\MBRGINE "TRUTH \S A SPHERE:

Static and

Dataflow
Analysis
THE SPUERE THE SPUERE
BLhck/ b (two part lecture)

n,,

The Story So Far ...

* Quality assurance is critical to software
engineering.

» Testing is the most common dynamic approach
to QA.

* But: race conditions, information flow, profiling ...

* Code review and code inspection are the most
common static approaches to QA.

 What other static analyses are commonly used
and how do they work?

Logistics

e Exam Accommodations: Fill out our second
confirmation form, not just the SSD letter, by

Wed 10/2:

481 55D Exam Time Confirmation Form — after you have (1) obtained approval from SSD, then (2) complete this form to ensure you receive extra

exam time

 Exam #1 does not cover Dataflow Analysis
* Course staff monitor the course email

* | don't always see it — all of that praise about how
nice the responses are should go to them, not to
Wes :-)

One-Slide Summary

» Static analysis is the systematic examination
of an abstraction of program state space with
respect to a property. Static analyses reason
about all possible executions but they are
conservative.

* Dataflow analysis is a popular approach to
static analysis. It tracks a few broad values
(“secret information” vs. “public
information”) rather than exact information. It
can be computed in terms of a local transfer
of information.

Doesn't GenAl Save Us?

Resedrch: Quantifying GitHub
Copilot’s impact in the enterprise

with Accenture

We conducted research with developers at Accenture to understand GitHub Copilot’s real-world impact in

enterprise organizations. quality. We found that our Al pair programmer helps developers code up to 55%
faster and that it made 85% of developers feel more confident in their code quality.

Can GenAl Actually Improve

Developer Productivity?

Uplevel Data Labs analyzed the difference in key engineering
metrics across a sample of 800 developers before and after

GitHub Copilot access. The fi Key Insight:
from tht deVS report in surv Developers with Copilot access saw a significantly higher bug rate while

+ 4] o/o their issue throughput remained consistent.

This suggests that Copilot may negatively impact code quality.
IN BUG RATE L : : : .
Engineering leaders may wish to dig deeper to find the PRs with bugs and

put guardrails in place for the responsible use of generative Al.

Fundamental Concepts

 Abstraction

e Capture semantically-relevant details
« Elide other details

* Handle “I don't know”: think about developers
* Programs As Data

* Programs are just trees, graphs or strings

* And we know how to analyze and manipulate those
(e.g., visit every node in a graph)

)

goto fail

“Unimportant” SSL Example

static OSStatus
SSLVerifySignedServerKeyExchange (SSLContext *ctx, bool isRsa,

SSLBuffer signedParams,
uint8 t *signature,

UIntl6é signaturelen) {
OSStatus err;

if ((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &signedParams)) !'= 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final (&hashCtx, &hashOut)) !'= 0)
goto fail;

fail:

SSLFreeBuffer (&signedHashes) ;
SSLFreeBuffer (&hashCtx) ;
return err;

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer head *
get free buffer(struct stripe head * sh,
int b size) {

struct buffer head *bh;

unsigned long flags;

save flags(flags)

cli(); // disables interrupts

if ((bh = sh->buffer pool) == NULL)

return NULL;

sh->buffer pool = bh -> b next;

bh->b size = b size;

restore flags(flags); // enables interrupts

return bh;

Could We Have Found Them?

 How often would those bugs trigger?
* Linux example:

 What happens if you return from a device driver
with interrupts disabled?

» Consider: that's just one function

... iIn a 2,000 LOC file
... in a 60,000 LOC module
... in the Linux kernel

* Some defects are very difficult to find via
testing or manual inspection

10

CNET » News » Security & Privacy * Klocwork: Our source code analyzer caught Apple's '...

