
Quality Assurance and Testing

2

Logistics: Room Swap?

● We were asked by an adjacent class (a smaller
class in a larger room) to swap rooms

● This class may move to LCSIB 1355 (next door)
● This will only happen if the lecture recordings

can be seamlessly transferred
● No old recordings lost, all new recordings visible

● If so, it would happen next week or later
● If so, we would give another warning

● Like an all-class email or post

3

One-Slide Summary

● Quality Assurance maintains desired product
properties through process choices.

● Testing involves running the program and
inspecting its results or behavior. It is the
dominant approach to software quality assurance.
There are numerous methods of testing, such as
regression testing, unit testing, and integration
testing.

● Mocking uses simple replacement functionality to
test difficult, expensive or unavailable modules or
features. (special thanks to James Perretta for material)

4

Last Time: Metrics and Management

Story So Far

● We want to deliver high-quality software at a
low cost. We can be more efficient if we plan
and use a software development process.

● Planning requires information: we measure the
world to combat uncertainty and mitigate risk.

● But how do we measure, assess or assure
software quality?

6

Official Definition

● Quality assurance is the maintenance of a
desired level of quality in a service or product,
especially by means of attention to every
stage of the process of delivery or production.
● Oxford English Dictionary

7

Quality Motivation

● External (Customer-Facing) Quality
● Programs should “do the right thing”

● So that customers buy them!

● Internal (Developer-Facing) Quality
● Programs should be readable, maintainable, etc.

8

Internal-Facing Quality

● If the dominant activity of software
engineering is maintenance …
● Then internal quality is mostly maintainability!

● How do we ensure maintainability?
● Human code review
● Code analysis tools and linters
● Using programming idioms and design patterns
● Following local coding standards

● More on this in future lectures!

9

External-Facing Quality

● What does “Do The Right Thing” Mean?
● Behave according to a specification

● Foreshadowing: What is a good specification?

● Don't do bad things
● Security issues, crashing, etc.
● Some failure is inevitable. How to handle it?

● Robustness against maintenance mistakes
● Do “fixed” bugs sneak back into code?

10

Doing The Right Thing

● Why don't we just write a new program X to
tell us if our software Y is correct?

11

Doing The Right Thing

● Why don't we just write a new program X to
tell us if our software Y is correct?

● The Halting Problem prevents X from giving
the right answer every time
● X always gives a wrong answer
● X cannot always give a right answer

● We can still approximate!
● Type systems, linters, static analyzers, etc.

12

Practical Solution: Testing

13

Testing

● “Software testing is an investigation
conducted to provide stakeholders with
information about the quality of the software
product or service under test.”

● A typical test involves input data and a
comparison of the output. (More next lecture!)

● Note: unless your input domain is finite,
testing does not prove the absence of all bugs.

● Testing gives you confidence that your
implementation adheres to your specification.

14

Testing in UM EECS Courses (1/3)

● EECS 183 and 482
● 1 main() function == 1 test
● For each test

● Run test against correct solution, save output
● For each buggy solution

● Run test against buggy solution, diff output with result
from correct solution

● If outputs differ, a bug is exposed!

15

Testing in UM EECS Courses (2/3)

● EECS 281
● 1 input file == 1 test
● For each test

● Pipe input to correct solution, save output
● For each buggy solution

● Pipe input to buggy solution, diff output with result
from correct solution

● If outputs differ, a bug is exposed!

16

Testing in UM EECS Courses (3/3)

● EECS 280
● 1 function with assert()s == 1 test
● For each test

● Run test against correct solution
● Throw out the test if it fails

● For each buggy solution
● Run test against buggy solution
● If assertion fails, a bug is exposed!

