
ProductivityProductivity

2

The Story So Far …
● We want to deliver and support a quality

software product
● Software processes are carried out by

humans
● Humans have biases

● Some humans are more productive than
others at software engineering activities
● How can we understand and improve such

human expertise?

3

One-Slide Summary
● Humans demonstrate different levels of

expertise (i.e., different productivity rates) at
programming tasks.

● We consider a number of hypotheses, including
hardware support, slow programmers and
programs, abstractions, decompositions, and
neural activity. For each, we examine relevant
scientific literature.

● Organizations can provide hardware support.
Individuals can practice abstractions and
decompositions.

4

Outline, Psychology
● Real-Time Exercise
● Reading Discussion

● Rapid Response Time
● Programming Performance
● Mythical Man-Month
● Expertise in Problem Solving
● Expert Bodies, Expert Minds
● What Predicts Software Developers’

Productivity?

● Advice

Real-Time Exercise
https://dijkstra.eecs.umich.edu/eecs483/shibboleth/productivity/
● You will be asked to solve a simple problem.

● Get the correct answer as quickly as possible.
● This counts as the Participation if you submit

an answer and explanation by midnight.

● You will be timed (once you click “start”).
● You can use any program, language or tool

available to you.
● Once you have submitted your answer,

you must briefly explain what you did.
● I will cut things off after ~10 minutes.

https://dijkstra.eecs.umich.edu/eecs483/shibboleth/productivity/

6

Distribution of Times

● How many different tasks were students given?
● What did you observe, roughly, as the range

and variance of times?

7

Hypotheses

● My computer is slow.
● I'm slow and so is my program.
● I picked the wrong language/abstraction and

couldn't break up the problem.
● I did not recognize the true components of

the problem.
● My brain is currently inefficient, requiring

much metabolism for little neural activation.

8

Rapid Response Time

● Walter Dougherty and
Ahrvind Thadani. The
Economic Value of
Rapid Response
Time. IBM Systems
Journal, 1982.
● Read chart

“backward”, from
Right to Left.

● Productivity goes up,
then sharply up.

System Response TimeN
um

be
r

of
 U

se
r

 T
ra

ns
ac

tio
ns

 P
er

 T
im

e
U

ni
t

9

Rapid Response Time

"...each second of system response degradation
leads to a similar degradation added to the user's
time for the following [command]. This
phenomenon seems to be related to an individual's
attention span. The traditional model of a person
thinking after each system response appears to be
inaccurate. Instead, people seem to have a
sequence of actions in mind, contained in a short-
term mental memory buffer. Increases in SRT
[system response time] seem to disrupt the thought
processes, and this may result in having to rethink
the sequence of actions to be continued."

10

Rapid Response Time

● Figure 7

N
um

be
r

of
 U

se
r

 T
ra

ns
ac

tio
ns

 P
er

 T
im

e
U

ni
t

System Response Time

Expert

Average

“Novice”?

11

Rapid Response Time
● The SPD study measured 75 work sessions of 15

engineers at graphic display terminals as they
performed various physical design tasks. Their
transaction rate data confirmed Thadhani's curve,
(Figure 7). Indeed, it showed considerably more. All
users benefited from sub-second response time. In
addition, on average, experienced engineer working
with sub-second response was as productive as an
expert with slower response. A novice's performance
became as good as the experienced professional and the
productivity of the expert was dramatically enhanced.

12

Rapid Response Time

● Example implication, from the reading:

“The system and user cost for this time were
estimated at $900,000 monthly (Figure 6), 15 times
the incremental cost of a new processor capable of
providing sub-second response time to 500
simultaneous users. For the National Institutes of
Health, the cost of upgrading their processor was
more than justified by the savings in user time and
the restoration of their low task costs.

The engineers use display terminals specifically
designed for the high transaction rates necessary to
manipulate graphic images.”

13

Programming Performance

● H. Sackman, W. J. Erikson and E. E. Grant.
Exploratory Experimental Studies Comparing
Online and Offline Programming
Performance. Communication of the ACM,
1968.

● Summary?

14

Programming Performance

15

Programming Performance

16

Programming Performance
● A substantial performance factor designated as

“programming speed,” associated with faster coding
and debugging, less CPU time, and the use of a
higher order language.

● WRW: This is new, but not the whole story.

● A well-defined “program economy” factor marked
by shorter and faster running programs, associated
to some extent with greater programming
experience and with the use of machine language
rather than higher order language.

