• If testing is our best way to gain confidence in

the quality of software, but testing is expensive,

how can we ensure that we are testing in an

effective manner?

• Informal Desideratum: The program passes the

tests if and only if it does all the right things and

none of the wrong things.

• Pass all tests → program adheres to
requirements

• Each failing test → program behaves incorrectly

11

Intuition (Gedankenexperiment)

• Suppose you were writing a sqrt program and

one of the requirements was that it should

abort gracefully on negative inputs.

• Suppose further that your test suite does not

include any negative inputs.

• Can we conclude that passing all of the tests

implies adhering to all of the requirements?

def safe_sqrt(x):

 if x < 0:

 raise ValueError("Cannot do sqrt of negative number")

 return math.sqrt(x)

12

Coverage

• We desire all of the requirements to be

covered (“checked”) by the test suite.

• For our purposes, X coverage is the degree to

which X is executed/exercised by the test

suite.

• Examples:

• Code coverage is the degree to which the source code is
executed by the test suite.

• Statement coverage is the fraction of source statements
that are executed by the test suite.

13

Do Tests Cover All Requirements?

• In ideal world we would have traceability

between requirements and test cases

• That is, each test case would have an

annotation like “a program that passes this

test satisfies requirement X” or “passing this

test gives confidence that a program adheres

to requirement Y”

• Outside of certain industries (e.g., Aerospace),

such formal traceability is rare

• e.g., https://en.wikipedia.org/wiki/DO-178C

https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C

14

An Approximation
• We will cover requirements and their

elicitation later in this course (mid-semester)

• But suppose for now you don't have formal

traceability to your requirements

• So testing that the program does all and only

the good things that it is required to do is not

possible (or not feasible)

• Analogy: “Lie of Omission”

 While at a lake, you see your friend is drowning.

 Are you obligated to rescue them?

15

Aside: Ethics

• It is very tempting to say “yes, you are morally

obligated to save your friend” (many would agree!)

• However, it can be surprisingly difficult to make a

consistent moral system that requires particular

positive actions, as opposed to just forbidding

negative actions

• cf. “Thou shalt not kill” (Old Testament) or “An it harm none,
do what ye will” (Wiccan Rede) or “Everything which is not
forbidden is allowed” (English law), etc.

• For more information, take a class on Ethics

(normative ethics) from the Philosophy department

16

Don't Do Bad Things
(How does good/bad intuition relate to testing?)

• We can at least test that the program does not

do certain bad things

• e.g., “don't segfault”, “don't send my
password to Microsoft”, “on this one particular
input, don't get the wrong answer”

• Note that “I never do bad things” is not the

same as “I always/eventually do good things”

• For more information, take a class on Modal
Logic or read about Liveness vs. Safety
properties

17

Testing to Find Bugs

• So now we want to test to gain confidence

that the program does not do “bad things”

• That is, that the program does not have bugs

• Key Logical Observation: If we never test line

X then testing cannot rule out the presence

of a bug on line X

• (You could read line X, but this lecture is on

testing. Later this semester: code review.)

18

If this seems “too obvious” so far,

just wait …

19

P → Q

“No test covers X → may have bug in X”

• Note that you could test line X and still have a

bug on line X:

foo(a,b) { return a/b; }

test: foo(6,2)

• But testing X gives us some small but non-zero

confidence in the correctness of X

20

“All Other Things Being Equal”
• If test A visits lines 1 and 2

• And test B visits lines 1, 2, 3 and 4

• Then, all other things being equal, we prefer

test B

• Test A gives some confidence about 1 and 2 and no
confidence (no information) about 3 and 4

• Test B gives some confidence about 1, 2, 3 and 4

• If the confidence/info gained per tested line is

c>0, test A gives us 2c+0 and test B gives us 4c.

• Because c>0, we have 4c > 2c. So B > A.

21

Simplifying Assumptions

• Assumption 1. We gain the same amount of

confidence (or information) for each visited

line.

• Assumption 2. The amount of confidence (or

information) we gain per visited line is

positive.