17

Exercise: UM EECS Testing

● With your neighbor, discuss and write down
brief pros and cons of each testing method
● If notecards are passed around, write your UM

email(s) in big block letters (e.g., “weimerw”)
● We can't read it we can't give you credit for it→

● Recall
● 183/482: 1 main() function == 1 test; output diff
● 281: 1 input file == 1 test; output diff
● 280: 1 function with assert()s == 1 test; assertion

failure

18

Testing: Inputs and Outputs

● For 183/281/482, students write program
inputs, but not expected outputs

● For 280, students write program inputs and
also expected outputs

● In real life, you rarely have an already-correct
implementation of your program

● Testing with random inputs (fuzz testing) can
help detect “bad things” bugs (segfaults,
memory errors, crashes, etc.)
● But does not provide full expected outputs

19

Testing Concepts

● Regression Testing
● Unit Testing
● xUnit
● Test-Driven Development
● Integration Testing
● Mocking

20

Regression Testing (in one slide)

● Have you ever had one of those “I swear we've
seen and fixed this bug before!” moments?
● Perhaps you did, but someone else broke it again
● This is a regression in the source code

● Best practice: when you fix a bug, add a test
that specifically exposes that bug
● This is called a regression test
● It assesses whether future implementations still fix

the bug

21

Regression Testing Story

// Dear maintainer:

//

// Once you are done trying to 'optimize' this routine,

// and have realized what a terrible mistake that was,

// please increment the following counter as a warning

// to the next guy:

//

// total_hours_wasted_here = 42

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

22

Unit Testing and Frameworks

● In unit testing, “individual units of source
code, sets of one or more computer program
modules together with associated control
data, usage procedures, and operating
procedures, are tested to determine whether
they are fit for use.”

● Modern frameworks are often based on SUnit
(for Smalltalk), written by Kent Beck
● Java JUnit, Python unittest, C++ googletest, etc.

● These frameworks are collectively referred to
as xUnit

23

xUnit Features

● Test cases “look like other code”
● They are special methods written to return a

boolean or raise assertion failures

● A test case discoverer finds all such tests
● Special naming scheme, dynamic reflection, etc.

● A test case runner chooses which tests to run

24

xUnit Definitions

● In xUnit, a test case is
● A piece of code (usually a method) that establishes

some preconditions, performs an operation, and
asserts postconditions

● A test fixture
● Specifies code to be run before/after each test

case
● Each test is run in a “fresh” environment

● Special assertions
● Check postconditions, give helpful error messages

25

Python unittest Example

26

Python unittest Details

● Discussion Sections will provide more details
● See Python unittest documentation:

● https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

27

Unit Testing Advantages

● Unit testing tests features in isolation
● In the previous example, our test for zap() tested

only the zap() method
● Advantage: when a test fails, it is easier to locate

the bug

● Unit testing tests are small
● Advantage: smaller test are easier to understand

● Unit testing tests are fast
● Advantage: fast tests can be run frequently

28

EECS UM Unit Testing

● Recall the Euchre project from EECS 280
● Card, Pack and Player classes
● A top-level “play Euchre” application

● Suppose you wrote Card, Pack and Player
without testing, and then wrote “play Euchre”
● What do you do when you

find a bug in “play Euchre”?

29

Test-Driven Development

● “Test-driven development is a software
development process that relies on the
repetition of a very short development cycle:
requirements are turned into very specific test
cases, then the software is improved so that
the tests pass.”

● Write a unit test for a new feature

● When you run the test, it should fail

● Write the code that your unit test case tests

● Run all available tests

● Fix anything that breaks; repeat until no tests fail

● Go back to step 1

30

Integration Testing

● Typically, any feature can be made to work in
isolation

● What happens when we put our unit-tested
features together into a larger program?

● Does our application work from start to finish?
● “End-to-end” testing

● Integration testing combines and tests
individual software modules as a group.

31

Unit Testing vs. Integration Testing

● Are those “unit tests” for Pack and Player
actually integration tests?
● Does Pack build on or use Card, for example?

32

Unit Testing vs. Integration Testing

“There can be no peace until they renounce
their Rabbit God and accept our Duck God.”

