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One-Slide Summary
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• Why are AI systems so important? AI systems are crucial 
today because they significantly enhance our ability to process 
and analyze vast amounts of data, leading to more informed 
decision-making and automation of complex tasks. 

• PAC: Probably Approximately Correct (PAC) is a framework in 
computational learning theory for analyzing AI systems. 

• SE for AI: Applying software engineering methods is crucial in 
developing and using AI systems because it ensures the 
creation of reliable, scalable, and maintainable AI applications.
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Learning Objectives: by the end of today’s 
lecture, you should be able to…
1. (Knowledge) describe the primary activities in Artificial Intelligence 

(AI) using software engineering (SE)

2. (Value) understand why the applications of SE in AI are important

3. (Skill) Review some recent papers



Overview

• Background
• What is Software Engineering (SE) for Artificial 

Intelligence (AI)?
• What are the applications of SE in AI?

• White-Box Testing of DNNs
• Black-Box Testing of DNNs
• Formal Verification of DNNs
• How can we evaluate or write tests for LLMs
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Background

12/05/2024 EECS 481  F24 - SE for AI 5



How widespread are AI systems and applications?

• AI systems and applications are now deeply integrated into 
various aspects of modern life and industries.

• According to recent reports, around 34% of companies 
currently use AI, with an additional 42% exploring its potential.

• AI technologies are prevalent in healthcare, finance, retail, 
manufacturing, and smart vehicles, where they enhance 
efficiency, accuracy, and decision-making processes.
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Advantages of Artificial Intelligence (AI) Systems
• Artificial Intelligence (AI) increases efficiency and productivity 

by automating repetitive tasks, which allows humans to focus 
on more complex and creative activities. 

• AI systems enhance decision-making by quickly analyzing 
vast amounts of data, providing valuable insights across 
various fields like finance, healthcare, and marketing. 

• Additionally, AI enables personalized experiences, reduces 
operational costs through automation, and improves accuracy 
in tasks such as medical diagnostics.
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AI Prospects  
• In healthcare, AI is set to revolutionize diagnostics and treatment 

personalization. 
• The global AI market is projected to grow significantly, reaching an estimated 

$1,339 billion by 2030.
• Autonomous systems, such as self-driving cars and drones, are expected to 

enhance transportation safety and logistics. 
• AI's role in developing smart cities can lead to optimized energy use and 

improved public safety. 
• AI can contribute to environmental sustainability by optimizing resource use 

and predicting natural disasters. 
• The future of AI is bright, with its applications expanding and evolving to 

significantly impact various aspects of our lives and society.
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Data Quality, Privacy, and Security Challenges

• Ensuring high-quality and sufficient data is difficult for accurate 
results. 

• Data privacy and security are major concerns, requiring strict 
compliance with regulations and robust protection measures.

•  Selecting the right algorithms and models demands significant 
expertise and computational resources. 
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Integration, Ethics, and Evaluation Challenges 

• Integrating AI with existing systems can be complex, often 
necessitating substantial changes. 

• Ethical considerations, such as preventing bias and ensuring 
transparency, are critical. 

• Additionally, measuring AI performance can be difficult, and 
managing changes in workflows and processes is essential for 
successful implementation.
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How can we tackle these AI challenges?

• We will show how software engineering techniques, like testing 
and formal verification, can help with each of the AI challenges 
mentioned before. 

• In essence, we try to answer the question: How do we evaluate 
or write tests for large AI systems such as ChatGPT?”
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Probably Approximately Correct (PAC)

•Probably Approximately Correct (PAC) is a 
framework in computational learning theory for 
analyzing machine learning algorithms. 

• It was introduced by Leslie Valiant in 1984.
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PAC Learning

• In PAC learning, the goal is to find a hypothesis 
(a generalization function) that is "probably 
approximately correct." 