Featured Posts

Klocwork: Our source code
analyzer caught Apple's

Internet & Media

Motorol
l [| l poweret
gotofail' bug
, , , 0K, Gla
If Apple had used a third-party source code analyzer on its encryption in my fa
library, it could have avoided the "gotofail" bug. Cutting E
Apple iF
by Declan McCullagh | February 28, 2014 1:13 PM PST product
@ . Apple
e W Follow
iPad wit
comeba
ﬁ =E L! || 223 m 23 8+ 5 More + Comments | 25 Apple
] ictseeso 623 if (Cerr = Readyosh(SSSLHashSHAL, BhashCtx)) 1= @) - rovoreisi e e
* (5 secererranapans + h b4 fail; - Tracedick
» [SecureTramsportPrivh if (?::: -NS;LIEHJ\SIM.IMlMu. GclientRondon)) 1= @) ¥ 0 fUnen/ledelvien iworkicace feax-10.4 Most PDDUIHI‘
* [sslh 624 gote fall; O saManlmchasge £ 617 The code by
» [ssidCaloutix [, if ((err = SSLKoshSHAL.updote(BhashCtx, Aserverfondon)) |= @) :
> 8 tecumsovsc 628 e ol - Giant 3[
B ;::mﬂ“:::; ' if (Cerr = ‘Ihsrﬁlﬂl.wduu{ltmh:u_ Esignedfarams)) 1= @) = hﬂuse
" 631 o ::::r Apple, we need to talk 6k Facel
» (5 silufcfagsh 0 637 [Coden snvachasin) 51 . firal(BhashCtx, BhashOut)) 1= @) - ace
* [ss0emc]/ goto foil; Carment weatsn: Asalyoe 8
® : ::::‘::::T‘ 6 .- err = sslRowerify(ctx, if EXBILISW
; swosmriean Static code analysis wins! ctx-speerfubiey, : Doeschi
F o i asie b B T
> o IR i o iy i Yy ol B 116Twe
» [seDebp Fiter mmanched | ol 4 aases Grouged By Deeoiery, weiod By Descrigtion, e By BEsoarie
I - h’f‘!“# i 108, =354 71 /e ceriny_ i S i . bty 1
> oo GO ot M T O S o e &) Google
. prserraaig ~ four can
3 (B8 s e e L 771 GDE
== -
L3 tf.!ml'“ﬂ“lﬂl
Wkl Seart =it E2 €0 & :
Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's Connect With CNET
product would have nabbed the "goto fail" bug.
{Credit: Klocwork) Facebook
It was a single repeated line of code -- "goto fail" -- that left millions of Apple users Like Lis 11

vulnerable to Internet attacks until the company finally fixed it Tuesday. L~ 1| B

Many Interesting Defects

e ... are on uncommon or difficult-to-exercise
execution paths

* Thus it is hard to find them via testing

* Executing or dynamically analyzing all paths
concretely to find such defects is not feasible

 We want to learn about “all possible runs” of
the program for particular properties

* Without actually running the program!

e Bonus: we don't need test cases!

12

Static Analyses Often Focus On

» Defects that result from inconsistently
following simple, mechanical design rules

Security: buffer overruns, input validation
Memory safety: null pointers, initialized data
Resource leaks: memory, OS resources

APl Protocols: device drivers, GUIl frameworks
Exceptions: arithmetic, library, user-defined
Encapsulation: internal data, private functions

Data races (again!): two threads, one variable

13

How And Where Should We Focus?

14

Static Analysis

o Static analysis is the systematic examination
of an abstraction of program state space

» Static analyses do not execute the program!

* An abstraction is a selective representation of
the program that is simpler to analyze

» Abstractions have fewer states to explore
* Analyses check if a particular property holds

* Liveness: “some good thing eventually happens”

» Safety: “some bad thing never happens”

15

Syntactic Analysis Example

* Find every instance of this pattern:

public foo() {

logger.debug(“We have ” + conn + “connections.”);

}

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}

}

 What could go wrong? First attempt:

grep logger\.debug -r source dir

16

Abstraction: Abstract Syntax Tree

 An AST is a tree Example: 5 + (2 + 3)
representation of the R
syntactic structure of ! !
source code 5 ;

e Parsers convert

<
<

concrete syntax into

abstract syntax

* Records only
semantically-relevant
information

* Abstracts away (, etc.