● WRW: Similar explanation to the previous paper.

17

Programming Performance

● “Data were gathered on the subject's grades
in the SDC programmer training class … and
they were also given the Basic Programmer
Knowledge Test. Correlations between all
experimental measures, adjusted scores,
grades, and the BPKT results were
determined. … The results showed no
consistent correlation between performance
measures and the various grades and test
scores.”

18

Programming Performance

● “It is apparent from the spread of the data
that very substantial savings can be effected
by successfully detecting low performers.
Techniques measuring individual
programming skills should be vigorously
pursued ...”

● Why do CS companies use Skill-Based
Interviews instead of just using your class
grades?
● See other lecture!

19

Fault Localization Accuracy
● Zachary P. Fry, Westley Weimer: A Human Study of Fault Localization

Accuracy. International Conference on Software Maintenance (ICSM) 2010

20

The Mythical Man-Month

● Frederick Brooks. The Mythical Man-Month.
Addison-Wesley, 1975/1995.

● Summary?

21

The Mythical Man-Month

● Brooks: SE is non-partitionable.

22

The Mythical Man-Month

23

The Mythical Man-Month

24

The Mythical Man-Month

● 1200 lines / year = 3 lines of code per day
● What?

● Recall: “debugged code”
● This includes coding, testing, debugging, etc.
● Basically the entire software lifecycle

● More modern estimates: 10 LOC / day
● The real insight is the observation of

language invariance.
● You can get 10 lines of ASM or 10 lines of Python.

25

Trivia: Names

● Originally called Catholepistemiad, this
institution was established in 1817. Its board
of regents was formed later in 1837. However,
a local justice called that name “neither
Greek, Latin, nor English, [but merely] a piece
of language gone mad.” At a speech there in
1960, President Kennedy announced his
intention to establish the Peace Corps.

26

Trivia: Poetry
● Name the reclusive American poet and

Amherst graduate associated with these works:
● Because I could not stop for Death

He kindly stopped for me
● I'm nobody! Who are you?

Are you nobody, too?
● Tell all the Truth but tell it slant —

Success in Circuit lies
● My Life had stood — a Loaded Gun —

In Corners — till a Day

27

Trivia: Gaming Metrics

● This term refers to the rate at which video
game players can select units or otherwise
issue orders. It is primarily associated with
real-time strategy and fighting games such as
StarCraft; a high value for this metric is
associated with skill and expertise:
● Beginner: ~50
● Professional: ~300
● Competition: ~400+

28

Trivia: Cuisine

● This fresh cheese is common in South Asia,
especially in India. It is a non-melting, acid-set
farmer cheese made by curdling heated milk
with lemon juice or vinegar or yogurt,
separating out the excess water, and cooling.
It is commonly used in dishes in India, Nepal,
Bangladesh and Pakistan.

Expertise in Problem Solving

● M. Chi, R. Glaser and E. Rees. Expertise in
Problem Solving. Advances in the Psychology
of Human Intelligence, 1982.

● Summary?

30

Expertise in Problem Solving

● “Both expert and novice proceed to solution
by evoking the appropriate physics equations
and then solving them. The expert often does
this in one step, however …”

● “The speed with which a problem can be
solved depends a great deal on the skill of
the individual. Simon and Simon noted a 4:1
difference … Larkin also reported a similar
difference between her experts and
novices.”

31

Expertise in Problem Solving

● “Another interesting aspect of novice
problem solving is not only that they commit
more errors than experts but that, even
when they do solve a physics problem
correctly, their approach is quite different.”

32

Expertise in Problem Solving

● These two problems
have a similar
superficial structure

33

34

Expertise in Problem Solving

35

Expertise in Problem Solving

● “In this study, we specially designed a set of
20 problems to test the hypothesis that
novices are more dependent on surface
features, whereas experts focus more on the
underlying principles. … We were able to
replicate the initial findings that experts
categorize problems by physical laws,
whereas novices categorize problems by the
literal components.”

36

Expertise in Problem Solving

● “If we assume that such categories reflect
knowledge schemata, then our results from
the person at the intermediate skill level
suggest that, with learning, there is a gradual
shift in organization of knowledge --- from
one centering on the physical components, to
one where there is a combined reliance on
the physical components and the physics
laws, and finally, to one primarily unrelated
to the physical components.”