•This means that with high probability, the 
hypothesis will be close to the true function, 
within a specified error margin.
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PAC Framework

•The PAC framework provides a way to understand the 
relationship between the number of training samples, 
the error rate, and the confidence level that the 
hypothesis is correct.
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PAC’s Key Components
• Probably: The hypothesis is correct with a high probability (1 

- 𝛿), where (𝛿) is a small probability of failure.
• Approximately: The hypothesis is approximately correct with 

an error rate less than a specified threshold (𝜖).
• Correct: The hypothesis correctly classifies new samples 

drawn from the same distribuCon as the training data.
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Who is Leslie Valiant?

•Leslie Gabriel Valiant is a renowned British-American 
computer scientist and computational theorist. 

•Born on March 28, 1949, in Budapest, Hungary, he 
has made significant contributions to computer 
science, particularly in computational learning theory 
and complexity theory.
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Valiant’s other achievements 

•Valiant has received numerous accolades for his work, 
including the prestigious Turing Award in 2010, often 
referred to as the "Nobel Prize of Computing”.

•He is currently the T. Jefferson Coolidge Professor of 
Computer Science and Applied Mathematics at 
Harvard University.
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What are Algorithms?
•An algorithm is simply any well-defined procedure. 
• It is derived from the Latinized transliteration Algoritmi 
of the name of the mathematician Al-Khwārizmī, who 
worked in the House of Wisdom in Baghdad in the 
ninth century and authored an influential book on 
algebra. 
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Where are Algorithms Used?
•Algorithms as traditionally studied in mathematics and 
computer science are designed to solve instances of 
certain problems such as solving algebraic equations 
or searching for a word in a text. 

•All the expertise needed for their realization is encoded 
in their description by their designer. 
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What are Ecorithms? 
• Ecorithms are types of learning algorithms that operate 
within a biological or ecological context. 

• Ecorithms describe adaptive behaviors in systems that 
interact with their environment, such as biological 
organisms or ecosystems. 

• While their realization is foreseeable, their course will vary 
according to the environment.

https://web.eecs.umich.edu/~movaghar/Valiant2014-Chaps1-2.pdf
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Algorithms Versus Ecorithms 

•Algorithms are usually defined after a finite number of 
steps using limited resources. 

•Ecorithms, on the other hand, are defined in the 
learning model of PAC.

•The phenomena that they seek to explain are some 
of the most familiar to human experience: learning, 
resilience, and adaptation. 
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Overview

• Background
• What is Software Engineering (SE) for Artificial 

Intelligence (AI)?
• What are the applications of SE in AI?

• White-Box Testing of DNNs
• Black-Box Testing of DNNs
• Formal Verification of DNNs
• How can we evaluate or write tests for LLMs
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What is Software Engineering (SE) 
for Artificial Intelligence (AI)?
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SE for AI

•Using software engineering principles for AI 
development is essential for creating robust, 
scalable, and maintainable AI systems.

•By applying software engineering principles, AI 
systems can be developed more effectively, 
ensuring they are reliable, efficient, and aligned 
with user needs and ethical standards.
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System Design and Architecture

• Software engineers design the overall architecture 
of AI systems, ensuring they are modular, scalable, 
and efficient.

• This involves selecting appropriate frameworks, 
libraries, and tools.
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Model Development and Integration

• Engineers develop machine learning models and 
integrate them into larger software systems.

• This requires knowledge of both AI algorithms and 
software development practices.
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Data Management

• Effective data management is crucial for AI.
• Software engineers design and implement data 

pipelines, ensuring data is collected, processed, and 
stored efficiently.
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Testing and Validation
• Rigorous testing is essential to ensure AI models 

perform as expected.
• Engineers develop testing frameworks and 

methodologies to validate models and their 
integration into systems.
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Deployment and Maintenance

• Deploying AI models in production environments 
and maintaining them over time requires robust 
software engineering practices.

• This includes using containerization, continuous 
integration/continuous deployment (CI/CD) 
pipelines, and monitoring tools.
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Performance Optimization

• Engineers optimize the performance of AI systems, 
ensuring they run efficiently and meet performance 
requirements.

• This can involve tuning hyperparameters, optimizing 
code, and using specialized hardware like GPUs.
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Ethical Considerations

• Software engineers also address ethical 
considerations in AI, such as ensuring fairness, 
transparency, and accountability.

