
Software Engineering for
Artificial Intelligence
(SE for AI)

12/05/2024 EECS 481 F24 - SE for AI 1

One-Slide Summary

12/05/2024 EECS 481 F24 - SE for AI 2

• Why are AI systems so important? AI systems are crucial
today because they significantly enhance our ability to process
and analyze vast amounts of data, leading to more informed
decision-making and automation of complex tasks.

• PAC: Probably Approximately Correct (PAC) is a framework in
computational learning theory for analyzing AI systems.

• SE for AI: Applying software engineering methods is crucial in
developing and using AI systems because it ensures the
creation of reliable, scalable, and maintainable AI applications.

12/05/2024 EECS 481 F24 - SE for AI 3

Learning Objectives: by the end of today’s
lecture, you should be able to…
1. (Knowledge) describe the primary activities in Artificial Intelligence

(AI) using software engineering (SE)

2. (Value) understand why the applications of SE in AI are important

3. (Skill) Review some recent papers

Overview

• Background
• What is Software Engineering (SE) for Artificial

Intelligence (AI)?
• What are the applications of SE in AI?

• White-Box Testing of DNNs
• Black-Box Testing of DNNs
• Formal Verification of DNNs
• How can we evaluate or write tests for LLMs

12/05/2024 EECS 481 F24 - SE for AI

4

Background

12/05/2024 EECS 481 F24 - SE for AI 5

How widespread are AI systems and applications?

• AI systems and applications are now deeply integrated into
various aspects of modern life and industries.

• According to recent reports, around 34% of companies
currently use AI, with an additional 42% exploring its potential.

• AI technologies are prevalent in healthcare, finance, retail,
manufacturing, and smart vehicles, where they enhance
efficiency, accuracy, and decision-making processes.

12/05/2024 EECS 481 F24 - SE for AI 6

Advantages of Artificial Intelligence (AI) Systems
• Artificial Intelligence (AI) increases efficiency and productivity

by automating repetitive tasks, which allows humans to focus
on more complex and creative activities.

• AI systems enhance decision-making by quickly analyzing
vast amounts of data, providing valuable insights across
various fields like finance, healthcare, and marketing.

• Additionally, AI enables personalized experiences, reduces
operational costs through automation, and improves accuracy
in tasks such as medical diagnostics.

12/05/2024 EECS 481 F24 - SE for AI 7

AI Prospects
• In healthcare, AI is set to revolutionize diagnostics and treatment

personalization.
• The global AI market is projected to grow significantly, reaching an estimated

$1,339 billion by 2030.
• Autonomous systems, such as self-driving cars and drones, are expected to

enhance transportation safety and logistics.
• AI's role in developing smart cities can lead to optimized energy use and

improved public safety.
• AI can contribute to environmental sustainability by optimizing resource use

and predicting natural disasters.
• The future of AI is bright, with its applications expanding and evolving to

significantly impact various aspects of our lives and society.

12/05/2024 EECS 481 F24 - SE for AI 8

Data Quality, Privacy, and Security Challenges

• Ensuring high-quality and sufficient data is difficult for accurate
results.

• Data privacy and security are major concerns, requiring strict
compliance with regulations and robust protection measures.

• Selecting the right algorithms and models demands significant
expertise and computational resources.

12/05/2024 EECS 481 F24 - SE for AI 9

Integration, Ethics, and Evaluation Challenges

• Integrating AI with existing systems can be complex, often
necessitating substantial changes.

• Ethical considerations, such as preventing bias and ensuring
transparency, are critical.

• Additionally, measuring AI performance can be difficult, and
managing changes in workflows and processes is essential for
successful implementation.

12/05/2024 EECS 481 F24 - SE for AI 10

How can we tackle these AI challenges?

• We will show how software engineering techniques, like testing
and formal verification, can help with each of the AI challenges
mentioned before.

• In essence, we try to answer the question: How do we evaluate
or write tests for large AI systems such as ChatGPT?”

12/05/2024 EECS 481 F24 - SE for AI 11

Probably Approximately Correct (PAC)

•Probably Approximately Correct (PAC) is a
framework in computational learning theory for
analyzing machine learning algorithms.

• It was introduced by Leslie Valiant in 1984.

12/05/2024 EECS 481 F24 - SE for AI 12

PAC Learning

• In PAC learning, the goal is to find a hypothesis
(a generalization function) that is "probably
approximately correct."

•This means that with high probability, the
hypothesis will be close to the true function,
within a specified error margin.

12/05/2024 EECS 481 F24 - SE for AI 13

PAC Framework

•The PAC framework provides a way to understand the
relationship between the number of training samples,
the error rate, and the confidence level that the
hypothesis is correct.

12/05/2024 EECS 481 F24 - SE for AI 14

PAC’s Key Components
• Probably: The hypothesis is correct with a high probability (1

- 𝛿), where (𝛿) is a small probability of failure.
• Approximately: The hypothesis is approximately correct with

an error rate less than a specified threshold (𝜖).
• Correct: The hypothesis correctly classifies new samples

drawn from the same distribuCon as the training data.

12/05/2024 EECS 481 F24 - SE for AI 15

Who is Leslie Valiant?

•Leslie Gabriel Valiant is a renowned British-American
computer scientist and computational theorist.

•Born on March 28, 1949, in Budapest, Hungary, he
has made significant contributions to computer
science, particularly in computational learning theory
and complexity theory.

12/05/2024 EECS 481 F24 - SE for AI 16

Valiant’s other achievements

•Valiant has received numerous accolades for his work,
including the prestigious Turing Award in 2010, often
referred to as the "Nobel Prize of Computing”.

•He is currently the T. Jefferson Coolidge Professor of
Computer Science and Applied Mathematics at
Harvard University.

12/05/2024 EECS 481 F24 - SE for AI 17

What are Algorithms?
•An algorithm is simply any well-defined procedure.
• It is derived from the Latinized transliteration Algoritmi
of the name of the mathematician Al-Khwārizmī, who
worked in the House of Wisdom in Baghdad in the
ninth century and authored an influential book on
algebra.

12/05/2024 EECS 481 F24 - SE for AI 18

Where are Algorithms Used?
•Algorithms as traditionally studied in mathematics and
computer science are designed to solve instances of
certain problems such as solving algebraic equations
or searching for a word in a text.

•All the expertise needed for their realization is encoded
in their description by their designer.

12/05/2024 EECS 481 F24 - SE for AI 19

What are Ecorithms?
• Ecorithms are types of learning algorithms that operate
within a biological or ecological context.

• Ecorithms describe adaptive behaviors in systems that
interact with their environment, such as biological
organisms or ecosystems.

• While their realization is foreseeable, their course will vary
according to the environment.

https://web.eecs.umich.edu/~movaghar/Valiant2014-Chaps1-2.pdf

12/05/2024 EECS 481 F24 - SE for AI 20

https://web.eecs.umich.edu/~movaghar/Valiant2014-Chaps1-2.pdf

Algorithms Versus Ecorithms

•Algorithms are usually defined after a finite number of
steps using limited resources.

•Ecorithms, on the other hand, are defined in the
learning model of PAC.

•The phenomena that they seek to explain are some
of the most familiar to human experience: learning,
resilience, and adaptation.

12/05/2024 EECS 481 F24 - SE for AI 21

Overview

• Background
• What is Software Engineering (SE) for Artificial

Intelligence (AI)?
• What are the applications of SE in AI?

