SO WE'LL CALL | NEED CONTEXT.
THIS AP, THEN— THE 10,000-FOOT f

WAIT WAIT
WAIT. THIS IS
_1\ TOO LOW-LEVEL,

BEug Eash by Hans Bjordahl

S0 WE HAVE TWO IT ALL BEGAN FOUR
| APPLICATIONS THAT= BILLION YEARS AGD

NO. MNO.

WAY BACK., THE
EeALLY HIGH-
=Ry LEVEL VIEW,

PULL ON A PLANET CALLED

Ok, THAT'S
HIGH ENOUGH,

Al

opyright 2005 Hans Bjordahl

http:s . bugbash, net/

Process, Risk, and Scheduling

WE WILL BE ADOPTING
THE BEST PRACTICES
IN OUR INDUSTRY,
JUST LIKE EVERYONE

ELSE.

PRACTICES ||
1

L]

g ottada e B ol oom

woww. dilbert. com

IF EVERYONE 15
DOING IT, BEST
PRACTICES IS THE
SAME THING AS
MEDIOCRE.

4308 2008 Soott Adarma, o /S by UES, ng

STOP MAKING
MEDIOCRITY
SOUND BAD!

One-Slide Summary

* Asoftware development process organizes
activity into distinct phases (e.g., design,
coding, testing, etc.). Processes can increase
efficiency, but are often implemented poorly.

» Effort estimation is based on historical
information (models, experience). It is
complicated by uncertainty, which stems from
risk, which can be managed (identified,
minimized). A project plan (milestones,
deliverables) includes all of these
considerations. Measuring progress is difficult.

2

Process

* Asoftware development process (also known
as a software development life cycle or
software development model) divides
software development into distinct phases to
improve design, product and project
management.

* Process is “the set of activities and associated
results that produce a software product”.

 Examples include the waterfall model, spiral
development, agile development and extreme
programming.

Richard Feynman's
Problem Solving Algorithm
1.Write down the problem.
2.Think real hard.
3.Write down the solution.

- As facetiously suggested by Murray Gell-Mann, a
colleague of Feynman, in the New York Times

Richard Feynman's
Problem Solving Algorithm
1.Write down the |
2.Think real hard.
3.Write down the |

- As facetiously ¢
colleague of Fey

I think you should be a little
more specific, here in Step 2

A Straw Software Process

* Discuss the software that needs to be written
* Write some code

» Test the code to identify the defects

* Debug to find causes of defects

* Fix the defects

* |f not done, return to Step 1

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,
which actually made it take 5% longer, but the

complaints stopped.

Waterfall Model

In the waterfall software development modél, the

following phases are carried out in order:

System and software requirements: captured in a document
Analysis: resulting in models, schema, and business rules
Design: resulting in the software architecture

Coding: the development, proving, and integration of software
Testing: the systematic discovery and debugging of defects

Operations: the installation, migration, support, and
maintenance of complete systems

' | IF | D |EX] WB |
3 | F | D | MEM WB
| IF | EX MEM WB |
| D | EX |MEM WB
’ Product requirements document

Implementation| JEEEEMTA

Spiral Development Model

* The spiral software process model focuses on
the construction of an increasingly-complete
series of prototypes while accounting for risk.

1.Determine
objectives

A Cumulative cost

Progress 2. Identify and

/"—_‘-# resolve risks

4, Plan the
next iteration

Release

3. Development 10
and Test

Activity Effort over Time

100%

Percent
of
Effort

0%

Project Time Project
beginning end 11

Activity Effort over Time

o)
100% Trashing / Rework

Percent
of
Effort

Productive Coding

0%

Project Time Project
beginning end 12

|dealized View

o)
100% Trashing / Rework

Percent
of Productive Coding
Effort
Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,
Development and Integration Plan
0%