• This involves implementing practices to mitigate bias 
and ensure compliance with regulations.
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What is Deep Learning?
• The concept of deep learning typically involves the use of deep 

neural networks. 
• Deep learning is a subset of machine learning that uses neural 

networks with multiple layers (hence "deep") to model complex 
patterns in data.

• These deep neural networks are designed to simulate the way 
the human brain processes information, allowing them to perform 
tasks such as image and speech recognition, natural language 
processing, and more.

• https://www.ibm.com/topics/deep-learning
• https://builtin.com/machine-learning/deep-learning
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Deep Neural Networks (DNNs)

• Deep neural networks (DNNs) are a type of artificial 
neural network with multiple layers between the input 
and output layers.

•  These layers allow the network to learn and model 
complex patterns and relationships within data. 

• Each layer extracts increasingly abstract features from 
the input, enabling the network to perform tasks such 
as image and speech recognition, natural language 
processing, and more accurately.
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Why DNNs are so dominant in today's AI 
applications?

• DNNs have become dominant in today's AI systems due to their 
superior performance and versatility. 

• They can handle large datasets and complex models, making 
them suitable for various applications. 

• Advances in computational power, such as GPUs, and algorithm 
improvements have enhanced their efficiency and effectiveness. 

• This combination of factors has made DNNs a cornerstone of 
modern AI, driving significant advancements across various 
industries.

12/05/2024 EECS 481  F24 - SE for AI 34



Why do Large Language Models (LLMs) like GPT-4 
Use Deep Neural Network (DNN) Architecture?
• LLMs need to understand and generate human language, 

which involves recognizing patterns, context, and nuances. 
DNNs, with their multiple layers, are well-suited for capturing 
these complexities.

• Deep architectures allow LLMs to scale up, handling vast 
amounts of text data and learning from it efficiently. This 
scalability is essential for training models on large corpora.

• DNNs enable transfer learning, where a model trained on one 
task can be fine-tuned for another related task. This capability 
is handy for LLMs, which can be adapted to various language-
related tasks.
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The Nobel Prize in Physics 2024
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The Nobel Prize in Physics 2024

Summary

Ill. Niklas Elmehed © Nobel Prize
Outreach

John J. Hop�ield
Prize share: 1/2

Ill. Niklas Elmehed © Nobel Prize
Outreach

Geoffrey Hinton
Prize share: 1/2

The Nobel Prize in Physics 2024 was awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for foundational discoveries and inventions that
enable machine learning with artificial neural networks"

To cite this section
MLA style: The Nobel Prize in Physics 2024. NobelPrize.org. Nobel Prize Outreach AB 2024. Fri. 22 Nov 2024.
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By clicking “accept all cookies”, you agree to the storing of cookies on your
device to enhance site navigation, analyze site usage, and assist in our
marketing efforts. Our cookie policy.
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The Nobel Prize in Physics 2024 was 
awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for 
foundational discoveries and 
inventions that enable machine 
learning with artificial neural 
networks"



• ɑ,β-CROWN (alpha-beta-CROWN) 
• DNNV

• https://github.com/Verified-Intelligence/alpha-beta-CROWN

• https://github.com/dlshriver/dnnv

EECS 481  F24 - SE for AI12/05/2024

Some DNN Verification Tools

37

https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/dlshriver/dnnv


Major Companies using α,β-CROWN and DNNV

•Google: Utilizes α,β-CROWN, and DNNV for verifying 
the robustness of their neural networks against 
adversarial attacks.

•  IBM: Employs α,β-CROWN, and DNNV in their 
research and development to ensure the security and 
reliability of AI models.

•Microsoft: Uses α,β-CROWN, and DNNV for formal 
verification of neural networks in various AI 
applications
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SAT Solvers
•SAT (Boolean Satisfiability) solvers work with 
propositional logic to determine whether there exists 
an assignment of truth values to variables that make a 
given Boolean formula true. 