• White-Box Testing of DNNs
• Black-Box Testing of DNNs
• Formal Verification of DNNs
• How can we evaluate or write tests for LLMs

12/05/2024 EECS 481 F24 - SE for AI

22

What is Software Engineering (SE)
for Artificial Intelligence (AI)?

12/05/2024 EECS 481 F24 - SE for AI 23

SE for AI

•Using software engineering principles for AI
development is essential for creating robust,
scalable, and maintainable AI systems.

•By applying software engineering principles, AI
systems can be developed more effectively,
ensuring they are reliable, efficient, and aligned
with user needs and ethical standards.

12/05/2024 EECS 481 F24 - SE for AI 24

System Design and Architecture

• Software engineers design the overall architecture
of AI systems, ensuring they are modular, scalable,
and efficient.

• This involves selecting appropriate frameworks,
libraries, and tools.

12/05/2024 EECS 481 F24 - SE for AI 25

Model Development and Integration

• Engineers develop machine learning models and
integrate them into larger software systems.

• This requires knowledge of both AI algorithms and
software development practices.

12/05/2024 EECS 481 F24 - SE for AI 26

Data Management

• Effective data management is crucial for AI.
• Software engineers design and implement data

pipelines, ensuring data is collected, processed, and
stored efficiently.

12/05/2024 EECS 481 F24 - SE for AI 27

Testing and Validation
• Rigorous testing is essential to ensure AI models

perform as expected.
• Engineers develop testing frameworks and

methodologies to validate models and their
integration into systems.

12/05/2024 EECS 481 F24 - SE for AI 28

Deployment and Maintenance

• Deploying AI models in production environments
and maintaining them over time requires robust
software engineering practices.

• This includes using containerization, continuous
integration/continuous deployment (CI/CD)
pipelines, and monitoring tools.

12/05/2024 EECS 481 F24 - SE for AI 29

Performance Optimization

• Engineers optimize the performance of AI systems,
ensuring they run efficiently and meet performance
requirements.

• This can involve tuning hyperparameters, optimizing
code, and using specialized hardware like GPUs.

12/05/2024 EECS 481 F24 - SE for AI 30

Ethical Considerations

• Software engineers also address ethical
considerations in AI, such as ensuring fairness,
transparency, and accountability.

• This involves implementing practices to mitigate bias
and ensure compliance with regulations.

12/05/2024 EECS 481 F24 - SE for AI 31

What is Deep Learning?
• The concept of deep learning typically involves the use of deep

neural networks.
• Deep learning is a subset of machine learning that uses neural

networks with multiple layers (hence "deep") to model complex
patterns in data.

• These deep neural networks are designed to simulate the way
the human brain processes information, allowing them to perform
tasks such as image and speech recognition, natural language
processing, and more.

• https://www.ibm.com/topics/deep-learning
• https://builtin.com/machine-learning/deep-learning

12/05/2024 EECS 481 F24 - SE for AI 32

https://www.ibm.com/topics/deep-learning
https://builtin.com/machine-learning/deep-learning

Deep Neural Networks (DNNs)

• Deep neural networks (DNNs) are a type of artificial
neural network with multiple layers between the input
and output layers.

• These layers allow the network to learn and model
complex patterns and relationships within data.

• Each layer extracts increasingly abstract features from
the input, enabling the network to perform tasks such
as image and speech recognition, natural language
processing, and more accurately.

12/05/2024 EECS 481 F24 - SE for AI 33

Why DNNs are so dominant in today's AI
applications?

• DNNs have become dominant in today's AI systems due to their
superior performance and versatility.

• They can handle large datasets and complex models, making
them suitable for various applications.

• Advances in computational power, such as GPUs, and algorithm
improvements have enhanced their efficiency and effectiveness.

• This combination of factors has made DNNs a cornerstone of
modern AI, driving significant advancements across various
industries.

12/05/2024 EECS 481 F24 - SE for AI 34

Why do Large Language Models (LLMs) like GPT-4
Use Deep Neural Network (DNN) Architecture?
• LLMs need to understand and generate human language,

which involves recognizing patterns, context, and nuances.
DNNs, with their multiple layers, are well-suited for capturing
these complexities.

• Deep architectures allow LLMs to scale up, handling vast
amounts of text data and learning from it efficiently. This
scalability is essential for training models on large corpora.

• DNNs enable transfer learning, where a model trained on one
task can be fine-tuned for another related task. This capability
is handy for LLMs, which can be adapted to various language-
related tasks.

12/05/2024 EECS 481 F24 - SE for AI 35

The Nobel Prize in Physics 2024

12/03/2024 EECS 481 F24 - AI for SE 36

The Nobel Prize in Physics 2024

Summary

Ill. Niklas Elmehed © Nobel Prize
Outreach

John J. Hop�ield
Prize share: 1/2

Ill. Niklas Elmehed © Nobel Prize
Outreach

Geoffrey Hinton
Prize share: 1/2

The Nobel Prize in Physics 2024 was awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for foundational discoveries and inventions that
enable machine learning with artificial neural networks"

To cite this section
MLA style: The Nobel Prize in Physics 2024. NobelPrize.org. Nobel Prize Outreach AB 2024. Fri. 22 Nov 2024.
<https://www.nobelprize.org/prizes/physics/2024/summary/>

By clicking “accept all cookies”, you agree to the storing of cookies on your
device to enhance site navigation, analyze site usage, and assist in our
marketing efforts. Our cookie policy.

Cookies settings

Accept all cookies

11/22/24, 10:48 AM The Nobel Prize in Physics 2024 - NobelPrize.org

https://www.nobelprize.org/prizes/physics/2024/summary/ 1/2

The Nobel Prize in Physics 2024 was
awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for
foundational discoveries and
inventions that enable machine
learning with artificial neural
networks"

• ɑ,β-CROWN (alpha-beta-CROWN)
• DNNV

• https://github.com/Verified-Intelligence/alpha-beta-CROWN

• https://github.com/dlshriver/dnnv

EECS 481 F24 - SE for AI12/05/2024

Some DNN Verification Tools

37

https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/dlshriver/dnnv

Major Companies using α,β-CROWN and DNNV

•Google: Utilizes α,β-CROWN, and DNNV for verifying
the robustness of their neural networks against
adversarial attacks.

• IBM: Employs α,β-CROWN, and DNNV in their
research and development to ensure the security and
reliability of AI models.

•Microsoft: Uses α,β-CROWN, and DNNV for formal
verification of neural networks in various AI
applications

12/05/2024 EECS 481 F24 - SE for AI 38

SAT Solvers
•SAT (Boolean Satisfiability) solvers work with
propositional logic to determine whether there exists
an assignment of truth values to variables that make a
given Boolean formula true.

• https://en.wikipedia.org/wiki/SAT_solver

12/05/2024 EECS 481 F24 - SE for AI 39

https://en.wikipedia.org/wiki/SAT_solver

SMT Solvers
•SMT (Satisfiability Modulo Theories) solvers extend
SAT solvers by working with first-order logic and
incorporating various theories such as arithmetic, bit-
vectors, arrays, etc.

• https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

12/05/2024 EECS 481 F24 - SE for AI 40

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Overview
• Background
• What is Software Engineering (SE) for Artificial

Intelligence (AI)?
• What are the applications of SE in AI?

• White-Box Testing of DNNs
• Black-Box Testing of DNNs
• Formal Verification of DNNs
• How can we evaluate or write tests for LLMs

12/05/2024 EECS 481 F24 - SE for AI

41

What are the applications of
SE for AI?