• Assumption 3. …

22

Line Coverage:

A Test Suite Quality Metric

• A test suite quality metric or test suite

adequacy criterion assesses the quality of a

test suite (with respect to an external notion

of utility) and allows test suites to be

compared.

• Line (or statement) coverage is a test suite

quality metric: it is the number of unique lines

(statements) visited (exercised) by the

program when running the test suite.

• (Informally: visiting more lines is better because you
have no information about un-visited lines.)

23

Using Line Coverage
(What can we do with it?)

• Given two test suites that both run within your

resource budget (“AOTBE”, etc.), if we can

only run one, we prefer the test suite with

higher line coverage

• Thus coverage is a metric that allows us to

compare two test suites and pick the “better”

one (remember we managers want us to get better!)

• We use this information to guide decision-

making in a software process (“how should we

do testing?”)

24

Collecting Line Coverage
(How do we measure it?)

• At its simplest, this is just print-statement

debugging

• Put a print statement before every line of

the program

• Run all the tests, collect all the printed
information, remove duplicates, count

• Practical concern:

• the observer effect (from physics) is the fact
that simply observing a situation or
phenomenon necessarily changes that
phenomenon.

25

Coverage Instrumentation
(How do we measure it?)

• Coverage instrumentation modifies a program

to record coverage information in a way that

minimizes the observer effect.

• This can be done at the source or binary level.

• Don't actually print to stdout/stderr

• Don't slow things down too much

• Pre-check before printing a duplicate?

• Don't introduce infinite loops

• Instrument “print” with a call to “print”?

26

Good News: “Solved” Problem

• This is a well-studied problem and many push-

button solutions exist for various forms of

coverage

• Either built in to your IDE or as external tools

• You will use three in the Homework

• Python's coverage, gcc's gcov, Java's cobertura

• For more information on how to write one yourself,

take a (graduate?) PL or Compilers class.

27

Problems with Line Coverage

• What could go wrong with line coverage?

• Can you think of situations with 100% line

coverage where the program might still have

bugs?

Example Where

Statement Coverage is Inadequate

●Cross-site scripting (XXS) attacks: [2016 Vulnerability

Statistics Report, edgescan]

28

Browser Attack
61%

XXS Attack
86%

Browser
Attack

61%

29

Example Where

Statement Coverage is Inadequate

●Cross-site scripting (XXS) attacks: [2016 Vulnerability

Statistics Report, edgescan]

Testing Data Values Matter Too!

30

Data Values and

Implicit Control Flow
return a/b

print ptr->fld

if (b != 0)

 return a/b

else

 ABORT

if (ptr != NULL)

 print ptr->fld

else

 ABORT

31

Intuition

• Many interesting data values cause implicit or

explicit changes of control

• That is, they cause different branches of
conditionals to execute

• Informally, the problem of ensuring that we

cover interesting data values may reduce to

the problem of ensuring that we cover all

branches of conditionals

32

Branch Coverage

• Branch coverage is a test suite quality metric

that counts the total number of conditional

branches exercised by that test suite (i.e.,

if→true and if→false are counted separately)

• Note that branch coverage can subsume line

coverage:

def foo(a):

 if a > 5:

 print(“x”)

 print(“y”)

Test Suite {foo(7)} has 100%
line coverage but 50% branch
coverage.

Test Suite {foo(7), foo(0)}
has 100% line and 100%
branch coverage.

33

Branch vs. Line

• Branch coverage typically gives us more

confidence than line coverage

• Typically, 100% branch coverage implies 100%

line coverage

• However, branch coverage is “more

expensive” in the sense that it is harder for a

test suite to have high branch coverage than

to have high line coverage

• Note: quality isn't really “more expensive”, you
were just fooling yourself before by thinking line
coverage was OK. Being correct is expensive.

34

Other Flavors

• Function Coverage: what fraction of functions

have been called?

• Condition Coverage: what fraction of boolean

subexpressions have been evaluated to both

true and also (e.g., on another run) to false?

• Comparing this to branch coverage is a not-
uncommon test question …

• Modified Condition / Decision Coverage

(MCDC): function coverage + branch coverage
(this is a simplification)

• Used in mission critical (e.g., avionics) software

35

Trivia: Statistics

• This English social reformer and statistician

(among other activities, ~1850) was a pioneer

in the use of infographics: the effective

graphical presentation of statistical data.