17

Programs As Data

» “grep” approach: treat program as string
* AST approach: treat program as tree

 The notion of treating a program as data is
fundamental

* |t relates to the notion of a Universal Turing
Machine. A Turing Machine description (finite
state controller, initial tape) can itself be
represented as a string (and thus placed on a
tape as input to another TM)

18

Dataflow Analysis

* Dataflow analysis is a technique for gathering
information about the possible set of values
calculated at various points in a program

* We first abstract the program to an AST or CFG

 We then abstract what we want to learn (e.g.,
to help developers) down to a small set of

values

* We finally give rules for computing those
abstract values

« Dataflow analyses take programs as input
19

Two Exemplar Analyses

* Definite Null Dereference

* “Whenever execution reaches *ptr at program
location L, ptr will be NULL”

 Potential Secure Information Leak

 “We read in a secret string at location L, but there
is a possible future public use of it”

WELL THERE'S YOUR
PROBLEM 20

Discussion
* These analyses are not trivial to check

* “Whenever execution reaches” — “all paths” —
includes paths around loops and through branches

of conditionals

* We will use (global) dataflow analysis to learn

about the program
* Global = an analysis of the entire method body, not

just one { block }

21

Analysis Example

Is ptr always null when it is dereferenced?

ptr = new AVL();

1t (B > 0)

/\

ptr = 0; X =2 * 3;

\/

print (ptr->data) ;

Correctness (Cont.)

To determine that a use of x is always null, we must

know this correctness condition:

On every path to the use of x, the last

assignment to x is x := 0

Tesk:

1. What important event Yook
| place on December 16, 17737

Mz

N

N

*%

[do Not BELIEVE iN LiNESR

|| TiME. THERE 15 Mo Past awd

fuluRE: alu |5 ONE, QM4
EXiSTENCE IM HHE YEMPoRal SEMNSE
15 ILLUSeRY, THiS QUESHoM,

| YEREFORE, 15 MEAN|NGLESS s

MpogsiBLE Yo ANSwER .

{" WHEM 1N DOURT,
DENY ALL TEEMS
AMD DEFIMITIONS, |

o

i

=

Ly
=>

)

Analysis Example Revisited

Is ptr always null when it is dereferenced?

(o~ o 10
if = v
G X

prrnt (ptr->data) ;

I
L N
w

24

Static Datalfow Analysis

Static dataflow analyses share several traits:

 The analysis depends on knowing a property P at a
particular point in program execution

* Proving P at any point requires knowledge of the
entire method body

* Property P is typically undecidable!

e Word cannot edit the Unknown.
W

Undecidability
of Program Properties

o Rice’s Theorem: Most interesting dynamic properties of
a program are undecidable:

* Does the program halt on all (some) inputs?
* This is called the halting problem

* |s the result of a function F always positive?
* Assume we can answer this question precisely
* QOops: We can now solve the halting problem.

» Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

« Contradiction!
» Syntactic properties are decidable!
* e.g., How many occurrences of “x” are there?

* Programs without looping are also decidable! y

Looping

* Almost every important program has a loop
e Often based on user input

* An algorithm always terminates

* S0 a dataflow analysis algorithm must
terminate even if the input program loops

* This is one source of imprecision

e Suppose you dereference the null pointer on the
500" iteration but we only analyze 499 iterations

27

Conservative Program Analyses

* We cannot tell for sure that ptr is always null
* S0 how can we carry out any sort of analysis?

e |t is OK to be conservative.
‘ L A

28

Conservative Program Analyses

* We cannot tell for sure that ptr is always null
* So how can we carry out any sort of analysis?

* |t is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either

- P is definitely true

- Don’t know if P is true

o Let's call this truthiness -

i ‘ Truthiness

- ——:. 1._?_ "
.‘ :
[‘d‘.'

AN
N
*; ! = ¢

1.‘

Conservative Program Analyses

|t is always correct to say “don’t know”
 We try to say don’t know as rarely as possible

» All program analyses are conservative

* Must think about your software engineering process
* Bug finding analysis for developers? They hate “false
positives”, so if we don't know, stay silent.

« Bug finding analysis for airplane autopilot? Safety is
critical, so if we don't know, give a warning.