• https://en.wikipedia.org/wiki/SAT_solver
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SMT Solvers
•SMT (Satisfiability Modulo Theories) solvers extend 
SAT solvers by working with first-order logic and 
incorporating various theories such as arithmetic, bit-
vectors, arrays, etc. 

• https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
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Overview
• Background
• What is Software Engineering (SE) for Artificial 

Intelligence (AI)?
• What are the applications of SE in AI?

• White-Box Testing of DNNs
• Black-Box Testing of DNNs
• Formal Verification of DNNs
• How can we evaluate or write tests for LLMs
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What are the applications of 
SE for AI?
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White Box Testing of DNNs



A White-Box Testing for Deep Neural Networks 
Based on Neuron Coverage
• This paper introduces Test4Deep, an effective white-

box testing DNN approach based on neuron coverage.
•  It uses a differential testing framework to automatically 

verify inconsistent DNNs’ behavior. 
• Its contributions highlight Test4Deep's effectiveness in 

enhancing the reliability and robustness of deep neural 
networks through improved testing methodologies.

• h?ps://web.eecs.umich.edu/~movaghar/WB TEsFng TNNLS 2023 .pdf
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There are still many open subjects for testing DNNs based
on neuron coverage, such as lacking analyses for unequivocal
connections between various detected error behaviors of DNNs
and different neuron coverage criteria and universalities of dif-
ferent neuron coverage criteria which were designed according
to DNNs structures or applicable datasets. Moreover, once
coverage criteria are determined, various strategies to improve
the coverage are proposed. They are tightly related to DNNs’
application scenario and too much setting of hyperparameters
and parameter thresholds will increase complexities and scal-
abilities of test methods. We also need to balance, that is,
reducing manual intervention of thresholds and hyperparame-
ters involved in testing methods and retaining their abilities to
find test cases that invalidate DUTs.

III. METHODOLOGY

A. Definitions

1) Test Case: Given a DUT, a test case is τ = (x, label),
where x is a single vector [24], label is a valid assertion
about one property of x by human beings. For example, for
LeNet-1 [25], a test case is a grayscale image drawing a
handwritten number “8” and its label is Arabic number 8.
In the testing of this work, we take x as a test input and use
label to verify the corresponding test oracle of the DUT [7].

2) Test Oracle: In this work, differential testing [7], [26] is
used to build test oracle. By surveying similar DNNs or the
same one DNN which produced different outcomes concerning
identical inputs, Test4Deep prefers to generate those test cases
which cause inconsistent behaviors among DUTs, for example,
there is a group of digital images of handwritten number “8”
and true labels of these images are all Arabic number 8.
We take these images as input to the DUT and all outputs
are Arabic number 8 except one output is Arabic number 0.
We believe the inconsistent behavior is an error in the DUT.

3) Neuron Coverage: In the scenario of a DNN testing,
given a DUT with neurons N = {n1, n2, . . .} and a set of test
cases T = {τ1, τ2, . . .}, for a test case τ ∈ T , if the output
nvalue(n, τ ) of a neuron n (n ∈ N) exceeds the predefined
threshold t , which is customized according to testing, we call
the neuron n as an activated neuron. Then the neuron coverage
is defined as the ratio of the quantity of activated neurons for
a given input and all neurons

NC = |{n|∃τ ∈ T, nvalue(n, τ ) > t}|
|N | . (1)

Test4Deep adopts the neuron coverage as a testing metric
since the more neurons are covered, the more diversity of
test cases, which would trigger more incorrect behaviors of
DUTs [8].

4) Test Criterion-Based Neuron Coverage: Given a DUT,
the set of test objectives Q according to the covering
method-based neuron coverage CovNC, the algorithm for test
cases set T generation such that

∀r ∈ Q∃(τ1, τ2, . . . , τk) ∈ T : CovNC(r, (τ1, τ2, . . . , τk)) (2)

where CovNC(r, (τ1, τ2, . . . , τk)) means that the test case set
(τ1, τ2, . . . , τk) satisfies the test objective r .