33

Unit and Integration Abstractions

● Once you've unit-tested an ADT, you build atop
it and write unit tests for subsequent modules
at a higher level of abstraction
● This also promotes a modular, decoupled design

● Example: we already do this with Integer, etc.
● “Does that mean that our tests that rely on

integers aren’t really unit tests? No. We can treat
integers as a given and we do. Integers have
become part of the way we think about
programming.” - Kent Beck

34

Integration Testing Examples

● Integration testing is application-specific
● EECS Classes

● Run main program with input file, diff output

● Web and GUI Applications
● Use a testing framework (or harness) that lets you

simulate user clicks and other input

● Systems Software
● Use a testing framework that lets you simulate disk

and network failures (cf. Chaos Monkey later)

35

Creative Integration
Testing Examples

● For video games, you might write an AI to play
● Bayonetta

https://www.platinumgames.com/official-blog/article/6968

● Cloudberry Kingdom
https://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php

● Or have players use gaze-detecting goggles
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability/

“We see … modern eye tracking technology as a
future standard in modern QA teams to improve
the overall quality of game experiences.”

- Markus Kassulke, CEO, HandyGames

https://www.platinumgames.com/official-blog/article/6968
https://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability/

36

Psychology: Backfire Effect

● Is there a difference between being
uninformed and being misinformed?
● Correct factual ignorance or misperception …

● “However, individuals who receive unwelcome
information may not simply resist challenges
to their views. Instead, they may come to
support their original opinion even more
strongly – what we call a backfire effect.”

37

Psychology: Backfire Effect

● Human studies of 130 + 197 participants
● Found that conservative supporters of

president Bush “doubled down” when
presented with evidence that there were no
weapons of mass destruction in Iraq before the
2003 US invasion.

● Commonly referenced in popular press,
message boards, etc.
[B Nyhan and J Reifler. (2010). When Corrections Fail: The
persistence of political misperceptions. In Political Behavior
32(2):303–330.]

38

Psychology: Backfire Effect

● “Four experiments in which we enrolled more than
8,100 subjects and tested 36 issues of potential
backfire. Across all experiments, we found only one
issue capable of triggering backfire: whether WMD
were found in Iraq in 2003. Even this limited case was
susceptible to a survey item effect […] Evidence of
factual backfire is far more tenuous than prior
research suggests. By and large, citizens heed factual
information, even when such information challenges
their partisan and ideological commitments.” [T Wood
and E Porter. (2018). The elusive backfire effect: mass
attitudes’ steadfast factual adherence. In Political Behavior,
pp. 1-29.]

39

40

Psychology: Confirmation Bias

● Confirmation bias is the tendency to search
for, interpret, favor, and recall information in
a way that affirms one's prior beliefs or
hypotheses. It includes a tendency to test
ideas in a one-sided way, focusing on one
possibility and ignoring alternatives.

● It is so well-established that experimental
evidence is available in many flavors
[R Nickerson. (1998). Confirmation Bias: A Ubiquitous
Phenomenon in Many Guises. In Review of General Psychology,
2(2):175-220.]

41

Psychology: Confirmation Bias
(each subclaim has its own studies)

● Restriction of attention to a favored
hypothesis

● Preferential treatment of evidence supporting
existing beliefs

● Looking only, or primarily, for positive cases
● Overweighting positive confirmatory instances
● Seeing what one is looking for
● Favoring information acquired early

42

Psychology: Confirmation Bias
● Implications for SE:
● Policy Rationalization justifies policies to

which an organization has already committed.
“Once a policy has been adopted and
implemented, all subsequent activity becomes
an effort to justify it.”

● Theory Persistence involves holding to a
favored idea long after the evidence against it
has been sufficient to persuade others who
lack vested interests.

● Idea or policy = any SE process decision.

Targeting Hard-To-Test Aspects

● What if we want to write unit or integration
tests for some ADT, but the ADT has expensive
dependencies?

● Exercise: generate three examples of things
that are hard to test because of their
dependencies or other expense factors.