12/05/2024 EECS 481 F24 - SE for AI 42

12/05/2024 EECS 481 F24 - SE for AI 43

White Box Testing of DNNs

A White-Box Testing for Deep Neural Networks
Based on Neuron Coverage
• This paper introduces Test4Deep, an effective white-

box testing DNN approach based on neuron coverage.
• It uses a differential testing framework to automatically

verify inconsistent DNNs’ behavior.
• Its contributions highlight Test4Deep's effectiveness in

enhancing the reliability and robustness of deep neural
networks through improved testing methodologies.

• h?ps://web.eecs.umich.edu/~movaghar/WB TEsFng TNNLS 2023 .pdf

12/05/2024 EECS 481 F24 - SE for AI 44

https://web.eecs.umich.edu/~movaghar/WB%20TEsting%20TNNLS%202023%20.pdf

12/05/2024 EECS 481 F24 - SE for AI 45

YU et al.: WHITE-BOX TESTING FOR DEEP NEURAL NETWORKS BASED ON NEURON COVERAGE 9187

There are still many open subjects for testing DNNs based
on neuron coverage, such as lacking analyses for unequivocal
connections between various detected error behaviors of DNNs
and different neuron coverage criteria and universalities of dif-
ferent neuron coverage criteria which were designed according
to DNNs structures or applicable datasets. Moreover, once
coverage criteria are determined, various strategies to improve
the coverage are proposed. They are tightly related to DNNs’
application scenario and too much setting of hyperparameters
and parameter thresholds will increase complexities and scal-
abilities of test methods. We also need to balance, that is,
reducing manual intervention of thresholds and hyperparame-
ters involved in testing methods and retaining their abilities to
find test cases that invalidate DUTs.

III. METHODOLOGY

A. Definitions

1) Test Case: Given a DUT, a test case is τ = (x, label),
where x is a single vector [24], label is a valid assertion
about one property of x by human beings. For example, for
LeNet-1 [25], a test case is a grayscale image drawing a
handwritten number “8” and its label is Arabic number 8.
In the testing of this work, we take x as a test input and use
label to verify the corresponding test oracle of the DUT [7].

2) Test Oracle: In this work, differential testing [7], [26] is
used to build test oracle. By surveying similar DNNs or the
same one DNN which produced different outcomes concerning
identical inputs, Test4Deep prefers to generate those test cases
which cause inconsistent behaviors among DUTs, for example,
there is a group of digital images of handwritten number “8”
and true labels of these images are all Arabic number 8.
We take these images as input to the DUT and all outputs
are Arabic number 8 except one output is Arabic number 0.
We believe the inconsistent behavior is an error in the DUT.

3) Neuron Coverage: In the scenario of a DNN testing,
given a DUT with neurons N = {n1, n2, . . .} and a set of test
cases T = {τ1, τ2, . . .}, for a test case τ ∈ T , if the output
nvalue(n, τ) of a neuron n (n ∈ N) exceeds the predefined
threshold t , which is customized according to testing, we call
the neuron n as an activated neuron. Then the neuron coverage
is defined as the ratio of the quantity of activated neurons for
a given input and all neurons

NC = |{n|∃τ ∈ T, nvalue(n, τ) > t}|
|N | . (1)

Test4Deep adopts the neuron coverage as a testing metric
since the more neurons are covered, the more diversity of
test cases, which would trigger more incorrect behaviors of
DUTs [8].

4) Test Criterion-Based Neuron Coverage: Given a DUT,
the set of test objectives Q according to the covering
method-based neuron coverage CovNC, the algorithm for test
cases set T generation such that

∀r ∈ Q∃(τ1, τ2, . . . , τk) ∈ T : CovNC(r, (τ1, τ2, . . . , τk)) (2)

where CovNC(r, (τ1, τ2, . . . , τk)) means that the test case set
(τ1, τ2, . . . , τk) satisfies the test objective r .

Fig. 1. Framework and workflow of Test4Deep.

The test criterion-based neuron coverage is the degree to
which test objectives are satisfied by the generated test case
set in T with respect to CovNC such that

|∀r ∈ Q∃(τ1, τ2, . . . , τk) ∈ T : CovNC(r, (τ1, τ2, . . . , τk))|
|Q| .

(3)

In the testing scenario of DUTs, test objectives are “hitting”
all the inconsistent behaviors of DUTs. These inconsistent
behaviors often contain logical errors and incorrect behaviors
DUTs. Therefore, the testing problem transforms to explore as
many test cases as possible, which are able to trigger erroneous
behaviors of the DUT. Furthermore, testing based on neuron
coverage converts to finding as many test cases activating more
neurons as possible.

B. Framework Overview

Fig. 1 describes the integral workflow of the Test4Deep
framework. Apparently, this architecture can be applied to
various DUTs that perform popular missions.

Specifically, the input vector xorig is selected from a dataset,
which has been correctly labeled, for example, the training
or test dataset of the DUT. We call a xorig as a seed, such
as an image with a label of ground truth. The generation
algorithm induces disturbances and plugs into xorig to obtain x
by the neuron selection strategy and decision function. Then,
x triggers higher neuron coverage than the seed and such
disturbances are imperceptible making no visual differentiation
from x and xorig. If the DUT gives different judgments about
seed and x, for example, allocated different labels, we believe
that an error results in the inconsistent behavior of the DUT
and we output x. If the DUT makes an identical judgment of
both seed and x, the algorithm will take x as an intermediate
outcome to execute iteratively until finding new inconsistent
behavior of the DUT or reaching the termination condition.
Owing to superimposed subtle perturbations on seed and
constraints for output, x is without manual labeling, that is,
x receives label of seed straightly, thus forming a test case τ ,
which will be added to the maintained test case set T .

C. Algorithm

The generation algorithm of Test4Deep is described as
Algorithm 1. Based on the strategy of neuron selection and
decision of DUT inconsistency, the algorithm transforms
generation test inputs into the joint optimization problem
of obtaining the maximum neuron coverage and maximum
quantity of DUT misjudgments.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore. Restrictions apply.

12/05/2024 EECS 481 F24 - SE for AI 46

YU et al.: WHITE-BOX TESTING FOR DEEP NEURAL NETWORKS BASED ON NEURON COVERAGE 9189

TABLE I

SPECIFIC DESCRIPTIONS OF EXPERIMENTAL DATASETS AND DUTS [8]

practical selections of the hyperparameter’s specific values in
the following experiments (see Section IV-G).

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

Test4Deep was compiled in TensorFlow 2.6.4 [31]and
Keras [32]. Our computer configurations were four cores (Intel
i7-6700 3.40-GHz processor), 32-GB memory and NVIDIA
TITAN X(Pascal) GPU. The OS was Ubuntu 16.04.

1) Baselines: We took DLFuzz and DeepXplore as base-
lines based on the following opinions: First, like Test4Deep,
both of them were white-box test methods based on neuron
coverage and followed the original definition of neuron cover-
age. Second, all three test methods adopted frameworks based
on differential decisions of DNNs. DeepXplore was based on
differential decisions between multi-DNNs, that is, for one
generated test data, if the prediction of the DUT was inconsis-
tent with original judgments of other DNNs in its framework,
DeepXplore output the test case. DLFuzz and Test4Deep were
based on different decisions of a single DNN. Finally, both
DLFuzz and DeepXplore reported excellent neuron coverage
and efficiency.

We applied the same two image datasets of DLFuzz and
DeepXplore and one PDF document dataset of DeepXplore
along with corresponding nine DUTs. These DUTs were all
pre-trained for image recognition and malicious files recog-
nition. Table I and the following brief introductions illustrate
the basis of these datasets and DUTs.