Fig. 1. Framework and workflow of Test4Deep.

The test criterion-based neuron coverage is the degree to
which test objectives are satisfied by the generated test case
set in T with respect to CovNC such that

|∀r ∈ Q∃(τ1, τ2, . . . , τk) ∈ T : CovNC(r, (τ1, τ2, . . . , τk))|
|Q| .

(3)

In the testing scenario of DUTs, test objectives are “hitting”
all the inconsistent behaviors of DUTs. These inconsistent
behaviors often contain logical errors and incorrect behaviors
DUTs. Therefore, the testing problem transforms to explore as
many test cases as possible, which are able to trigger erroneous
behaviors of the DUT. Furthermore, testing based on neuron
coverage converts to finding as many test cases activating more
neurons as possible.

B. Framework Overview

Fig. 1 describes the integral workflow of the Test4Deep
framework. Apparently, this architecture can be applied to
various DUTs that perform popular missions.

Specifically, the input vector xorig is selected from a dataset,
which has been correctly labeled, for example, the training
or test dataset of the DUT. We call a xorig as a seed, such
as an image with a label of ground truth. The generation
algorithm induces disturbances and plugs into xorig to obtain x
by the neuron selection strategy and decision function. Then,
x triggers higher neuron coverage than the seed and such
disturbances are imperceptible making no visual differentiation
from x and xorig. If the DUT gives different judgments about
seed and x, for example, allocated different labels, we believe
that an error results in the inconsistent behavior of the DUT
and we output x. If the DUT makes an identical judgment of
both seed and x, the algorithm will take x as an intermediate
outcome to execute iteratively until finding new inconsistent
behavior of the DUT or reaching the termination condition.
Owing to superimposed subtle perturbations on seed and
constraints for output, x is without manual labeling, that is,
x receives label of seed straightly, thus forming a test case τ ,
which will be added to the maintained test case set T .

C. Algorithm

The generation algorithm of Test4Deep is described as
Algorithm 1. Based on the strategy of neuron selection and
decision of DUT inconsistency, the algorithm transforms
generation test inputs into the joint optimization problem
of obtaining the maximum neuron coverage and maximum
quantity of DUT misjudgments.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I

SPECIFIC DESCRIPTIONS OF EXPERIMENTAL DATASETS AND DUTS [8]

practical selections of the hyperparameter’s specific values in
the following experiments (see Section IV-G).

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

Test4Deep was compiled in TensorFlow 2.6.4 [31]and
Keras [32]. Our computer configurations were four cores (Intel
i7-6700 3.40-GHz processor), 32-GB memory and NVIDIA
TITAN X(Pascal) GPU. The OS was Ubuntu 16.04.

1) Baselines: We took DLFuzz and DeepXplore as base-
lines based on the following opinions: First, like Test4Deep,
both of them were white-box test methods based on neuron
coverage and followed the original definition of neuron cover-
age. Second, all three test methods adopted frameworks based
on differential decisions of DNNs. DeepXplore was based on
differential decisions between multi-DNNs, that is, for one
generated test data, if the prediction of the DUT was inconsis-
tent with original judgments of other DNNs in its framework,
DeepXplore output the test case. DLFuzz and Test4Deep were
based on different decisions of a single DNN. Finally, both
DLFuzz and DeepXplore reported excellent neuron coverage
and efficiency.

We applied the same two image datasets of DLFuzz and
DeepXplore and one PDF document dataset of DeepXplore
along with corresponding nine DUTs. These DUTs were all
pre-trained for image recognition and malicious files recog-
nition. Table I and the following brief introductions illustrate
the basis of these datasets and DUTs.