Project Time Project
beginning end 13

Result of Failing to Plan

100%
Trashing / Rework
Percent
of
Effort
Productive Coding
Process
0%

Project Time Project
beginning end

14

Example Process
Issues and Outcomes

Requirements: Mid-project informal agreement to changes suggested
by customer or manager. - Project scope expands 25-50%

Quality Assurance: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.
— Release with known defects

Defect Tracking: Bug reports collected informally. - Bugs forgotten

System Integration: Integration of independently developed
components at the very end of the project. - Interfaces out of sync

Source Code Control: Accidentally overwritten changes. - Lost work

Scheduling: When project is behind, developers are asked weekly for
new estimates. - Project falls further behind

15

Survival Mode

* Missed deadlines — “solo development mode”,
developers stop interacting with testers,
technical writers, managers, etc.

 “The producers even set a deadline; they gave a specific date for the end
of the crunch, which was still months away from the title's shipping date,
so it seemed safe. That date came and went. And went, and went. When
the next news came it was not about a reprieve; it was another
acceleration: twelve hours six days a week, 9am to 10pm.

Weeks passed. Again the producers had given a termination date on this
crunch that again they failed. Throughout this period the project remained
on schedule. The long hours started to take its toll on the team; people
grew irritable and some started to get ill. People dropped out in droves for
a couple of days at a time, but then the team seemed to reach equilibrium
again and they plowed ahead. The managers stopped even talking about a
day when the hours would go back to normal.” - EA: The Human Story 16

Desired Allocation

Trashing / Rework

100%

Percent
of
Effort

Productive Coding

0%

Project Time Project
beginning end 17

Process Hypothesis

* A process can increase flexibility and
efficiency for software development.

 |f this is true, an up-front investment (of
resources, e.g., “time”) in process can yield
greater returns later on.

el g
E =
= THATS MANAGEMENT &
AN o vour® 2] FouL-Up NUMBER Two. |3]| WE DON'T ANTICIPATE
TIMELINE? E| IT USUALLY HAPPENS [5| ANY MANAGEMENT
il 'AROUND THE THIRD |5 HIETMEE
i WEEK. i
T E THAT™S
5 o | . b MFUI
g Y °d (|}
2 T | %
5 ' 1E
- [d -/.'I :
"L e . 18

@ Scott Adams, Inc./Dist. by UFS, Inc.

Efficiency:
Defect Cost vs. Creation Time

Costto
Correct

Phase Thata
Defect Is Created

Eequirements

Architecture

Dretailed design

Constraction

Fequirements Architecthure Detailed Construction Ilaintenance
design

Phase That a Defect Is Corrected

Copyrizht 1992 Steven ©. WEConnell. Feprinted with perrassion
from Joftware Profect Survival Guide (IWlicrosoft Press, 1992).

19

Efficiency:
Defect Cost vs. Detection Time

* An IBM report gives an average
defect repair cost of

 $25 during coding
debu in
. $100 at build time gt bgg 9

bgid

e $450 during testing/QA £
* $16,000 post-release

[L. Williamson. IBM Rational software analyzer: Beyond
source code. 2008.]

Trivia: Chemistry

 Which of these chemical reactions would be
the hardest to carry out in a school chemistry
class?

 Nitrating cellulose to produce guncotton
Reacting thermite with iron oxide (2500 °C)

Dissolving bauxite in cryolite to make aluminum

Cross lmklg pplyvmyl alcohol w1th sodlum borate

Trivia: Chemistry

* The Hall-Héroult process (1886) extracts
aluminum from the ore bauxite. Aluminum is
the most abundant metallic element on Earth
but not in its elemental state.

» Before this process aluminum was more
expensive than gold or platinum:

« “Bars of aluminum were exhibited alongside the
French crown jewels at the Exposition Universelle of
1855, and Emperor Napoleon lll of France was said to
have reserved his few sets of aluminum dinner plates
and eating utensils for his most honored guests.”

Trivia: Culture

 “Fighting the landlord” (SHitt=), “Double
upgrade” (&&F), “Tractor” (¥EHi#E) and

“Struggling upstream” (Z&_LjiF) are all
instances of what?