30

Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)
ptr = 0; X =2 * 3;

ptr = 0;
if (B > 0)
foo = myAVL; ptr = 0;

~.

print (ptr->data) ;

~.

print (ptr->data) ;

31

Definitely Null Analysis

Is ptr always null when it is dereferenced?

32

Definitely Null Analysis

Is ptr always null when it is dereferenced?

print (ptr—>data) ; print (ptr—) ;

No, not always. Yes, always.

On every path to the use of ptr, the
last assienment to ptr is ptr :=0 **

33

Definitely Null Information

 We can warn about definitely null pointers at any
point where ** holds

* Consider the case of computing ** for a single
variable ptr at all program points

* Valid points cannot hide!

* We will find you!
e (sometimes)

DISGUISE SKILT

Definitely Null Analysis (Cont.)

* To make the problem precise, we associate
one of the following values with ptr at every
program point

e Recall: abstraction and property

value interpretation

1 This statement is
(called “bottom”) |not reachable

S X = constant c

T Don’t know if X is a
(called “top”) constant

Example

Get out a piece of paper. Let's fill in these blanks now.

X=T

X:=3 — X =

B>0O
X__;/\X:

1
» N
+
2

<

1

x50
||

&
i((@)

Recall: 1 = not reachable, ¢ = constant, T = don't know.

36

Example Answers

Y=Z+W
X:=4

X=-4 —

37

Real-World Languages

* The official language of Sri Lanka and Singapore is
spoken by over 66 million and boasts a rich
literature stretching back over 2000 years. Unlike
most Indian languages, it does not distinguish
between aspirated and unaspirated consonants. It
uses suffices to mark number, case and verb tense
and uses a flexible S-O-V ordering. It uses
postpositions rather than prepositions.

« Example: 6U600BR&HLD

Fictional Magicians

* In Greek Mythology, this
sorceress transforms her
enemies into animals. In
Homer's Odyssey she tangles
with Odysseus (who defeats
her magic); she ultimately
suggests that he travel
between Scylla and Charybdis B Eei < areet creatares. for

i cach creature exiled this way; Its

tO reaCh Ithaca . i controller puts a 2/2 green Boar

creature token onto the battlefield.

Another tmmrnent bartle subsided
N brsy snuffling and cargfree rooting.

Psychology: Predictions

 You are asked to read about a conflict and are
given two alternative ways of resolving it.

* You are then asked to do:
« Say which option you would pick
* Guess which option other people will pick

* Describe the attributes of a person who would
choose each of the two options

* (Actually, let's be more specific ...)

Psychology: Prediction

* Would you be willing to walk around campus
for 30 minutes holding a sign that says “Eat at
Joe's”?

* (No information about Joe's restaurant is provided,

you are free to refuse, but we claim you will learn
“something useful” from the study.)

* Would you do it?

Psychology: False Consensus Effect

Of those who agreed to carry the sign, 62%
thought others would also agree

Of those who refused, 67% thought others
would also refuse

We think others will do the same as us,
regardless of what we actually do

 We make extreme predictions about the
personalities of those who chose differently

e But choosing “like me” does not imply anything: it's
common!

e “Must be something wrong with you!”

Psychology: False Consensus Effect

* Replications with 200 college students, etc.

« [Kathleen Bauman, Glenn Geher. WE think you agree: the detrimental
impact of the false consensus effect on behavior. J. Current

Psychology, 2002, 21(4).]

Implications for SE: Myriad, whenever you
design something someone else will use.
Example: Do you think this static analysis
should report possible defects or certain
defects? By the way, what do you think the
majority of our customers want?

Using Abstract Information

* Given analysis information (and a policy about
false positives/negatives), it is easy to decide
whether or not to issue a warning

* Simply inspect the x = ? associated with a statement
using X

 |f x is the constant O at that point, issue a warning!