We took recommended setting by DLFuzz, that is, hyper-
parameters k = 4, m = 10, λ = 1, iter_time = 3 (ImageNet)
or 5 (MNIST), and Strategy.1 (the value is 0). We took
recommended setting by DeepXplore, that is, hyperparameters
λ1 = 1, λ2 = 0.1, and s = 10 for image datasets and
hyperparameters λ1 = 2, λ2 = 0.1, and s = 0.1 for the PDF
dataset. Default settings of Test4Deep are λ1 = 0.5, λ2 = 0.1,
and s = 0.005 for image datasets and hyperparameters λ1 =
0.5, λ2 = 0.5, and s = 0.1 for the PDF dataset and specified
value will be reported. Neuron activation threshold t = 0.25.
Seed inputs came from 200 random selections in each dataset,
and in the same way for each test method. Because of the
same experimental settings of DLFuzz and DeepXplore, such
as the same datasets of each specific experiment, in this
work, we also follow the same experimental settings of two
baselines.

MNIST [33]: The dataset is consisting of 60 000 training
and 10 000 testing handwritten grayscale numerical images.

The DUTs selected in the experiment are LeNet-1 [25],
LeNet-4 [25], and LeNet-5 [25].

ImageNet [34]: The dataset is consisting of 10 million RGB
images with classifications of various common things. The
chosen pre-trained DUTs are VGG-16 [27], VGG-19 [27], and
ResNet50 [28].

Contagio/VirusTotal [35], [36]: The dataset collected both
benign and malicious PDF documents from Contagio [35],
VirusTotal [36], and Google (web crawling). These PDF
documents had been described by 135 static features [37]. The
training set was from Contagio (5000 benign and 12 205 mali-
cious) and the tests are from VirusTotal (5000 malicious) and
Google (5000 benign). We normalized values of six attributes
such as count_image_large, count_image_med, image_totalpx,
and so on. The experimental DUTs had been constructed in
two, three, and four layers with 200 neurons in each layer,
respectively.

2) Research Questions: We implemented experiments to
investigate the efficiency of our approach and demonstrated
that for challenges of white-box testing based on neuron cov-
erage, which proposed in Section I, Test4Deep was one of the
feasible solutions. Research questions include the following
aspects.

1) Effectiveness of Test4Deep, that is, whether test cases
generated by Test4Deep can achieve higher coverage
(see Section IV-B).

2) Efficiency of Test4Deep, that is, whether Test4Deep can
generate test cases more quickly (see Section IV-C).

3) Whether test cases generated by Test4Deep need manual
labeling (see Section IV-D).

4) Whether Test4Deep can help to enhance DUTs (see
Section IV-E).

B. Effectiveness of Test4Deep

1) Higher Neuron Coverage: Table II reports that on nine
DUTs, the average neuron coverage achieved by Test4Deep are
11.53%, 56.85%, and 31.40% higher than DLFuzz in MNIST,
ImageNet, and Contagio/Virustotal, respectively, while are
16.13%, 60.15%, and 31.98% higher than DeepXplore.

Furthermore, we produced test cases by DLFuzz
(neurons selected m = 8, hyperparameter λ = 0.1)
adopting reported optimal neuron selection strategies for
LeNet-41 and ResNet501 separately [10], that is, combination
of Strategy.2 and Strategy.3 for LeNet-4 and Strategy.2 for

1Same DUTs used by DLFuzz for comparison.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 18,2024 at 17:28:48 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE II

RESULTS OF EFFECTIVENESS AND EFFICIENCY GENERATED BY TEST4DEEP (T4D.), DLFUZZ (DF.),
AND DEEPXPLORE (DX.) IN NINE DUTS OF THREE DATASETS