We took recommended setting by DLFuzz, that is, hyper-
parameters k = 4, m = 10, λ = 1, iter_time = 3 (ImageNet)
or 5 (MNIST), and Strategy.1 (the value is 0). We took
recommended setting by DeepXplore, that is, hyperparameters
λ1 = 1, λ2 = 0.1, and s = 10 for image datasets and
hyperparameters λ1 = 2, λ2 = 0.1, and s = 0.1 for the PDF
dataset. Default settings of Test4Deep are λ1 = 0.5, λ2 = 0.1,
and s = 0.005 for image datasets and hyperparameters λ1 =
0.5, λ2 = 0.5, and s = 0.1 for the PDF dataset and specified
value will be reported. Neuron activation threshold t = 0.25.
Seed inputs came from 200 random selections in each dataset,
and in the same way for each test method. Because of the
same experimental settings of DLFuzz and DeepXplore, such
as the same datasets of each specific experiment, in this
work, we also follow the same experimental settings of two
baselines.

MNIST [33]: The dataset is consisting of 60 000 training
and 10 000 testing handwritten grayscale numerical images.

The DUTs selected in the experiment are LeNet-1 [25],
LeNet-4 [25], and LeNet-5 [25].

ImageNet [34]: The dataset is consisting of 10 million RGB
images with classifications of various common things. The
chosen pre-trained DUTs are VGG-16 [27], VGG-19 [27], and
ResNet50 [28].

Contagio/VirusTotal [35], [36]: The dataset collected both
benign and malicious PDF documents from Contagio [35],
VirusTotal [36], and Google (web crawling). These PDF
documents had been described by 135 static features [37]. The
training set was from Contagio (5000 benign and 12 205 mali-
cious) and the tests are from VirusTotal (5000 malicious) and
Google (5000 benign). We normalized values of six attributes
such as count_image_large, count_image_med, image_totalpx,
and so on. The experimental DUTs had been constructed in
two, three, and four layers with 200 neurons in each layer,
respectively.

2) Research Questions: We implemented experiments to
investigate the efficiency of our approach and demonstrated
that for challenges of white-box testing based on neuron cov-
erage, which proposed in Section I, Test4Deep was one of the
feasible solutions. Research questions include the following
aspects.

1) Effectiveness of Test4Deep, that is, whether test cases
generated by Test4Deep can achieve higher coverage
(see Section IV-B).

2) Efficiency of Test4Deep, that is, whether Test4Deep can
generate test cases more quickly (see Section IV-C).

3) Whether test cases generated by Test4Deep need manual
labeling (see Section IV-D).

4) Whether Test4Deep can help to enhance DUTs (see
Section IV-E).

B. Effectiveness of Test4Deep

1) Higher Neuron Coverage: Table II reports that on nine
DUTs, the average neuron coverage achieved by Test4Deep are
11.53%, 56.85%, and 31.40% higher than DLFuzz in MNIST,
ImageNet, and Contagio/Virustotal, respectively, while are
16.13%, 60.15%, and 31.98% higher than DeepXplore.

Furthermore, we produced test cases by DLFuzz
(neurons selected m = 8, hyperparameter λ = 0.1)
adopting reported optimal neuron selection strategies for
LeNet-41 and ResNet501 separately [10], that is, combination
of Strategy.2 and Strategy.3 for LeNet-4 and Strategy.2 for

1Same DUTs used by DLFuzz for comparison.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore. Restrictions apply.

12/05/2024 EECS 481 F24 - SE for AI 47

9190 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

TABLE II

RESULTS OF EFFECTIVENESS AND EFFICIENCY GENERATED BY TEST4DEEP (T4D.), DLFUZZ (DF.),
AND DEEPXPLORE (DX.) IN NINE DUTS OF THREE DATASETS

TABLE III

COMPARISONS OF QUANTITY, NEURON COVERAGE, AND GENERATION
TIME OF EACH TEST CASE ACHIEVED BY TEST4DEEP (T4D.), DEEP-

XPLORE (DX.), AND DLFUZZ (DF.) WHICH USED TWO OPTIMAL
NEURON SELECTION STRATEGIES IN LENET-4 AND RESNET50

ResNet50. Meanwhile, we generated test cases by Test4Deep
and DeepXplore on the same DUTs. According to the setting
of DLFuzz, the neuron activation threshold was t = 0.75 for
all three testing methods in this experiment. For LeNet-4,
DLFuzz picked neurons by combination strategies, that is,
neurons are rarely activated and with top weights. Intuitively,
neurons with top weights have a stronger influence on
DUTs’ decision-making. But for each test case, the numbers
of triggered neurons with top weights are relatively less.
Due to the high activation threshold t , most neurons in
DUTs are activated with difficulties, leading to the effects
of Strategy.3 for NC are not significant. Thus, combined
strategies almost overlapped with the Test4Deep selection
strategy. Results from Table III also demonstrate that average
NC achieved and quantities of test cases generated by
DLFuzz are close to these by Test4Deep on both DUTs. But
Test4Deep still be improved neuron coverage by 4.34% and
23.23% than two strategies. Driven by neuron coverage, the
optimal strategy still tended to pick inactivated or uncovered
neurons. However, DeepXplore selected one inactivated
neuron randomly in each iteration and NC was slightly better
than random selection method as shown in Fig. 2. From the
above discussion, we believe that Test4Deep has the ability
to acquire test data with higher neuron coverage.

2) Higher Quantity of Test Case Generation: Columns 6, 7,
and 8 in Table II show the quantities of test cases generated by
three testing methods on nine DUTs. Derived from Table II,
compared with DLFuzz, average quantities of test cases
generated by Test4Deep had increased by 34.67%, 25.73%,

and 76.80%. Meanwhile, compared with DeepXplore, average
quantities had increased by 59.94%, 54.63%, and 62.07%.

Obviously, it is not sufficient to strive merely for the
quantity of producing test cases. On the basis of neuron
coverage, we believe that the test cases that activate the same
neurons of DUTs repeatedly should be considered equivalent.
We further inspected the relationship between the quantity
and neuron coverage on LeNet-4,1 ResNet50,1 and PDF_D3
using three test approaches, respectively. Here, four neuron
selection strategies proposed by DLFuzz were regarded as
separate methods. We recorded the NC for each test case.
As depicted in Fig. 3, in LeNet-4, NC reached a stable
value at the 92nd output of Test4Deep, while at the 84nd
of DeepXplore, and for DLFuzz four strategies, stabilization
come out at corresponding 54nd, 60nd, 62nd, and 63nd
outputs. In ResNet50 and PDF_D3, Test4Deep achieved high
NC (greater than 95%) at the 68nd output and grew slowly,
while after the 60nd output, DLFuzz with four strategies and
DeepXplore reached 74% NC and sustained few increments.
Owing to fewer neurons of LeNet-4, that is, only 0.28% of
ResNet50 and 33.42% of PDF_D3, NC reached relatively
stable values within 200 seeds. When we used 2000 seeds
on LeNet-4 by Test4Deep and DeepXplore, NC could reach
96.29% and 78.80%. This indicates that their NCs are still
growing, with seeds increasing even though being agonizingly
slow. In view of the above analyses, we consider that the
test cases generated by Test4Deep satisfy the requirement of
sustaining more activation neurons.