* Bonus: Unlike Western analogs, these often
include two whats?

Psychophysics

 Which two figures have the same # of dots?

Psychophysics: Weber's Law

 Weber's Law states that
“simple differential sensitivity
is inversely proportional to the| .
size of the components of the
difference; relative
differential sensitivity remains
the same regardless of size.”

* That is “the perceived change
in stimuli is proportional to
the [size of] initial stimuli.”

Psychophysics: Weber's Law

* That is “the perceived change
in stimuli is proportional to
the [size of] initial stimuli.”

Implication for SE: Things you
could notice on small-scale
projects are harder to notice
on large-scale projects. Your
intuitions (“l can spot bugs in
this”) from small class
projects do not carry over.

Psychology

» Consider a hypothetical cleanup scenario
involving two hazardous waste sites X and Y.

« X causes 8 cases of cancer annually (large city)

* Y causes 4 cases of cancer annually (small city)
* Rank these three cleanup approaches:

c AX—-4.Y - 2.

e B.X—-7.Y -0,

e C.X—-3,Y - 3.

Psychology: Zero-Risk Bias

* Three cleanup approaches:
e AX—-4.Y - 2.
e B.X—-7.Y—-0.
e C.X—-3,Y - 3.

* “The bias was defined as not ranking the
complete-reduction option [B] as the worst of
the three options. (It should be ranked worst
because it saves fewer cancer cases.) 42% of
the subjects exhibited this zero-risk' bias.”

[Baron; Gowda; Kunreuther (1993). "Attitudes toward managing hazardous waste:
What should be cleaned up and who should pay for it?". Risk Analysis. 13: 183-192.]4

Psychology: Zero-Risk Bias

o Zero-risk bias is a tendency to prefer the complete
elimination of a risk even when alternative options
produce a greater reduction in risk (overall).

« “42% of the subjects exhibited this "zero-risk’ bias.”

 Who? 60 CEOs of Oil and Chem Companies, 57
Economists, 94 Environmentalists, 29 Experts on
Hazardous Waste, 89 Judges, 104 Legislators.

* Implications for SE: Your managers (and you) are
likely to mistakenly favor risk-reduction strategies
that reduce a risk to zero, even to the overall
detriment of the company/product.

Process Topics

» Estimating Effort
* Risk and Uncertainty
* Planning and Scheduling

t o '._.k "f‘-{ . ; Wik -

2R G SO B R ——" i

Ty
+ (i g
PSP Nyl
o . E, - .'1|“._“r
v - TAY B | TR
Y, - L

. r 1

30

- Jakob #% \u0000

iy Qjcsb

EStimating T]me COStS 6ursofdebuggingcansave

you 5 minutes of reading
documentation

How long would you estimate to develop a ...

e Java Monopoly game (you alone)

 Bank smartphone app (you with a team of four
developers, one with iPhone experience, one with
a security background)

Estimate in eight-hour workdays (20 in a
month, 220 per year)

Approach: break down the task into ~five
smaller tasks and estimate them. Repeat.

31

Basic Plan: Learn from Experience

EXPERIENCE

It's what lets you recognize a mistake when you make it again.

32

Constructive Cost Model

* A constructive cost model (cocomo) is a
predictive model of time costs based on
project history.

* This requires experience with similar projects.
* This rewards documentation of experience.