36

Trivia: Geography
• This is the capital of, and most populous city in,

Malaysia. Its name means “muddy confluence” in Malay.

It was captured by Japan in 1942 and gained
independence from British rule in 1957. Islam and

Buddhism are the majority religions.

37

Psychology: Recall

• 120 students (age 18 to 24) were asked to

study prose passages (e.g., 300 words on “Sea

Otters”) and also do math problems

• Group 1: Read for 7m, math for 2m, re-read

for 7m, math for 5m

• Group 2: Read for 7m, math for 2m, test for

10m, math for 5m

• Both groups: later → test for 10 minutes

• Which group did better? By how much?

38

Psychology: Recall

39

Psychology: Testing Effect

• The testing effect: long-term memory is

increased when some of the learning period is

devoted to retrieving the to-be-remembered

information through testing with feedback.

• “They found that re-studying or re-reading

memorized information had no effect, but

trying to recall the information had an

effect.”

• Implication for SE: Code comprehension.

[Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory Tests

Improves Long-Term Retention". Psychological Science. 17 (3): 249–255.]

40

Lens of

Statistics

41

Alternate View

• The bugs experienced by users are the ones

that matter.

• Dually, bugs never experienced by users do not

matter.

42

Positive User View

• Suppose you are writing a point-of-sale cashier

application that makes change for a dollar ($1).

Given any price between 1 and 100 cents, you

must indicate the coins to give out as change.

• e.g., Price is 23 cents, User Gives you a $1
→ return 3 quarters and 2 pennies (77 cents)

• In this scenario, you can exhaustively test all

100 inputs that will occur to real users in the

real world

• In some sense, it does not matter if that is 100%
statement or code coverage (e.g., dead code)

43

Negative User View

• Suppose users will only ever cause lines 1, 2

and 3 of your program to be executed

• Then you do not need to test line 4

• Even if it has a bug, users will never encounter
that bug

• Note “will” → this either requires a

prediction of the future or a finite input

domain

44

Testing as Sampling

• If user-experienced bugs are the ones that

matter, testing should be devoted to sampling

those inputs that users will provide

• Two views:

• Sample what users do most commonly

• Sample what causes the most harm if users do it

• Compare:

• Risk = (Prob. of Event) * (Damage if Event Occurs)

45

Sampling Error

• In statistics, sampling error occurs when the

statistical characteristics of a population are

estimated from a subset, or sample, of that

population.

• “Our test suite is a sample of inputs that could
occur in the real world. Our program behaves well
on our test suite.” → later → “Our program
behaves badly on some other untested real input.
Sampling error!”

• Testing gives confidence the same

way sampling (or polling) gives

confidence.

46

Sampling Bias

• In statistics, sampling bias is a bias in which a

sample is collected in such a way that some

members of the intended population are less

likely to be included than others.

• Suppose you are conducting a
poll to see who will win the
next election, but you only poll
republicans.

• Suppose you are creating tests
to see if your program will
crash, but you only poll nice,
small, inputs.

47

Solution?

• There are a number of well-established

sampling techniques in the field of statistics to

help address such biases

• They often require knowing something about
the distribution of the full population from
which you want to sample a subpopulation

• The basic problem in SE is that the underlying

distribution of real user inputs is not known

48

Beta Testing
(What can we do? Ask Users!)

• Alpha testing is testing done by developers.

• Beta testing is testing done by external users

(often using a special beta version of the

program).

• Beta testing can be viewed as directly sampling the space of
user inputs

49

A/B Testing

• A/B testing involves two variants of your

software, A and B, which differ only in one

feature. Different users are shown different

variants and responses are recorded. It is an

instance of two-sample statistical hypothesis

testing.

50

Likely or Damaging?

• Recall two guiding approaches:

• (1) Sample what users will do most commonly

• (2) Sample what will cause the most harm

• The former (1) is sometimes called workload

generation

Common for databases, webservers, etc. (Youtube?)

• The latter (2) often relates to computer

security

• Exploit generation, penetration testing, etc.