3) Impact by Activation Thresholds for Neuron Coverage:
We depicted variations of neuron coverage of four testing
methods with stepping activation threshold t on all experimen-
tal datasets in Fig. 2. For comparison, we added the random
selection method that was the most common test method.
When t = 0, the NC of three test methods based on neuron
coverage achieved more than 95%, and the random selection
method was significantly below this level. According to the
definition of neuron coverage (1), for each DUT, the number
of activated neurons decreased with an increase of threshold
t . However, we observed that the NC of Test4Deep did not
decline dramatically. Even when t = 0.75, the lowest NC
of Test4Deep was still greater than 55%, while that of the
other three methods were all less than 50% (on MNIST). The

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore. Restrictions apply.

12/05/2024 EECS 481 F24 - SE for AI 48

9190 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

TABLE II

RESULTS OF EFFECTIVENESS AND EFFICIENCY GENERATED BY TEST4DEEP (T4D.), DLFUZZ (DF.),
AND DEEPXPLORE (DX.) IN NINE DUTS OF THREE DATASETS

TABLE III

COMPARISONS OF QUANTITY, NEURON COVERAGE, AND GENERATION
TIME OF EACH TEST CASE ACHIEVED BY TEST4DEEP (T4D.), DEEP-

XPLORE (DX.), AND DLFUZZ (DF.) WHICH USED TWO OPTIMAL
NEURON SELECTION STRATEGIES IN LENET-4 AND RESNET50

ResNet50. Meanwhile, we generated test cases by Test4Deep
and DeepXplore on the same DUTs. According to the setting
of DLFuzz, the neuron activation threshold was t = 0.75 for
all three testing methods in this experiment. For LeNet-4,
DLFuzz picked neurons by combination strategies, that is,
neurons are rarely activated and with top weights. Intuitively,
neurons with top weights have a stronger influence on
DUTs’ decision-making. But for each test case, the numbers
of triggered neurons with top weights are relatively less.
Due to the high activation threshold t , most neurons in
DUTs are activated with difficulties, leading to the effects
of Strategy.3 for NC are not significant. Thus, combined
strategies almost overlapped with the Test4Deep selection
strategy. Results from Table III also demonstrate that average
NC achieved and quantities of test cases generated by
DLFuzz are close to these by Test4Deep on both DUTs. But
Test4Deep still be improved neuron coverage by 4.34% and
23.23% than two strategies. Driven by neuron coverage, the
optimal strategy still tended to pick inactivated or uncovered
neurons. However, DeepXplore selected one inactivated
neuron randomly in each iteration and NC was slightly better
than random selection method as shown in Fig. 2. From the
above discussion, we believe that Test4Deep has the ability
to acquire test data with higher neuron coverage.

2) Higher Quantity of Test Case Generation: Columns 6, 7,
and 8 in Table II show the quantities of test cases generated by
three testing methods on nine DUTs. Derived from Table II,
compared with DLFuzz, average quantities of test cases
generated by Test4Deep had increased by 34.67%, 25.73%,

and 76.80%. Meanwhile, compared with DeepXplore, average
quantities had increased by 59.94%, 54.63%, and 62.07%.

Obviously, it is not sufficient to strive merely for the
quantity of producing test cases. On the basis of neuron
coverage, we believe that the test cases that activate the same
neurons of DUTs repeatedly should be considered equivalent.
We further inspected the relationship between the quantity
and neuron coverage on LeNet-4,1 ResNet50,1 and PDF_D3
using three test approaches, respectively. Here, four neuron
selection strategies proposed by DLFuzz were regarded as
separate methods. We recorded the NC for each test case.
As depicted in Fig. 3, in LeNet-4, NC reached a stable
value at the 92nd output of Test4Deep, while at the 84nd
of DeepXplore, and for DLFuzz four strategies, stabilization
come out at corresponding 54nd, 60nd, 62nd, and 63nd
outputs. In ResNet50 and PDF_D3, Test4Deep achieved high
NC (greater than 95%) at the 68nd output and grew slowly,
while after the 60nd output, DLFuzz with four strategies and
DeepXplore reached 74% NC and sustained few increments.
Owing to fewer neurons of LeNet-4, that is, only 0.28% of
ResNet50 and 33.42% of PDF_D3, NC reached relatively
stable values within 200 seeds. When we used 2000 seeds
on LeNet-4 by Test4Deep and DeepXplore, NC could reach
96.29% and 78.80%. This indicates that their NCs are still
growing, with seeds increasing even though being agonizingly
slow. In view of the above analyses, we consider that the
test cases generated by Test4Deep satisfy the requirement of
sustaining more activation neurons.

3) Impact by Activation Thresholds for Neuron Coverage:
We depicted variations of neuron coverage of four testing
methods with stepping activation threshold t on all experimen-
tal datasets in Fig. 2. For comparison, we added the random
selection method that was the most common test method.
When t = 0, the NC of three test methods based on neuron
coverage achieved more than 95%, and the random selection
method was significantly below this level. According to the
definition of neuron coverage (1), for each DUT, the number
of activated neurons decreased with an increase of threshold
t . However, we observed that the NC of Test4Deep did not
decline dramatically. Even when t = 0.75, the lowest NC
of Test4Deep was still greater than 55%, while that of the
other three methods were all less than 50% (on MNIST). The

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore. Restrictions apply.

What is the percentage improvement of average Neural Coverage (Ave.NC%) of
Teast4Deep (T4D) to DLFUZZ (DF) in the two DDNs under Testing (DUTs) above?

Answer

12/05/2024 EECS 481 F24 - SE for AI 49

Test4Deep (T4D) improved neuron coverage to
DLFuzz (DF) in the two DUTs by 4.34% and 23.23%,
respectively.

12/05/2024 EECS 481 F24 - SE for AI 50

YU et al.: WHITE-BOX TESTING FOR DEEP NEURAL NETWORKS BASED ON NEURON COVERAGE 9191

Fig. 2. Neuron coverage suppressed with growth of neuron activation threshold t . Neuron coverage by Test4Deep had the least decrease.

Fig. 3. Relationship between neuron coverage and the number of test cases which generated by Test4Deep, DeepXplore, and DLFuzz. DLFuzz with different
neuron selection strategies were regarded as separate methods. Higher neuron coverage with the same number of seeds was better.

steady decline of NC indicated that Test4Deep, DLFuzz, and
DeepXplore induced the activation of neurons strategically.
Apparently, the guideline of Test4Deep was more effective to
trigger a large number of activated neurons to generate test
cases as much as possible while the random selection method
was relatively blind and unguided.

C. Efficiency of Test4Deep

1) Higher Efficiency on Time and Neuron Coverage: We
calculated the average time of each test case generation by
three test methods on all DUTs, as shown in columns 9,
10, and 11 of Table II. For each test case generation,
Test4Deep consumed 58.32%, 51.80%, and 80.40% less time
than DLFuzz in MNIST, ImageNet, and Contagio/Virustotal,
respectively, while 60.53%, 51.48%, and 60.12% less than
DeepXplore.

Furthermore, as shown in the last column of Table III, time
consumption of each test case generation by DLFuzz with

two optimal neuron selection strategies [10] in LeNet-4 and
ResNet50 were 18.12 and 6.98 times that of Test4Deep while
that were 2.53 and 6.50 times that of DeepXplore.