* Basically, it's an empirically-derived set of
“effort multipliers”. You multiply the time
cost by some numbers from a chart:

33

Ratings

Cost Drivers | Very Low Low Nominal High Very High ' Extra High
Product attributes | | |

Required software reliability | 0.75 0.88 1.00 1.15 1.40

Size of application database | | 0.94 | 1.00 | 1.08 | 1.16

Complexity of the product | 0.70 | 0.85 | 1.00 | 1.15 | 1.30 | 1.65

Hardware attributes

Run-time performance constraints 1.00 1.1 1.30 1.66
Memory constraints | | | 1.00 | 1.06 | 1.21 | 1.56
Volatility of the virtual machine environment | | 0.87 | 1.00 | 1.15 | 1.30 |
Required turnabout time | | 0.87 | 1.00 | 1.07 | 1.15

Personnel attributes

Analyst capability | 1.46 1.19 1.00 0.86 | 0.71
Applications experience | 1.29 | 1.13 | 1.00 | 0.91 | 0.82
Software engineer capability | 142 | 1.17 | 1.00 | 0.86 | 0.70
Virtual machine experience | 1.21 | 1.10 | 1.00 | 0.90 |
Programming language experience | 1.14 | 1.07 | 1.00 | 0.95
Project attributes | |

Application of software engineering methods | 1.24 1.10 1.00 0.91 0.82
Use of software tools | 1.24 | 1.10 | 1.00 | 0.91 | 0.83

Required development schedule 1.23 1.08 1.00 1.04 1.10

Can Companies Estimate?

» Study in which 35 companies bid to produce a
web information system. Fourteen submitted a
schedule and four were contracted to build it.

|IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, WVOL. 35, MNO.3, MAYJUNE 2009 407

Variability and Reproducibility in Software
Engineering: A Study of Four Companies
that Developed the Same System

Bente C.D. Anda, Dag |.K. Sjoberg, Member, IEEE, and Audris Mockus, Member, IEEE

Abstract—The scientific study of a phenomenon reguires it to be reproducible. Mature engineering industries are recognized by
projects and products that are, to some extent, reproducible. Yet, reproducibility in software engineering (SE) has not been
investigated thoroughly, despite the fact that lack of reproducibility has both practical and scientific consequences. We report a
longitudinal multiple-case study of variations and reprodudibility in software development, from bidding to deployment, on the basis of
the same requirement specification. In a call for tender to 81 companies, 35 responded. Four of them developed the system
independently. The firm price, planned scheduwe, and planned development process, had, respectively, “low,” “low,” and "medium”
reproducibilities. The contractor's costs, acdfual kead fime, and schedule overrun ot the projects had, respectively, "medium,” "high,” and
“low™ reproducibilities. The quality dimensions of the delivered products, refabiity, usability, and maintainabilfy had, respectively,
“low,” “high,” and Jow” reproducibilities. Moreover, varniability for predictable reasons is also included in the notion of reproducibility. We
found that the observed outcome of the four development projects matched our expectations, which were formulated partially on the
basis of SE folklore. Mevertheless, achieving more reproducibility in SE remains a great challenge for SE research, education, and
industny.

Index Terms—Software engineering life cycle, software quality, software project success, software process, multiple-case study.

+

35

What patterns
can you spot?

Company | Firm price with- | Time sche- | A&D in bids Planned effort | Emphasis
out VAT (Euro) dule (days) on A&D (%) on A&D

| 2630 14 | Brief(2)

2 4380 Briefl (2)

3 4880 Very brief (1)