TABLE III

COMPARISONS OF QUANTITY, NEURON COVERAGE, AND GENERATION
TIME OF EACH TEST CASE ACHIEVED BY TEST4DEEP (T4D.), DEEP-

XPLORE (DX.), AND DLFUZZ (DF.) WHICH USED TWO OPTIMAL
NEURON SELECTION STRATEGIES IN LENET-4 AND RESNET50

ResNet50. Meanwhile, we generated test cases by Test4Deep
and DeepXplore on the same DUTs. According to the setting
of DLFuzz, the neuron activation threshold was t = 0.75 for
all three testing methods in this experiment. For LeNet-4,
DLFuzz picked neurons by combination strategies, that is,
neurons are rarely activated and with top weights. Intuitively,
neurons with top weights have a stronger influence on
DUTs’ decision-making. But for each test case, the numbers
of triggered neurons with top weights are relatively less.
Due to the high activation threshold t , most neurons in
DUTs are activated with difficulties, leading to the effects
of Strategy.3 for NC are not significant. Thus, combined
strategies almost overlapped with the Test4Deep selection
strategy. Results from Table III also demonstrate that average
NC achieved and quantities of test cases generated by
DLFuzz are close to these by Test4Deep on both DUTs. But
Test4Deep still be improved neuron coverage by 4.34% and
23.23% than two strategies. Driven by neuron coverage, the
optimal strategy still tended to pick inactivated or uncovered
neurons. However, DeepXplore selected one inactivated
neuron randomly in each iteration and NC was slightly better
than random selection method as shown in Fig. 2. From the
above discussion, we believe that Test4Deep has the ability
to acquire test data with higher neuron coverage.

2) Higher Quantity of Test Case Generation: Columns 6, 7,
and 8 in Table II show the quantities of test cases generated by
three testing methods on nine DUTs. Derived from Table II,
compared with DLFuzz, average quantities of test cases
generated by Test4Deep had increased by 34.67%, 25.73%,

and 76.80%. Meanwhile, compared with DeepXplore, average
quantities had increased by 59.94%, 54.63%, and 62.07%.

Obviously, it is not sufficient to strive merely for the
quantity of producing test cases. On the basis of neuron
coverage, we believe that the test cases that activate the same
neurons of DUTs repeatedly should be considered equivalent.
We further inspected the relationship between the quantity
and neuron coverage on LeNet-4,1 ResNet50,1 and PDF_D3
using three test approaches, respectively. Here, four neuron
selection strategies proposed by DLFuzz were regarded as
separate methods. We recorded the NC for each test case.
As depicted in Fig. 3, in LeNet-4, NC reached a stable
value at the 92nd output of Test4Deep, while at the 84nd
of DeepXplore, and for DLFuzz four strategies, stabilization
come out at corresponding 54nd, 60nd, 62nd, and 63nd
outputs. In ResNet50 and PDF_D3, Test4Deep achieved high
NC (greater than 95%) at the 68nd output and grew slowly,
while after the 60nd output, DLFuzz with four strategies and
DeepXplore reached 74% NC and sustained few increments.
Owing to fewer neurons of LeNet-4, that is, only 0.28% of
ResNet50 and 33.42% of PDF_D3, NC reached relatively
stable values within 200 seeds. When we used 2000 seeds
on LeNet-4 by Test4Deep and DeepXplore, NC could reach
96.29% and 78.80%. This indicates that their NCs are still
growing, with seeds increasing even though being agonizingly
slow. In view of the above analyses, we consider that the
test cases generated by Test4Deep satisfy the requirement of
sustaining more activation neurons.

3) Impact by Activation Thresholds for Neuron Coverage:
We depicted variations of neuron coverage of four testing
methods with stepping activation threshold t on all experimen-
tal datasets in Fig. 2. For comparison, we added the random
selection method that was the most common test method.
When t = 0, the NC of three test methods based on neuron
coverage achieved more than 95%, and the random selection
method was significantly below this level. According to the
definition of neuron coverage (1), for each DUT, the number
of activated neurons decreased with an increase of threshold
t . However, we observed that the NC of Test4Deep did not
decline dramatically. Even when t = 0.75, the lowest NC
of Test4Deep was still greater than 55%, while that of the
other three methods were all less than 50% (on MNIST). The
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TABLE II

RESULTS OF EFFECTIVENESS AND EFFICIENCY GENERATED BY TEST4DEEP (T4D.), DLFUZZ (DF.),
AND DEEPXPLORE (DX.) IN NINE DUTS OF THREE DATASETS