• cf. AFL in Homework 2

51

Non-Security Damage
• For Amazon (etc.), “damaging” is “customer

does not complete the purchase”

[Dobolyi et al. Modeling Consumer-Perceived
Web Application Fault Severities for Testing.
ISSTA 2010.]

52

Lens of Adversity

53

Finding Bugs

• Suppose you wanted to evaluate the quality of

two truffle-sniffing pigs (or bomb-sniffing

dogs)

• You might hide some truffles and see how

many each pig finds (etc.)

• The pig that finds more of the hidden truffles
in your backyard is assumed to find more real
truffles in the wild

• Suppose you wanted to evaluate the quality of

two bug-finding test suites …

54

Mutation Testing
• Mutation testing (or mutation analysis) is a

test suite adequacy metric in which the

quality of a test suite is related to the number

of intentionally-added defects it finds.

• Informally: “You claim your test suite is really

great at finding security bugs? Well, I'll just

intentionally add a bug to my source code and

see if your test suite finds it!”

55

How Close is this to Real Life?

• In the truffle-pig example, if every truffle I

hide in my back yard is next to a smelly red

flower, a pig that finds them all may not

actually do well in the real world

• The truffle placements I made up were not
indicative of real-world truffles

• Similarly, if I add a bunch of defects to my

software that are not at all the sort of defects

real humans would make, then mutation

testing is uninformative

56

Defect Seeding

• Defect seeding is the process of intentionally

introducing a defect into a program. The

defect introduced is typically intentionally

similar to defects introduced by real

developers. The seeding is typically done by

changing the source code.

• For mutation testing, defect seeding is

typically done automatically (given a model of

what human bugs look like)

• You will do this in Homework 3

57

Mutation Operators
(How do we seed defects?)

• A mutation operator systematically changes a

program point. In mutation testing, the

mutation operators are modeled on historical

human defects. Example mutations:

 if (a < b) → if (a <= b)

 if (a == b) → if (a != b)

 a = b + c → a = b – c

 f(); g(); → g(); f();

 x = y; → x = z;

58

Mutant
• A mutant (or variant) is a version of the

original program produced by applying one or

more mutation operators to one or more

program locations.

• The order of a mutant is the number of

mutation operators applied.

// original // 2nd-order mutant

if (a < b): if (a <= b):

 x = a + b → x = a – b

print(x) print(x)

59

Competent Programmers

• The competent programmer hypothesis holds

that program faults are syntactically small and

can be corrected with a few keystrokes.

• Programmers write programs that are largely

correct. Thus, the mutants simulate the likely

effect of real faults.

• Therefore, if the test suite is good at catching

the artificial mutants, it will also be good at

catching the unknown but real faults in the

program.

60

Do Humans Really

Make Simple Mistakes?

61

Competent?

• Is the competent programmer hypothesis true?

62

Competent?

• Is the competent programmer hypothesis true?

• Yes and no.

• It is certainly true that humans often make

simple typos (e.g., + to -).

• But it is also true that some bugs are more

complex than that.

63

Coupling Effect

• The coupling effect hypothesis holds that

complex faults are “coupled” to simple faults

in such a way that a test suite that detects all

simple faults in a program will detect a high

percentage of the complex faults.

• Is it true?

• Tests that detect simple mutants were also able to
detect over 99% of second- and third-order
mutants historically [A. J. Offutt. Investigations of the software testing

coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, Jan. 1992.]

64

Mutation Testing

• A test suite is said to kill (or detect, or

reveal) a mutant if the mutant fails a test

that the original passes.

• Mutation testing (or mutation analysis) of a

test suite proceeds by making a number of

mutants and measuring the fraction of them

killed by that test suite. This fraction is called

the mutation adequacy score (or mutation

score).

• A test suite with a higher score is better.

65

The wording can be tricky, I know …

66

Mutation Analysis: Pros and Cons

• Has the potential to subsume other test suite

adequacy criteria (it can be very good)

• Which mutation operators do you use?

• Where do you apply them? How often do you

apply them?

• Typically done at random, but how?