* But how can an algorithm compute x =7

44

The Idea

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

SMETIMES T FREL LIWE QUR | | WELL, THOREND SANS, "SIMPLIN,
LIFE HAS GOTTEM TDO COMAL-| | SIMPLIFL." MANEE wE REED |
CATED.. THAT WEVE ACUMILATED | |

Explanation

* The idea is to “push” or “transfer” information
from one statement to the next

* For each statement s, we compute information
about the value of x immediately before and
after s

C..(x,s) = value of x before s
C...(X,s) = value of x after s

46

Transfer Functions

 Define a transfer function that transfers
information from one statement to another

47

C...(X, x :=c) = c if cis a constant

48

C..(X,8)=L1LifC (x,s)=1

Recall: 1 = “unreachable code”

49

— X=?
x = f(..)
l —X=T

C...(x, x:=1(..))=T

This is a conservative approximation! [t might be possible
to figure out that f(...) always returns 0, but we won't even try!

50

C...(Yy:=..

C.(X,y:=..

) ifx=y

51

The Other Half

e Rules 1-4 relate the in of a statement to the out of
the same statement
* they propagate information across statements

 Now we need rules relating the out of one statement
to the in of the successor statement

* to propagate information forward along paths

* |n the following rules, let statement s have
immediate predecessor statements p,...,p,

52

if C_.(X, p)) =T for some i, thenC _(x,s)=T

53

if C...(X, p))=c and C_,(x, p;) =d and d=c
thenC _(x,s)=T

54

if C_.(X, p;) =c or L forall i,
then C. (X, s) =c

55

if C_..(x, p;) =1 for all i,
then C (x,s) =1

56

Static Analysis Algorithm

For every entry s to the program, set
C.(x,s)=T

Set C. (x,s) =C_,.(x, s) = 1Leverywhere else

Repeat until all points satisfy 1-8:

Pick s not satisfying 1-8 and update using the
appropriate rule

57

The Value 1

* To understand why we need 1, look at a loop

X=T

X:=3
B>0

— X =3

Y =Z+W

X:;t:\\\\\\k//////’

Yi=0

A:i=2*X
A<B

58

The Value 1

* To understand why we need 1, look at a loop

\X:3

Yi=0

— X =27

=X = 277
A=2*X — X =277

A<B

The Value 1 (Cont.)

* Because of cycles, all points must have values at
all times during the analysis

 Intuitively, assigning some initial value allows the
analysis to break cycles

* The initial value 1L means “we have not yet
analyzed control reaching this point”

60

Sometimes
all paths
lead to the
same place.

Thus you
heed 1.

61

Another Example

X :=3
B>0

Let's do it on paper!

Analyze the value of X ...

/\

Y=Z+W

\/

Yi=0

A=z2*X
X:=4
A<B

62

Another Example: Answer

— X=T
X=3 1 x:=X 3

<—X:7>< 4

Must continue
until all rules
are satisfied !

63

Orderings

* We can simplify the presentation of the
analysis by ordering the values

1l < ¢ < T

Making a picture with “lower” values drawn
lower, we get

-
-1 0 1

‘ 'I am called: -
" a lattice! y

64

Orderings (Cont.)

e T is the greatest value, 1 is the least
* All constants are in between and incomparable

» Let lub be the least-upper bound in this ordering
e cf. “least common ancestor” in Java/C++

* Rules 5-8 can be written using lub:
C..(x,s)=lub { C (X, p) | pisa predecessor of s }

65

Termination

* Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

* The use of lub explains why the algorithm

terminates
e Values start as 1 and only increase

1 can change to a constant, and a constant to T
- Thus, C_(x, s) can change at most twice

66

Number Crunching

The algorithm is polynomial in program size:
Number of steps =

Number of C_(....) values changed * 2 =
(Number of program statements)’ * 2

67

“Potential Secure Information Leak”
Analysis

Could sensitive information possibly reach an insecure use?

str := get password()
If B >0
str := sanitize(str) Y :=0

e 2

display (str)

In this example, the password contents can
potentially flow into a public display
(depending on the value of B)

68

Live and Dead

* The first value of x is X 1= 3
dead (never used)

* The second value of x is < Y p
live (may be used) T

* Liveness is an important v
concept y=X

 We can generalize it to
reason about
“potential secure
information leaks”