44

Mocking

● “Mock objects are simulated objects
that mimic the behavior of real
objects in controlled ways.”

● In testing, mocking uses a mock object to test
the behavior of some other object.
● Analogy: use a crash test dummy instead of real

human to test automobiles

45

Scenario 1: Web API Dependency

● Suppose we're writing a single-page web app
● The API we'll use (e.g., Speech to Text) hasn't

been implemented yet or costs money to use
● We want to be able to write our frontend

(website) code without waiting on the server-
side developers to implement the API and
without spending money each time

● What should we do?

46

Mocking Dependencies

● Solution: make our own “fake” (“mock”)
implementation of the API

● For each method the API exposes, write a
substitute for it that just returns some hard-
coded data (or any other approximation)
● Why does this work? Are there relevant concepts

from 280?

● This technique was used to design and test
parts of the autograder.io website

47

Scenario 2: Error Handling

● Suppose we're writing some code where
certain kinds of errors will occur sporadically
once deployed, but “never” in development
● Out of memory, disk full, network down, etc.

● We'd like to apply the same strategy
● Write a fake version of the function …

● But that sounds difficult to do manually
● Because many functions would be impacted
● Example: many functions use the disk

48

Mocking Libraries: Two Approaches

● Before running the program (“static”)
● Combine modularity/ecapsulation with mocking
● Move all disk access to a wrapper API, use mocking

there at that one point (coin flip fake error)→
● While running the program (“dynamic”)

● While the program is executing, have it rewrite
itself and replace its existing code with fake or
mocked versions

● Let's explore this second option in detail

49

Dynamic Mocking Support

● Some languages provide dynamic mocking
libraries that allow you to substitute objects
and functions at runtime
● For one test, we could use a mocking library to

force another line of code inside our target
function to throw an exception when reached

● This feature is available in modern dynamic
languages with reflection (Python, Java, etc.)
● googletest used to require a special base class for

this sort of mocking, now it uses macros

50

Dynamic Mocking Example

import unittest
from unittest import mock

def lowLevelOp():
 # might fail for users
 # example: no memory
 pass

def highLevelTask():
 try:
 lowLevelOp()
 return True
 except MemoryError:
 return False

class HLTTestCase(unittest.TestCase):
 def test_LLO_no_memory(self):
 def mocked_memory_error():
 raise MemoryError('test :-(')

 with mock.patch(# look here!
 '__main__.lowLevelOp',
 mocked_memory_error):
 self.assertFalse(highLevelTask())

if __name__ == '__main__':
 unittest.main()

See https://docs.python.org/3/library/unittest.mock.html

See https://docs.python.org/3/library/unittest.mock.html#patch

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html#patch

51

Dynamic Mocking Library Uses

● Track how many times a function was called
and/or with what arguments (“spying”)
● How would you do this with dynamic mocking?

● Add or remove side effects
● Exceptions are considered a side effect by mocking

libraries

● Test locking in multithreaded code
● e.g., force a thread to stall after acquiring a lock

52

Dynamic Mocking Disadvantages

● Test cases with dynamic mocking can be very fragile

● What if someone moves or removes the call to
lowLevelOp() that we mock.patch'd earlier?

● Dynamic mocking requires good integration tests

● If we mock dependencies, we need to be extra careful
that our ADTs play nicely together

● Dynamic mocking libraries have a learning curve

● In Python, it can be hard to determine the correct
value for 'path' in mock.patch (etc.)

● Error messages are often cryptic (modified program)

53

Quality Assurance and
Development Processes

● How can we assure quality before, during and
after writing code?

● What if we don't have enough resources?
● Tune in next time!

● Further Watching:
● “So You Want To Be In QA?”

https://www.youtube.com/watch?v=ntpZt8eAvy0

https://www.youtube.com/watch?v=ntpZt8eAvy0

54

Questions?

● Next exciting episode:
● Test Suite Quality Metrics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