DLFuzz with optimal neuron selection strategies won higher
neuron coverage and time efficiency (compared with Deep-
Xplore) in the early period of test case generation. In the
process of continuous generation, DLFuzz has to maintain
the list of neurons that fit for selection strategy constantly
and the fuzzing process of DLFuzz must traverse various
combinations of selected neurons in each iteration. Thus,
the time efficiency of DLFuzz decreased with inputting a
large number of seeds. As analyses in Section IV-B show,
in the later stage of generation, Strategy.3 will lose efficacy in
combined strategies and neuron selection strategies of DLFuzz
overlapped with Test4Deep. Nevertheless, Test4Deep does not
have the overhead of preservation list of neurons. DeepXplore
selects one inactive neuron randomly in each iteration. The
weak point of this strategy is needing a large number of

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore. Restrictions apply.

12/05/2024 EECS 481 F24 - SE for AI 51

YU et al.: WHITE-BOX TESTING FOR DEEP NEURAL NETWORKS BASED ON NEURON COVERAGE 9191

Fig. 2. Neuron coverage suppressed with growth of neuron activation threshold t . Neuron coverage by Test4Deep had the least decrease.

Fig. 3. Relationship between neuron coverage and the number of test cases which generated by Test4Deep, DeepXplore, and DLFuzz. DLFuzz with different
neuron selection strategies were regarded as separate methods. Higher neuron coverage with the same number of seeds was better.

steady decline of NC indicated that Test4Deep, DLFuzz, and
DeepXplore induced the activation of neurons strategically.
Apparently, the guideline of Test4Deep was more effective to
trigger a large number of activated neurons to generate test
cases as much as possible while the random selection method
was relatively blind and unguided.

C. Efficiency of Test4Deep

1) Higher Efficiency on Time and Neuron Coverage: We
calculated the average time of each test case generation by
three test methods on all DUTs, as shown in columns 9,
10, and 11 of Table II. For each test case generation,
Test4Deep consumed 58.32%, 51.80%, and 80.40% less time
than DLFuzz in MNIST, ImageNet, and Contagio/Virustotal,
respectively, while 60.53%, 51.48%, and 60.12% less than
DeepXplore.

Furthermore, as shown in the last column of Table III, time
consumption of each test case generation by DLFuzz with

two optimal neuron selection strategies [10] in LeNet-4 and
ResNet50 were 18.12 and 6.98 times that of Test4Deep while
that were 2.53 and 6.50 times that of DeepXplore.

DLFuzz with optimal neuron selection strategies won higher
neuron coverage and time efficiency (compared with Deep-
Xplore) in the early period of test case generation. In the
process of continuous generation, DLFuzz has to maintain
the list of neurons that fit for selection strategy constantly
and the fuzzing process of DLFuzz must traverse various
combinations of selected neurons in each iteration. Thus,
the time efficiency of DLFuzz decreased with inputting a
large number of seeds. As analyses in Section IV-B show,
in the later stage of generation, Strategy.3 will lose efficacy in
combined strategies and neuron selection strategies of DLFuzz
overlapped with Test4Deep. Nevertheless, Test4Deep does not
have the overhead of preservation list of neurons. DeepXplore
selects one inactive neuron randomly in each iteration. The
weak point of this strategy is needing a large number of

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore. Restrictions apply.

Neuron Coverage Improvement
•Test4Deep enhances neuron coverage by
tracking and activating inactive neurons
during testing.

•This approach ensures a more
comprehensive examination of the neural
network's internal logic.

12/05/2024 EECS 481 F24 - SE for AI 52

Differential Testing Framework
•The paper introduces a differential testing
framework that automatically verifies
inconsistent behaviors in DNNs.

•This framework helps identify discrepancies
between the original input and generated test
data.

12/05/2024 EECS 481 F24 - SE for AI 53

Efficiency and Effectiveness

•Compared to other state-of-the-art methods like
DLFuzz and DeepXplore, Test4Deep achieves
higher neuron coverage (by 32.87% and 35.69%
respectively) while reducing testing time (by 58.37%
and 53.24% respectively).

• It also generates more test cases with fewer
perturbations.

12/05/2024 EECS 481 F24 - SE for AI 54

Improving DNN Robustness

•By merging generated test cases and
retraining the DNNs, Test4Deep can improve
the accuracy and robustness of the networks.

12/05/2024 EECS 481 F24 - SE for AI 55

12/05/2024 EECS 481 F24 - SE for AI 56

Black Box Testing of DNNs

Black-Box Testing of Deep Neural Networks
through Test Case Diversity
• This paper investigates diversity metrics as an alternative

to white-box coverage criteria. Such metrics are required to
be black-box and not rely on the execution and outputs of
DNNs under test.

• It is shown that relying on the diversity of image features
embedded in test input sets is a more reliable indicator than
coverage criteria to effectively guide DNN testing.

• https://web.eecs.umich.edu/~movaghar/BBT DNN TSE 2023 - 1.pdf

12/05/2024 EECS 481 F24 - SE for AI 57

https://web.eecs.umich.edu/~movaghar/
https://web.eecs.umich.edu/~movaghar/BBT%20DNN%20TSE%202023%20-%201.pdf

Diversity Metrics

•The paper proposes the use of black-box diversity
metrics to guide the testing of DNN models.

•These metrics help identify diverse test cases that can
reveal different types of faults in the network.

12/05/2024 EECS 481 F24 - SE for AI 58

What are faults?
• In this paper, faults refer to erroneous behaviors exhibited by

deep neural networks (DNNs) that can lead to critical errors,
especially in safety-critical systems.

• These faults can manifest as incorrect predictions or
misclassifications when the DNN is presented with certain
inputs.

• The paper investigates the use of black-box input diversity
metrics to guide the testing of DNNs, aiming to detect these
faults more effectively.

12/05/2024 EECS 481 F24 - SE for AI 59

Geometric Diversity
•Geometric diversity is shown to be particularly
effective in guiding the testing process.

•This metric helps identify similar mispredicted inputs
caused by the same issues in the DNN model.

12/05/2024 EECS 481 F24 - SE for AI 60

Coverage versus Faults
• The study finds that there is no direct correlation

between traditional coverage metrics and the presence
of faults in DNN models.

• Instead, diversity metrics provide a more reliable
indicator for effective testing.

12/05/2024 EECS 481 F24 - SE for AI 61

Main Result
•The paper demonstrates that relying on the diversity of
image features embedded in test input sets is a more
reliable method than coverage criteria for effectively
guiding the testing of DNNs.

12/05/2024 EECS 481 F24 - SE for AI 62

Feature-Guided Black-Box Safety Testing of
Deep Neural Networks

• The paper focuses on image classifiers and proposes a
feature-guided black-box approach to test the safety of deep
neural networks that require no such knowledge.

• It uses object detection techniques such as SIFT (Scale
Invariant Feature Transform) to extract features from an image.

• These features are converted into a mutable saliency
distribution, where high probability is assigned to pixels that
affect the composition of the image concerning the human
visual system.

https://web.eecs.umich.edu/~movaghar/Black-Box Testing DNN 2018.pdf

12/05/2024 EECS 481 F24 - SE for AI 63

https://web.eecs.umich.edu/~movaghar/Black-Box%20Testing%20DNN%202018.pdf

Feature-Guided Approach

•The paper introduces a novel feature-guided approach
for black-box safety testing of deep neural networks.

•This method leverages object detection techniques like
SIFT (Scale Invariant Feature Transform) to extract
features from images.

12/05/2024 EECS 481 F24 - SE for AI 64

Adversarial Example Generation

•The authors formulate the crafting of adversarial
examples as a two-player turn-based stochastic game.

•This game-theoretic approach helps in identifying
minimal adversarial examples that can fool the neural
network.

12/05/2024 EECS 481 F24 - SE for AI 65

Safety Guarantees

•For Lipschitz networks, the paper identifies conditions
that provide safety guarantees, ensuring that no
adversarial examples exist under certain conditions.