4 4970 28 | Brief (2) 30 5.0

3 8750 18 | Detailed (3) 7 3.7

6 9940 None (0) 40 4.0

7 11810 Brief (2))] 2.0

8 11880 94 | Detailed (3) 26 5.6

9 12190 77 | Very detailed (4) 5 4.5
10 16630 Brief (2) 12 3.2
¥ 18130 Very brief (1)
12 18510 91 | Brief(2) 20 4.0
13 20000 30 | Detailed (3) 28 3.8
14 20020 Very brief (1) 50) 6.0
15 21090 Very brief (1) 44 5.4
16 25310 Very detailed (4) 11 5.1
17 33250 49 | Detailed (3) 26 5.6
18 25810 Very brief (1)
19 25940 Brief (2) 20 4.0
20 25980 Very detailed (4) 8 4.8
21 26880 45 | Detailed (3)
22 28700 77 | Very detailed (4) 10 5.0
23 28950 42 | Brief (2) 30 5.0
24 29000 Brief (2)
25 33530 Brief (2)
26 33880 77 | Detailed (3) 10 4.0
27 33900 Detailed (3) 11 4.1
28 34500 Very brief (1) 36 4.6
29 38360 63 | Detailed (3) 20 5.0
30 45380 Detailed (3) 10 4.0
31 52310 Briefl (2) 27 4.7
32 56900 Detailed (3) 14 4.4
33 60750 Brief (2) 43 6.3
34 69060 49 | Detailed (3) 23 5.3
35 699440 Detailed (3)] 3.6

Results

Company A | Company B Company C Company D
Nationality Norwegian Norwegian Norwegian International
Ownership Private By employees By employees | Listed on exchanges
Location Oslo Oslo Bergen Oslo + 20 countries
Size Appr. 100 Appr. 25 Appr. 8 Appr. 13,000 worldwide
Firm price €20,000 €45,380 €8,750 €56,000
Agreed time schedule 55 days 73 days 41 days 62 days
Planned effort on A&D 28% 20% 7% 23%
Dimensions Company A | Company B | Company C | Company D
Project Contractor-related costs 90 hours 108 hours 155 hours 85 hours
Actual lead time 87 days 90 days 79 days 65 days
Schedule overrun 58% 23% 93% 5%
Product Reliability Good Good Poor Fair
Usability Good Fair Fair Good
Maintainability Good Poor Poor Good

“We found little reproducibility in the firm price of bids, and in particular,
we showed that the variation in firm price was about three times greater
than in the more mature domain of road construction. ... due partly

to the paucity of standards for describing process and product

quality.”

37

* Risk management is the identification,
assessment, and prioritization of risks,
followed by efforts to minimize, monitor and
control unfortunate event outcomes and
probabilities.

* Risk management is a key project management
task. Examples:

 Staff illness or turnover, product is too slow,
competitor introduces a similar product, etc.

38

39

Uncertainty Reduction Over Time

100%
To%
S0%
S.iEE TR0
Estimate
Growth
(i1 lines of 0%
SOUCE
code) %
- 0%
-T5%
-100%
A A A A A A
Tratial Approved ERegurements Architecture Detailed Product
product product design complete

definition definition

Copyright 1998 Steven C . MeConnell. Ee printed with penmission from Sofware Praje et Swpvival uide [Microsoft Press, 1998,

Innovation and Risk

* Most software projects are innovative
* Google, Amazon, EBay, Netflix

« Autonomous vehicles, robotics, biomed, Al (?)

* Natural language processes, graphics
* Routine projects (now, not ten years ago)

 E-Commerce website, adaptive control systems
(e.g., thermostat), 2D sprite games, etc.

* As part of the innovation cycle, routine tasks
are automated ... leaving only innovative ones!

41

No Catch-All Solution

» Address risk early

* Selectively innovate to increase value while
minimizing risk (i.e., focus risk where needed)

» Use iteration and feedback (e.g., prototypes)
» Estimate likelihood and consequences

» Requires experienced project leads
* Rough estimates (e.g., <10%, <25%) are OK
* Focus on top ten risks

* Have contingency plans

42

Examples of
Risk Management Strategies

Organizational financial Prepare a briefing document for senior management showing

problems how the project is making a very important contribution to the
goals of the business and presenting reasons why cuts to the
project budget would not be cost-effective.

Recruitment problems Alert customer to potential difficulties and the possibility of
delays; investigate buying-in components.

Staff iliness Reorganize team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective components Replace potentially defective components with bought-in
components of known reliability.

Requirements changes Derive traceability information to assess requirements change
impact; maximize information hiding in the design.

Organizational Prepare a briefing document for senior management showing
restructuring how the project is making a very important contribution to the
goals of the business.

Database performance Investigate the possibility of buying a higher-performance
database.

