
Self Driving Cars, Working
in Japan, and SWE!

Henry Beckstein

About Me

● Just graduated w/ C.S. Degree
○ German and Asian Language Minor

● Columbus, IN 📍
● Moving to Japan in January 🛬🌏
● Freetime?

○ Repairing cars, hiking, road trips, hanging out with friends
● Pikachu Enthusiast😊😊

About Me (But like professionally)

● 2019: Research Assistant at University of Michigan
○ Importing real-life roads into an open source driving sim

● 2021: Subaru MDP
○ Building a tool to benchmark competitor cars

● 2022: EECS 481 IA (hi!)
○ Every semester except Fall 2023

● 2023: EECS 485 IA (🕸💻⌨🖨🖱📀💿)
○ Fall and Winter

● 2024: Subaru of Japan Research Engineer
○ Developing AI @ Subaru’s Tokyo Satellite office.

● I’ve also built full-size airplanes(really!) and worked retail

https://mdp.engin.umich.edu/research_teams/sim-21/
https://www.subaru.co.jp/recruit/subaru-lab/

About me (along the way…)

5 Years to graduate….

Almost failed: Math 216💀, EECS 376😔
Switched Majors: MEng ➡ C.S.

Lost father to cancer in W23

Fulbright Rejection (W24)🎓🎓🎓
Bricked a car 💀💀💀💀

Automotive Software
Development

A little bit of background…

● ‘Self Driving’ Cars aren’t exactly new…
○ ~1995: Highway capable prototype cars
○ ~2006: Automatic Emergency Braking in a production car
○ ~2008: Lane Keep Assist System

● But now they are in almost every car
○ Low cost to implement
○ Actually reduce ownership costs (Insurance)
○ Required by government regulations

ADAS (Advanced Driver Assistance)

Adaptive Cruise Control

Car slows down

or speeds up with traffic

Steering Assist

Car steers in the lane

Hardware for Self Driving

● Cameras
○ Generally, very low spec

● Radar
● GPS
● Concept Sensors

○ LiDAR
○ Surround view radar

Black and White Cameras until 2013!

LiDAR is great but really expensive

SWE in Automotive

● EVERYTHING IS TESTING
○ ~75% of Software Cost is maintenance and testing 🔧🔨🔪

● Test for functional correctness
○ Does the car try to kill the driver?🔪🔪
○ If there is a software fault, does it fail gracefully?

● Test for customer feeling😊
○ Does the software ‘feel good’ to the driver?🤩🤩🤩
○ Is the driver able to understand what the car does?

How do we test?

● Driving!
○ Target routes (specific curves)
○ Duration Testing (coast to coast drives)
○ Scenario Testing (Government Regulation)

● Software Analysis
○ HILS testing (Simulate hardware inputs)
○ Automatic Software Analysis (Static or Dynamic)

● Case Studies
○ Investigate performance of competitor vehicles
○ FARS: Fatal Accident Recording System

Driving!

● Test routes focus on specific areas to tune performance
○ Test and tune at every speed (how hard does the car turn, etc)
○ These tests have the most influence over customer feel

● Duration Testing
○ Test in extreme conditions (Death Valley) to find the breaking point
○ Evaluate in real life conditions

● Most companies use professional drivers to gather data
○ Some companies (Tesla and others) gather customer data as well.
○ Conventional companies can’t do this (why?)

Software Analysis

● HILS Testing is used for basic function testing
○ Bench test hardware (Power Steering, Control Module)
○ Test if supplier hardware meets specs

● Software Analysis tests for safety critical flaws
○ AUTOSAR Specification - Avoids memory leaks, etc

● Both methods fail to effectively test safety
○ HILS testing is too low level and test the entire vehicle
○ Software Analysis can test for memory leaks, but it can’t verify if the program is correct

Case Studies (Sometimes it’s best to research what’s out there…)

● Identify areas of poor performance by researching fatal crashes
○ Nighttime fatalities are an industry-wide issue (FMVSS 127)

● Benchmark Competitor Systems
○ Test for driving feel and comfort

● Gather Industry and Academic Research
○ 2015: Jeep/Dodge Remote Control Exploit
○ Research Conferences at Michigan, etc.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Cross Language
Projects (literally!)