37

Expertise in Problem Solving

● “Improved ability to learn would be
developed through a knowledge strategy in
which individuals would be taught ways in
which their available knowledge can be
recognized and manipulated.”
● Do we do this in school?

38

Expert Bodies, Expert Minds

● U. Debarnot, M. Sperduti, F. Di Rienzo, and A
Guillot. Experts bodies, experts minds: How
physical and mental training shape the brain.
Frontiers in Human Neuroscience, 2014.

● Summary?

39

40

Expert Bodies, Expert Minds

● “These results suggest that the disparity
between the quality of the performance of
novice and expert golfers lies at the level of
the functional organization of neural
networks during motor planning. More
generally, Patel et al. (2013) demonstrated
that spatially distributed cortical networks
and subcortical striatal regions may serve as
neural markers of practice interventions.”
● What's a “practice intervention”?

41

Expert Bodies, Expert Minds

● “Recently, Picard et al. (2013) examined the
consequence of practice-dependent motor learning
on the metabolic and neural activity in M1 of
monkeys who had extensive training (~1–6 years) on
sequential movement tasks. They found that
practicing a skilled movement and the development
of expertise lead to lower M1 metabolic activity,
without a concomitant reduction in neuron activity.
In other terms, they showed that less synaptic
activity was required to generate a given amount of
neuronal activity.”

● What does this mean?

42

Expert Bodies, Expert Minds

● Scholz et al. (2009) reported experience-
induced changes in white matter architecture
following a short period of practice.
Practically, it was found that 6 weeks of
juggling practice protracted an increased
fractional anisotropy in a region of white
matter underlying the intraparietal sulcus.

43

Taxi Cab Drivers
● If the brain anatomy parts are a bit opaque, it may be easier

to interpret a famous study of London taxi cab driver brains [
http://www.scientificamerican.com/article/london-taxi-memory/]. Memorizing
and navigating that spatial problem (London is not laid out
on a clean grid) causes growth in the hippocampus. Quote:

● “These navigational demands stimulate brain
development, concludes a study five years in the making.
With the new research, scientists can definitively say that
London taxi drivers not only have larger-than-average
memory centers in their brains, but also that their
intensive training is responsible for the growth.”

http://www.scientificamerican.com/article/london-taxi-memory/

44

Back To The Timed Exercise

● What are other ways to solve this?
● Hint: I did not “write a program” at all in the

conventional sense.

● If this were a contest (and it is not!), the key
decision/mistake happened in the first
seconds when you decided to write a
program.
● “C vs. Python” is a red herring: to phrase things

as pejoratively as possible, that determines the
winner of the loser's bracket.

45

What Predicts Software Developers’
Productivity?

● E. Murphy-Hill, C. Jaspan, C. Sadowski, D. C.
Shepherd, M. Phillips, C. Winter, A. K. Dolan,
E. K. Smith, M. A. Jorde. What Predicts
Software Developers’ Productivity?
Transactions on Software Engineering, 2019.

● “ … a survey that asked 622 developers across
3 companies [Google, ABB, National
Instruments] about these productivity factors
and about self-rated productivity”

46

Self-Reported?

● “I regularly reach a high level of productivity.”
● Correlate with some objective measures at

Google (n=3344)
● Senior devs self-report less productivity

47

The Results

● They also included COCOMO factors (what are those
again?) and found that they didn't matter

● Either COCOMO isn't accurate

● Or it's accurate at the project, not person, level

48

Hypotheses

● My computer is slow.
● I'm slow and so is my program.
● I picked the wrong language/abstraction and

couldn't break up the problem.
● I did not recognize the true components of

the problem.
● My brain is currently inefficient, requiring

much metabolism for little neural activation.
● Non-technical factors, like peer support and

feedback, correlate with productivity.

49

50

My Opinion:
Programming Performance

● A substantial performance factor designated as
“programming speed,” associated with faster coding
and debugging, less CPU time, and the use of a
higher order language.

● Programming Speed = Common Mistaken Belief!
● Use of Abstraction = The Real Deal

● The language is just one way to get
abstraction. Abstraction (so that you can break
up the problem and re-use existing solutions)
is the relevant insight.

51

My Opinion: Mythical M-M

● “Planning” includes deciding whether write a
standard program or whether to try
something different (“totally new
techniques”)
● Coding is much less relevant than many think.