12/05/2024 EECS 481 F24 - SE for AI 66

Monte Carlo Tree Search
• The paper employs Monte Carlo tree search to explore the

game state space gradually, searching for adversarial examples.
• This method is shown to be competitive with state-of-the-art

white-box methods.

12/05/2024 EECS 481 F24 - SE for AI 67

Application to Safety-Critical Systems
• The proposed method is demonstrated in safety-critical

applications, such as traffic sign recognition in self-driving cars,
highlighting its practical relevance and effectiveness.

• These contributions underscore the importance of robust and
effective testing methodologies for ensuring the safety and
reliability of deep neural networks.

12/05/2024 EECS 481 F24 - SE for AI 68

12/05/2024 EECS 481 F24 - SE for AI 69

Formal verification of DNNs

Deep Statistical Model Checking

• This paper presents several significant contributions to the
field of neural network verification, particularly in the
context of Markov Decision Processes (MDPs).

• Its contributions highlight the effectiveness of Deep
Statistical Model Checking (DSMC) in providing a robust
framework for the verification of neural networks within the
context of MDPs.

https://web.eecs.umich.edu/~movaghar/Deep Statistical Model Checking 2020.pdf

12/05/2024 EECS 481 F24 - SE for AI 70

https://web.eecs.umich.edu/~movaghar/Deep%20Statistical%20Model%20Checking%202020.pdf

Integration of Neural Networks and MDPs

•The paper introduces a method where a neural network
(NN) is used to represent a policy that takes action
decisions within an MDP.

•This integration results in a Markov chain, which can be
analyzed using statistical model checking.

12/05/2024 EECS 481 F24 - SE for AI 71

Scalable Verification Method
•The proposed method, termed Deep Statistical Model
Checking (DSMC), is a scalable approach that extends
traditional statistical model checking.

• It allows for the verification of systems incorporating
neural networks by treating the NN as a determiner of
the MDP.

12/05/2024 EECS 481 F24 - SE for AI 72

Insight into NN Behavior

•DSMC provides deep insights into various
aspects of neural network behavior, such as the
safety risks induced by the NN, the
performance of the NN compared to the optimal
policy, and the impact of further training on the
NN.

12/05/2024 EECS 481 F24 - SE for AI 73

Light-Weight Verification

•The methodology described is a lightweight
approach to checking the behavior of systems
that incorporate neural networks, making it
practical for real-world applications.

12/05/2024 EECS 481 F24 - SE for AI 74

Book: Introduction to Neural Networks Verification
• This book provides a comprehensive overview of the methods

and principles for verifying neural networks.
• It covers foundational concepts from formal verification and

their adaptation to neural networks and deep learning.
• These contributions aim to provide formal guarantees on the

safety, security, correctness, and robustness of neural
networks, which are crucial for their deployment in real-world
applications.

https://web.eecs.umich.edu/~movaghar/nnv_book-2021.pdf

12/05/2024 EECS 481 F24 - SE for AI 75

https://web.eecs.umich.edu/~movaghar/nnv_book-2021.pdf

Constraint-based techniques for DNN verification

• It discusses various techniques for constraint-based
verification, including logic and satisfiability, encodings of
neural networks, and neural theory solvers.

• These techniques involve formulating the verification problem
as a set of constraints that the neural network must satisfy.

• These techniques are crucial for ensuring the reliability and
safety of neural networks, especially in applications where
correctness is critical.

12/05/2024 EECS 481 F24 - SE for AI 76

Constraint Solving

•This involves encoding the neural network's behavior
and the properties to be verified as mathematical
constraints.

•These constraints are then solved using various
techniques such as Satisfiability Modulo Theories
(SMT) solvers.

12/05/2024 EECS 481 F24 - SE for AI 77

Linear and Non-linear Constraints

• For linear regions of the network, constraints can be precisely
encoded.

• However, non-linear behaviors, such as those introduced by
activation functions like ReLU, require more complex
handling.

• Techniques like piecewise linear approximation are often used
to manage these non-linearities.

12/05/2024 EECS 481 F24 - SE for AI 78

Abstraction Techniques

• Abstraction is used to simplify the verification problem by
creating a more manageable representation of the neural
network.

• This can involve over-approximating the network's behavior to
ensure that all possible behaviors are considered, which can
help in proving the properties of the network.

12/05/2024 EECS 481 F24 - SE for AI 79

Combining Techniques

•Modern approaches often combine constraint solving
with other techniques like abstraction and neuron
splitting.

•Neuron splitting involves breaking down the verification
problem into smaller subproblems, which can be
solved more efficiently.

12/05/2024 EECS 481 F24 - SE for AI 80

Scalability

• One of the main challenges addressed is the scalability of these
techniques.

• As neural networks grow in size and complexity, the verification
process becomes more computationally intensive.

• The book discusses various methods to improve the scalability
of constraint-based verification.

12/05/2024 EECS 481 F24 - SE for AI 81

Abstraction-based techniques for DNN
verification
• The book explores abstraction techniques such as neural

interval abstraction, zonotope abstraction, and polyhedron
abstraction.

• Abstraction-based techniques for Deep Neural Network (DNN)
verification are crucial for managing the complexity of verifying
large and intricate networks.

• It also covers verification with abstract interpretation and
abstract training of neural networks.

12/05/2024 EECS 481 F24 - SE for AI 82

Over-approximation
• This technique involves creating a simplified version of the

neural network that over-approximates its behavior.
• The idea is to ensure that if a property holds for the abstract

(simplified) network, it will also hold for the original network.
• This makes the verification process more manageable.

12/05/2024 EECS 481 F24 - SE for AI 83

Abstract Interpretation
• This method uses mathematical abstractions to represent

sets of possible states of the neural network.
• By analyzing these abstract states, it is possible to infer

properties about the network without having to examine
every possible state explicitly.

12/05/2024 EECS 481 F24 - SE for AI 84

Zonotope and Polyhedron Abstractions

• These are specific types of abstractions used to
represent the possible values of neurons in the
network.

• Zonotopes are geometric shapes that can efficiently
represent linear transformations, while polyhedra can
represent more complex relationships between neuron
values.

12/05/2024 EECS 481 F24 - SE for AI 85

Refinement

• When an over-approximation is too coarse and leads to
spurious counterexamples (false positives), refinement
techniques are used to make the abstraction more
precise.

• This iterative process continues until the abstraction is
accurate enough to verify the desired properties.

12/05/2024 EECS 481 F24 - SE for AI 86

Scalability
• One of the main advantages of abstraction-based techniques

is their scalability.
• By reducing the complexity of the verification problem, these

techniques make it feasible to verify larger and more
complex neural networks.

12/05/2024 EECS 481 F24 - SE for AI 87

Toward Verified Artificial Intelligence
•This paper discusses the goal of creating AI systems
with strong, ideally provable, assurances of
correctness based on mathematically specified
requirements.

•The paper primarily focuses on the theoretical and
methodological aspects of achieving Verified AI.