Working in an almost entirely Japanese team

Car Manufacturers do most development in their home land

● Satellite offices help with certification and testing
○ But engineering decisions are made at home
○ Sometimes homeland features take years to make it abroad

● Automakers are moving some development to target markets
○ Speeds up development
○ (Sometimes?) lower cost

● Satellite offices are often staffed by expats who support engineering

First Experience at Subaru

● When I joined Subaru, ~80% of our office was Japanese expats
○ We spent alot of time just typing into google translate to explain ideas

● Most of the job was software maintenance
○ ‘Fix this broken code from ~20 years ago and make it work’

● Sometimes, writing software to support research
○ ‘Write code to scrape car reviews off this website’
○ ‘Design software to analyze this GPS trace’

● People were really amazed at my (mid) software skills

Current Job experience at Subaru

● Run my own research projects
○ Lead a team of interns to take a far future research idea from concept to reality

● Design and Test improvements for Subaru’s next generation AI

● Develop high definition map software for next generation Subarus

● Streamline production vehicle development🚗🏎🚙🚘
○ Write my own apt repository to install development code onto test vehicles💿💽

● Diagnose and repair broken embedded stuff ⚡⚡
○ Hand solder circuits and wiring harnesses🤖🤖

Impressions about Japanese Software

● In Japan, many developers aren’t formally trained in C.S.
○ This makes developing large scale software really hard.
○ C.S. isn’t paid any more then regular engineering,

■ There’s little financial incentive to elect this major
● Japan’s C.S. Education is really poor

○ Cutting edge there is what was cutting edge ~10 years ago.
○ Alot of the websites have security vulnerabilities.

● Japan’s Legal and Cultural Structure is really archaic
○ Ethical Hackers are often prosecuted
○ Unwilling to change ANYTHING

Impressions about Japanese Corporate life

● Almost everyone works for the same company their whole life
○ It’s very hard to get hired mid-career

● You aren’t incentivised to take risks
○ There’s no reward for doing so, and it’s socially unpopular

● Everyone must agree on the right way forward
○ Achieving consensus takes so long that opportunities are wasted.

● So many arbitrary decisions
○ “We’ve already done it this way, so…”
○ “It’s too risky to try it another way…”
○ “It will put too much pressure on HR”
○ “We need think about it…”

● Story Time!

That’s not to say it’s all bad…

● There’s a lot of economic stability for workers. Mass Layoffs are unheard of
● Slow decision making leads to generally better products

○ But these products don’t incorporate the latest technology or match the market
● People are really nice. Everyone wants to make a better product

○ People really do want to help, everyone is just unsure of the big picture.

Working on projects in different languages

● Pictures are the best way to explain ANYTHING
○ Paint drawings and a few sentences are really great.

● We spend a lot of time double checking messages
○ There’s a lot that gets lost in translation on both sides

● Comments and Documentation in Japanese
○ Occasionally we add english notes and do translations

Classes at UM
Which ones are the most useful?

EECS 481: Software Engineering

● I don’t know if there’s ever been a time I’ve explicitly used 481 concepts, but I
explain a lot of the concepts to people new to SWE

○ “Why don’t we use mocking to test this…..”
○ “This design would be super hard to maintain…”

● 481 builds a lot of ‘Soft Skills’ that are really useful.
○ Michigan (and most schools) are really weak about teaching this.
○ Super useful on the job, and a nice flex to have 😎😎😎

● 481 is great at teaching how corporations actually work
○ It’s not about writing the fastest code or the most lines.
○ It’s all about talking to people and making decisions with little info..

EECS 485, Web Development

● Even cars run on the web!!!
○ Automotive ethernet runs inside of the car
○ Remote start/unlock/updating all runs over the web

● P4: Distributed Systems is really useful
○ A car is literally a distributed system of computers

● This course develops great GIT skills🥰

Other Advice

● Join a club!
○ The smaller clubs often have a lot of freedom

● Should I do MDP?
○ MDP is great because it oftentimes leads to a guaranteed job/internship offer
○ MDP is really painful because there’s a lot of arbitrary paperwork

● Take classes that actually interest you
○ There’s something to be said for just exploring, especially if you don’t think it leads to a career

Thank You!
Questions??

HenryBe@umich.edu
https://www.linkedin.com/in/henry-beckstein/

mailto:HenryBe@umich.edu
https://www.linkedin.com/in/henry-beckstein/