52

My Opinion: Mythical M-M

● “The real insight is the observation of
language invariance.
● You can get 10 lines of ASM or 10 lines of

Python.”

● All keystrokes in my solution to this problem
● [Ctrl]-A cat > foo [Enter] [Ctrl]-V [Ctrl]-D vim foo [Enter]

Vjjjjjjjjjd :%s/$/+/g [Enter] :0VGJA0 [Enter] V!bc -l
[Enter] A/10000 V!bc -l [Enter]

● You can solve this by typing less, not faster.
● Would typing 100% faster or slower have

mattered?

53

My Opinion:
Expertise in Problem Solving

● “Another interesting aspect of novice
problem solving is not only that they commit
more errors than experts but that, even
when they do solve a physics problem
correctly, their approach is quite different.”

● Story time: “I've seen this one before.”
● Linux OOM Killer.

● “approach is quite different” cf. “new
techniques”
● Is “calculate math” a primitive in your language?

54

My Opinion:
Problem Solving

● Many of you looked at the
problem and, despite the
instructions, saw that it
looked similar to
programming tasks you'd
been given before.

● Those are “it looks like a
pulley” surface features (file
access then loop to compute
total then divide).

● You wanted “it uses Newton's
2nd Law” deep features
(compute the average).

55

My Opinion:
Expert Bodies, Expert Minds

● On Page 6 (= Page 17) the Chi reading talks about three quantifiable (!)
differences between experts and novices when solving problems.

● The first is raw solution time (which we already saw in the Sackman
reading).

● The second is pauses in retrieving chunks of the correct equation. This is
more interesting (cf. "chunking"): "experts group their equations in
chunks so that the eliciting of one equation perhaps activates another
related equation, and thus it can be retrieved faster". For programming,
replace "equation" with "program fragment".

● One difference that previous students noted after watching my "how I did it"
explanation was that I never really seemed to stop and think about what to
do next, whereas a student might write the code to read in lines, stop and
think, write the code to iterate over them and sum them, stop and think,
write the print-and-divide code, etc. If you've observed that in yourself, the
psych research summarized in the Chi reading suggests that one area for
improvement is to get better at chaining from one fragment to the next.

56

My Opinion

● My “plan” breakdown:
● This problem is regular expressions plus a

calculator.
● Use regular expressions to turn the input into an

arithmetic expression (“into a program”)
● Feed that to a pre-existing calculator

● Students who said “I will pass this to Excel”
also did well.
● Why are you re-inventing the wheel? Your boss

wanted the right answer as fast as possible.

57

Advice 1/3: Small Potatoes
● Try to learn a shell-based editor, such as vim or emacs, and

practice suspending the editor (ctrl-z, fg) rather than restarting it.
If you must use something like Eclipse for a project, start it once
and never quit it.

● Inasmuch as extra hand actions on your part are isomorphic to the
computer delaying before giving you what you really want, master
"focus follows mouse" (yes, even Windows supports it) and editors
that don't involve new windows. Similarly, master keyboard
shortcuts and favor an editor that allows you to make your own
macros. Memorize the common ones shared across many
interfaces, like ctrl-a (beginning of line) and ctrl-e (end of line --
those both work in the shell as well).

● Buy fast storage.

58

Advice 2/3
● Students often overemphasize the effect of low-level notions like

typing speed but underemphasize high-level decisions (like
breaking down a problem so its components can be solved in terms
of transformations on existing solutions). When adding numbers,
we demonstrated this concretely by taking what was to some a
unitary atomic problem ("sum a list of numbers") into smaller parts
("turn a list of numbers into an arithmetic expression with regular
expressions" and "invoke a calculator").

● This is non-obvious for a few reasons, not the least of which is
that the parts actually appear to be larger, not smaller! So one
trick is to gain enough felicity with various small problems in
computer science that you can solve them quickly (see Sackman
reading), as well as to retrieve them quickly and do the chunking
to break down the big problem in terms of those parts (see Chi
reading) without your machine setup actually getting in the way
(see Dougherty reading).

59

Advice 3/3

● Ultimately, the bottleneck productivity
limitation is not your typing speed. The
real obstacle is more a conceptual
limitation related to abstraction -- and
there may be no shortcut to years of
practice, the sort of study that ultimately
changes the organization of your brain.

● Good luck.

60

Questions?

● Focus on HW6

	Slide 1
	Slide 2
	Slide 3
	Course Home Page
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