• It does not mention detailed case studies but discusses
the challenges and principles needed to ensure that AI
systems are verifiable and reliable.

h?ps://web.eecs.umich.edu/~movaghar/Toward Verified ArFficial Intelligence 2022.pdf
12/05/2024 EECS 481 F24 - SE for AI 88

https://web.eecs.umich.edu/~movaghar/Toward%20Verified%20Artificial%20Intelligence%202022.pdf

12/05/2024 EECS 481 F24 - SE for AI 89

48 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

contributed articles

3. The property to be verified, .
The verifier generates a “yes/no” an-

swer as output, indicating whether S
satisfies the property in environment
E. Typically, a “no” output is accompa-
nied by a counterexample, also called an
error trace, which is an execution of the
system that indicates how is falsified.
Some verification tools also include a
proof or certificate of correctness with
a “yes” answer. We take a broad view
of formal methods to include any tech-
nique that uses some aspect of formal
specification, verification, or synthesis.
For instance, we include simulation-
based hardware verification methods
or model-based testing methods for
software since they use formal specifica-
tions or models to guide the process of
simulation or testing.

To apply formal verification to AI
systems, one must be able to represent,
at a minimum, the three inputs S, E,
and in formalisms for which (ideally)
there exist efficient decision proce-

dures to answer the “yes/no” question
described previously. However, as will
be shown, even constructing good rep-
resentations of the three inputs is not
straightforward, let alone dealing with
the complexity of underlying design
and verification problems.

We will illustrate the ideas in this
article with examples from the domain
of semiautonomous driving. Figure 2
shows an illustrative example of an AI
system: a closed-loop CPS comprising
a semiautonomous vehicle, with ML
components, along with its environ-
ment. Specifically, assume the semi-
autonomous “ego” vehicle has an au-
tomated emergency braking system
(AEBS) that attempts to detect and
classify objects in front of it and actu-
ate the brakes when needed to avert
a collision. Figure 2 shows the AEBS
as a system composed of a controller
(automatic braking), a plant (vehicle
sub-system under control, including
other parts of the autonomy stack),

mal methods has traditionally been
applied, identify the unique challeng-
es arising in AI systems, and present
ideas and recent advances towards
overcoming these challenges.

This article seeks to address more
than just specific types of AI compo-
nents, such as deep neural networks
(DNNs), or specific methods, such
as reinforcement learning (RL). It at-
tempts to cover the broad range of AI
systems and their design processes.
Additionally, recognizing that formal
methods provide but one approach
to trustworthy AI, our perspective is
meant to complement those from oth-
er areas. Our views are largely shaped
by problems arising from the use of AI
in autonomous and semiautonomous
systems, where safety and correctness
concerns are more acute, though we
believe the ideas presented here apply
more broadly. This article is written
for formal methods researchers and
practitioners as well as for the broader
computer science community. For the
former, we present our viewpoint on
where the real problems lie and how
formal methods can have the greatest
impact. For the latter, we sketch out
our vision of how formal methods can
be a key enabler for trustworthy AI.

We begin with a brief background of
formal verification, an illustrative ex-
ample, and a summary of the article’s
key ideas. We then outline five chal-
lenges to verified AI, discussing recent
progress and presenting principles to
address them.a

Overview
Figure 1 shows the typical processes for
formal verification, formal synthesis,
and formally guided runtime resilience.
Consider the formal verification pro-
cess, which begins with three inputs:

1. A model of the system to be veri-
fied, S.

2. A model of the environment, E.

a The first version of this article was published
on arXiv in July 2016 in response to a call for
white papers for the 2016 CMU Exploratory
Workshop on Safety and Control for AI. Two
revisions have been completed since. This
latest version reflects the evolution of the au-
thors’ perspective on verified AI. Since 2016,
literature on the topic has grown substantially;
however, per Communications guidelines we
are limited to 40 references, so a comprehen-
sive survey of the topic is out of scope.

Figure 1. Formal methods for verification, synthesis, and runtime resilience.

System
S E

EnvSpec

YES
[+ proof]

NO
[+ counterexample]

Find S s.t. S E
satisfies

Does S E
satisfy ?

Synthesized
System S

Real
Env

Sys S

Runtime
Assurance

E
EnvSpec Spec

Verification Synthesis Runtime Resilience

Runtime
Monitor

Figure 2. Example of a closed-loop cyber-physical system with machine-learning components
(introduced in Dreossi et al.5).

Controller Vehicle
(Plant)

Environment

Sensor Input

Deep Learning-Based Object Detection

Formal Modeling of Environment, Specification,
and Learning Systems
• Formal modeling of the environment in which AI operates is

usually a challenge.

• Defining precise and unambiguous specifications for AI
behavior is not usually easy.

Modeling Learning Systems makes it difficult for the overall
system to be formally verified.

12/05/2024 EECS 481 F24 - SE for AI 90

Scalability and Design Correctness
• Developing scalable computational tools that can handle the

complexity of AI systems is not usually practical.

• Designing correct AI systems from the outset is usually too
difficult to be realized.

12/05/2024 EECS 481 F24 - SE for AI 91

Applications: Safety-Critical Systems and
Financial Systems

• Verified AI can be applied to systems where safety is paramount,
such as autonomous vehicles, medical devices, and aerospace
systems. Ensuring these systems operate correctly under all
conditions is crucial.

• In financial technology, Verified AI can help create algorithms
that are robust against errors and fraud, ensuring the integrity
and reliability of financial transactions and trading systems.

12/05/2024 EECS 481 F24 - SE for AI 92

Applications: Robotics, Cybersecurity, and Legal
Systems

• Verified AI can be used in robotics to ensure that robots perform
tasks accurately and safely, especially in environments where
they interact closely with humans.

• AI systems designed to detect and respond to cyber threats can
benefit from verification to ensure they correctly identify and
mitigate threats without false positives or negatives.

• Verified AI can help ensure that AI systems comply with legal and
regulatory requirements, reducing the risk of non-compliance
and associated penalties.

12/05/2024 EECS 481 F24 - SE for AI 93

12/05/2024 EECS 481 F24 - SE for AI 94

How can we evaluate or write tests for LLMs

Large Language Models (LLMs)
• Large Language Models (LLMs) have transformed AI with

their ability to process and generate human-like responses.
• These models can now tackle complex problems, but how do

we know if they deliver reliable, actionable insights?
• The key lies in precise evaluation. Like any machine learning

model, one should rigorously test LLMs to ensure accuracy,
trustworthiness, and relevance.

12/05/2024 EECS 481 F24 - SE for AI 95

Widespread Use of Benchmarks
• Standardized benchmarks like GLUE, SuperGLUE, and

others are extensively used to evaluate LLMs.
• These benchmarks provide a common ground for

comparing different models and are a staple in the
research community.

• https://composio.dev/blog/llm-evaluation-guide/

12/05/2024 EECS 481 F24 - SE for AI 96

https://composio.dev/blog/llm-evaluation-guide/

Automated Tes,ng Tools
• There are numerous automated tools and frameworks

designed to streamline the evaluation process.
• These tools help in efficiently assessing various

aspects of LLM performance, such as accuracy,
fluency, and bias.

• https://www.lakera.ai/blog/large-language-model-evaluation

12/05/2024 EECS 481 F24 - SE for AI 97

https://www.lakera.ai/blog/large-language-model-evaluation

Human Evaluation

• Despite advances in automated testing, human evaluation
remains crucial.

• Human judges assess the quality of the model's outputs
based on criteria like coherence, relevance, and fluency,
which are difficult to measure automatically.

12/05/2024 EECS 481 F24 - SE for AI 98

Ethical and Bias Testing
• Evaluating LLMs for ethical considerations, such as

bias and fairness, is a growing area of focus.
• Researchers are developing specific tests to identify

and mitigate biases in LLM outputs.
• The field of LLM evaluation is continuously evolving,

with ongoing research aimed at improving the
robustness, fairness, and efficiency of evaluations.

12/05/2024 EECS 481 F24 - SE for AI 99