• It is very expensive. If you make 1,000

mutants, you must now run your test suite

1,000 times!

• We started by saying testing (1x) was expensive!

67

Equivalent Mutant Problem

• Suppose you have “x = a + b; y = c + d;” and

you swap those two statements.

• The resulting program is a mutant, but it is

semantically equivalent to the original.

• So it will pass and fail all of the tests that the
original passes and fails.

• So it will dilute the mutation score (make

worse)

• Detecting equivalent mutants is a big deal.

How hard is it?

68

Equivalent Mutant Problem

• Detecting equivalent mutants is a big deal.

How hard is it?

• It is undecidable!

• By direct reduction to the halting problem, or by
Rice's Theorem

def foo(): # foo halts if and only if

 if p1() == p2(): # p1 is equivalent to p2

 return 0

foo()

69

Questions?

• Lens of Logic: “no visit X → no find bug in X”

• Leads to statement and branch coverage.

• Lens of Statistics: “sample the inputs the users

will make”

• Leads to beta testing, A/B testing.

• Lens of Adversity: “poke realistic holes in the

program and see if you find them”

• Leads to mutation testing.

• Don't neglect HW 1 components!

	Slide 2
	Slide 3: One-Slide Summary
	Slide 4: The Story So Far …
	Slide 6: Story Time
	Slide 7: Turtles All The Way Down
	Slide 8: Guiding Narrative
	Slide 9: Lens of Logic
	Slide 10: The Motivation
	Slide 11: Intuition (Gedankenexperiment)
	Slide 12: Coverage
	Slide 13: Do Tests Cover All Requirements?
	Slide 14: An Approximation
	Slide 15: Aside: Ethics
	Slide 16: Don't Do Bad Things (How does good/bad intuition relate to testing?)
	Slide 17: Testing to Find Bugs
	Slide 18: If this seems “too obvious” so far, just wait …
	Slide 19: P → Q
	Slide 20: “All Other Things Being Equal”
	Slide 21: Simplifying Assumptions
	Slide 22: Line Coverage: A Test Suite Quality Metric
	Slide 23: Using Line Coverage (What can we do with it?)
	Slide 24: Collecting Line Coverage (How do we measure it?)
	Slide 25: Coverage Instrumentation (How do we measure it?)
	Slide 26: Good News: “Solved” Problem
	Slide 27: Problems with Line Coverage
	Slide 28: Example Where Statement Coverage is Inadequate
	Slide 29: Example Where Statement Coverage is Inadequate
	Slide 30: Data Values and Implicit Control Flow
	Slide 31: Intuition
	Slide 32: Branch Coverage
	Slide 33: Branch vs. Line
	Slide 34: Other Flavors
	Slide 35: Trivia: Statistics
	Slide 36: Trivia: Geography
	Slide 37: Psychology: Recall
	Slide 38: Psychology: Recall
	Slide 39: Psychology: Testing Effect
	Slide 40: Lens of Statistics
	Slide 41: Alternate View
	Slide 42: Positive User View
	Slide 43: Negative User View
	Slide 44: Testing as Sampling
	Slide 45: Sampling Error
	Slide 46: Sampling Bias
	Slide 47: Solution?
	Slide 48: Beta Testing (What can we do? Ask Users!)
	Slide 49: A/B Testing
	Slide 50: Likely or Damaging?
	Slide 51: Non-Security Damage
	Slide 52: Lens of Adversity
	Slide 53: Finding Bugs
	Slide 54: Mutation Testing
	Slide 55: How Close is this to Real Life?
	Slide 56: Defect Seeding
	Slide 57: Mutation Operators (How do we seed defects?)
	Slide 58: Mutant
	Slide 59: Competent Programmers
	Slide 60: Do Humans Really Make Simple Mistakes?
	Slide 61: Competent?
	Slide 62: Competent?
	Slide 63: Coupling Effect
	Slide 64: Mutation Testing
	Slide 65: The wording can be tricky, I know …
	Slide 66: Mutation Analysis: Pros and Cons
	Slide 67: Equivalent Mutant Problem
	Slide 68: Equivalent Mutant Problem
	Slide 69: Questions?