Underestimated Investigate buying-in components; investigate use of a program
development time or test generator.

Planning

* A project should plan time, cost and resources
adequately to estimate the work needed and

to effectively manage risk during project
execution.

* This includes scoping the work, estimating time
costs, developing the schedule and budget,

mitigating risks, developing quality assurance
measures, etc.

Remorse pinned me against the seat for one_long sec-
ond. What had I just done to Jacob?

But remorse couldn’t hold me very long.

IN THAT CASE, USE A DIFFERENT WORD TO DESCRIBE THE SECOND.

ﬁ.

Difficulties in Software Planning

* Typically a one-time endeavor (unique wrt.
goals, constraints, organization, etc.)

* Typically involves an innovative technology

* Intangible results (intermediate or final) mean
progress may be hard to measure

» Software projects tend to fail more often than
other industrial projects

* (See the structured activity for a way to
practice this and get a head start on HWé!)

45

Measuring Progress?

“I’m almost done with the app. The
frontend is almost fully
implemented. The backend is fully
finished except for the one stupid
bug that keeps crashing the server. |
only need to find the one stupid bug,
but that can probably be done in an
afternoon. We should be ready to
release next week.”

46

Milestones and Deliverables

* Milestones and deliverables make intermediate
progress observable, especially for software

 Amilestone is a clean end point of a (sub)task

* Used by the project manager
* Reports, prototypes, completed subprojects, etc.

e “80% done” is not a suitable milestone

 Deliverables are results for the customer

* Used by the customer, outward facing

47

ldealized Project Planning

Budget, Check progress

Identify constraints Personal,
Deadlines

yes >
Estimate project
parameters
Reestimate project new
parameter feature
Define milestones activities begin requests

Refine schedule

Create schedule

Problem?

vV yes

renegotiate constraints Technical review
Abort? <

48

Gantt Diagram

47 117 187 25/7 1/8 R/8 15/8 22/8 29/8 54 129 19/9
4" Start

T4 .
Tl |
T2)

M1 #

7 | |

T3 | |

s A ' '
TR
M3]
M2
Ta |
TS
M4
w7 A : .
T10 |
4 :Jp&
T11 |
& ME
T12
* l'JnihT

Scheduling

* |naccurate
predictions are
normal — update

e The “almost done”
problem: the last
10% of work takes
40% of the time

* Avoid depending
entirely on
developer
estimates

planned actual

O e e
S
S
i
SR e
= |
(@)
- reported
% progress
a
-
S
O
X

time

50

How does Microsoft solve this?

Description

Reports of crashes or other problems.
Reports opened, closed, etc.
Understandability of code.

Density of similar or identical code fragments.
Dependencies Modularity of code.

Structure of code.

User benchmarks.

Maps engineers to the tasks they are best at.
Predicted defect density.

Bug fixes / refactoring / feature additions.

Arc and Block coverage of test cases.

Name
Failure Information
Bug Reports
Readability
Code Clones
Dependencies
Architecture
Telemetry
Expertise
Failure Models
Change Type

Test Coverage

Percent who currently use, or would use.

Amount and completeness of documentation. Documentation
Density of branching structure. Complexity
Engineers currently contributing. Engineering Activity m Developers use
Amount of code changed between builds. Churn Developers would use

. m Managers use

Distribution of changes by author. Ownership
m Managers would use
Time between software written and integrated. Velocity |
0% 25% 50% 75% 100%

Fig. 5. Percent of managers and developers who reported that they either use or would use (if available) each of the given indicators in making
decisions relevant to their engineering process.

Story So Far

» Software processes can help, but to use them
we need project planning, which needs effort
estimation, which is complicated by
uncertainty, which stems from risk and a lack
of data.

* S0 ... we don't know anything?

» Stay tuned for next time for measurement, a
potential solution to our problems.

 Reminder: Policy Checklist due Friday!

* Reading quizzes: usually every lecture (inc. now!)
52

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