Sensitive Information

A variable x at stmt s is a possible sensitive (high-
security) information leak if

* There exists a statement s’ that uses x
 There is a path from s to s’

e That path has no intervening low-security assignment
to x

Chronicle.com - Today's News ==X

Textbook Sales Drop, and University Presses Search for
Feasons Why

otudents Flock to Web Sites Offering Pirated Textbooks

M 70

Computing Potential Leaks

* We can express the high- or low-security status of
a variable in terms of information transferred
between adjacent statements, just as in our
“definitely null” analysis

* |In this formulation of security status we only care
about “high” (secret) or “low” (public), not the

actual value
 We have abstracted away the value

* This time we will start at the public display of
information and work backwards

71

Secure Information Flow Rule 1

«— X = true

display (x)

— X=2?

H. (X, s) = true if s displays x publicly
true means “if this ends up being a secret variable
then we have a bug!”

72

Secure Information Flow Rule 2

«— X = false

X := sanitize (x)

— X =7

H. (X, X := e) = false
(any subsequent use is safe)

73

Secure Information Flow Rule 3

H. (x, s) = H

n

(X, s) if s does not refer to x

out

74

Secure Information Flow Rule 4

P

X=7? X=7? X = true X=7?

H..(X p)= v{H.(X s) | sasuccessor of p }

(if there is even one way to potentially have a leak,
we potentially have a leak!)

75

Secure Information Flow Rule 5
(Bonus!)

J — Y=-a

X =Yy

— X-=-a

Hi (Y, X 1= y) = Hy(X, X 1= y)
(To see why, imagine the next statement is
display(x). Do we care about y above?)

Algorithm

Let all H_(...) = false initially

Repeat process until all statements s satisfy
rules 1-4 :

Pick s where one of 1-4 does not hold and update
using the appropriate rule

77

Secure Information Flow Example

X := passwd()

+— H(X) = false

X := sanitize (X)

B >0 +— H(X) = false

FKX):f?ff::;/”////’\\\\\\<::ZZ§K):fake

Y ;=2 + W Y := 0

H(X) = M) = false
+— H(X) = false

display (X)
H(X) = false

H(X) = false

X := passwd()

A <B

N

+—H(X) = false

78

Secure Information Flow Example

X := passwd()

+— H(X) = false

X := sanitize (X)

B >0 +— H(X) = false

FKX):f?ff::;/”////’\\\\\\<::ZZ§K):fake

Y ;=2 + W Y := 0

H(X) = M) = false
+— H(X) = TRUE

display (X)
H(X) = false

H(X) = false

X := passwd()

A <B

N

+—H(X) = false

79

Secure Information Flow Example

X := passwd()

+—H(X) = false

X := sanitize (X)

B >0 4_I’{(><):-' TRUE

H(X) = TRUE/\<—H(X) = TRUE

Y :=Z + W Y :=0

H(X) = M) = TRUE
+— H(X) = TRUE

display (X)
H(X) = TRUE
H(X) = TRUE

X) = TRUE

X := passwd()

A <B

N

—H(X) = TRUE

80

Secure Information Flow Example

:= passwd()
HEX)»false

X
R
////////////;;"X := sanitize (X)
wole \© _

> 0

SM“““Q
H(X) = TRUE/\<—H(X) = TRUE

Y :=Z + W Y :=0

FKX):;;;E;:>*k/////*£::;;o::TRUE
+— H(X) = TRUE

display (X)
H(X) = TRUE

W
S\B\— e C\“.“S
\Q'
S

X) = TRUE

—H(X) = TRUE

81

Termination

* A value can change from false to true, but not
the other way around

* Each value can change only once, so termination
is guaranteed

* Once the analysis is computed, it is simple to
issue a warning at a particular entry point for
sensitive information

82

Static Analysis Limitations

 Where might a static analysis go wrong?

 |f | asked you to construct the shortest
program you can that causes one of our static
analyses to get the “wrong” answer, what
would you do?

YOU KNOW THIS METAL I SPEND MOSTOF MY LFE| | BUT TODAY, THE PATTERN

RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | oF LEHTE 15 AL WROMG!
LMTLE [IGHTE? THE PATTERN OF LIGHTS OH GOD! TRY
& "'E""H k SDUNDS ﬁ'ﬁw:r Burrms
HELPING!

LT 5

Static Analysis

* Discuss with your neighbor; | will call on you

* You are asked to design a static analysis to
detect bugs related to file handles

» A file starts out closed. A call to open() makes it open;
open() may only be called on closed files. read() and
write() may only be called on open files. A call to

close() makes a file closed; close may only be called
on open files.

* Report if a file handle is potentially used incorrectly

 What abstract information do you track?
 What do your transfer functions look like? 84

Abstract Information

 We will keep track of an abstract value for a
given file handle variable

* Values and Interpretations

T file handle state is unknown
1 haven't reached here yet
closed file handle is closed

open file handle is open

85

Rules

* Previously: “null ptr” < Now: “file handles”

— ptr=0 «— f = closed
*ptr read (f)
\ Report \ Report
Error! Error!

86

Rules: open

+— f = closed

open (£f)

«— f = open

«—— f=Tor open

87

Rules: close

«— f = open «— f =T or closed
close (£f) close (£f)
«— f = closed N Report

Rules: read/write

(write is identical)

«— f = open

read (£f)

«— f = open

«—— f=Tor closed

89

Rules: Assignment

— f=a — f=a
= f g = £
— f=-a «— g-=-a

90

Rules: Multiple Possibilities

91

A Tricky Program

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);

92

start: = > open(f)
R l
o

open(f) .

il I write(f) — + = close(f)
read(f) ,

TR |
close(f) read(f) l i

close(f) = open(f)

93

closed

L closed

open(f)

i open

read(f)

i open

close(f)

start:
[Cksed

lclosed
L » open(f)
1
1
\
write(f) L close(f)
1
1
Y L
read(f)

close(f) <= open(f)

94

closed

L closed

>
lclosed
start: closed o spen(f)
Fsed open
open(f) open .
i"pe” write(f) %P close(f)
read(f)
open
i open |
Y closed

close(f)

read(f) open i

-

close(f)

, 1L

<= open(f)

95

closed

L closed

>
lclosed
start: closed o spen(f)
Fsed open
open(f) open .
i"pe” write(f) %P close(f)
read(f)
open
i open -
Y closed

close(f)

read(f) open i

-

l

close(f)

T

<= open(f)

96

closed

L closed

>
lclosed
start: closed o spen(f)
Fsed open
open(f) T .
i open write(f) Ty close(f)
read(f)
T
i open T
\/
T
close(f) read(f)

close(f) = open(f)

97

closed

L closed

>
lclosed
start: closed o spen(f)
Fsed open
open(f) T .
i open write(f) Ty close(f)
read(f)
T
i open T
\/
close(f) - T

close(f) =———— open(f)

98

Is There Really A Bug?

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);

99

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Definitely null (cf. constant propagation) is a
forwards analysis: information is pushed from
inputs to outputs

Secure information flow (cf. liveness) is a
backwards analysis: information is pushed from
outputs back towards inputs

100

Questions?

 Exam 1 shortly!

 How's the homework going?

 Don't neglect the homework while studying for the
exam.

101

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Discussion
	Global Optimization
	Correctness (Cont.)
	Slide 24
	Global Analysis
	Undecidability of Program Properties
	Slide 27
	Conservative Program Analyses
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Global Constant Propagation
	Global Constant Propagation (Cont.)
	Example
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Using the Information
	The Idea
	Explanation
	Transfer Functions
	Rule 2
	Rule 1
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	An Algorithm
	The Value #
	Slide 59
	The Value # (Cont.)
	Slide 61
	Another Example
	Slide 63
	Orderings
	Orderings (Cont.)
	Termination
	Termination (Cont.)
	Liveness Analysis
	Live and Dead
	Liveness
	Computing Liveness
	Liveness Rule 1
	Liveness Rule 2
	Liveness Rule 3
	Liveness Rule 4
	Slide 76
	Algorithm
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Forward vs. Backward Analysis
	Slide 101