TABLE III

COMPARISONS OF QUANTITY, NEURON COVERAGE, AND GENERATION
TIME OF EACH TEST CASE ACHIEVED BY TEST4DEEP (T4D.), DEEP-

XPLORE (DX.), AND DLFUZZ (DF.) WHICH USED TWO OPTIMAL
NEURON SELECTION STRATEGIES IN LENET-4 AND RESNET50
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all three testing methods in this experiment. For LeNet-4,
DLFuzz picked neurons by combination strategies, that is,
neurons are rarely activated and with top weights. Intuitively,
neurons with top weights have a stronger influence on
DUTs’ decision-making. But for each test case, the numbers
of triggered neurons with top weights are relatively less.
Due to the high activation threshold t , most neurons in
DUTs are activated with difficulties, leading to the effects
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NC achieved and quantities of test cases generated by
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than random selection method as shown in Fig. 2. From the
above discussion, we believe that Test4Deep has the ability
to acquire test data with higher neuron coverage.

2) Higher Quantity of Test Case Generation: Columns 6, 7,
and 8 in Table II show the quantities of test cases generated by
three testing methods on nine DUTs. Derived from Table II,
compared with DLFuzz, average quantities of test cases
generated by Test4Deep had increased by 34.67%, 25.73%,

and 76.80%. Meanwhile, compared with DeepXplore, average
quantities had increased by 59.94%, 54.63%, and 62.07%.

Obviously, it is not sufficient to strive merely for the
quantity of producing test cases. On the basis of neuron
coverage, we believe that the test cases that activate the same
neurons of DUTs repeatedly should be considered equivalent.
We further inspected the relationship between the quantity
and neuron coverage on LeNet-4,1 ResNet50,1 and PDF_D3
using three test approaches, respectively. Here, four neuron
selection strategies proposed by DLFuzz were regarded as
separate methods. We recorded the NC for each test case.
As depicted in Fig. 3, in LeNet-4, NC reached a stable
value at the 92nd output of Test4Deep, while at the 84nd
of DeepXplore, and for DLFuzz four strategies, stabilization
come out at corresponding 54nd, 60nd, 62nd, and 63nd
outputs. In ResNet50 and PDF_D3, Test4Deep achieved high
NC (greater than 95%) at the 68nd output and grew slowly,
while after the 60nd output, DLFuzz with four strategies and
DeepXplore reached 74% NC and sustained few increments.
Owing to fewer neurons of LeNet-4, that is, only 0.28% of
ResNet50 and 33.42% of PDF_D3, NC reached relatively
stable values within 200 seeds. When we used 2000 seeds
on LeNet-4 by Test4Deep and DeepXplore, NC could reach
96.29% and 78.80%. This indicates that their NCs are still
growing, with seeds increasing even though being agonizingly
slow. In view of the above analyses, we consider that the
test cases generated by Test4Deep satisfy the requirement of
sustaining more activation neurons.

3) Impact by Activation Thresholds for Neuron Coverage:
We depicted variations of neuron coverage of four testing
methods with stepping activation threshold t on all experimen-
tal datasets in Fig. 2. For comparison, we added the random
selection method that was the most common test method.
When t = 0, the NC of three test methods based on neuron
coverage achieved more than 95%, and the random selection
method was significantly below this level. According to the
definition of neuron coverage (1), for each DUT, the number
of activated neurons decreased with an increase of threshold
t . However, we observed that the NC of Test4Deep did not
decline dramatically. Even when t = 0.75, the lowest NC
of Test4Deep was still greater than 55%, while that of the
other three methods were all less than 50% (on MNIST). The
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What is the percentage improvement of average Neural Coverage (Ave.NC%) of 
Teast4Deep (T4D) to DLFUZZ (DF) in the two DDNs under Testing (DUTs) above?



Answer
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Test4Deep (T4D)  improved neuron coverage to 
DLFuzz (DF) in the two DUTs by 4.34% and 23.23%, 
respectively.
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Fig. 2. Neuron coverage suppressed with growth of neuron activation threshold t . Neuron coverage by Test4Deep had the least decrease.

Fig. 3. Relationship between neuron coverage and the number of test cases which generated by Test4Deep, DeepXplore, and DLFuzz. DLFuzz with different
neuron selection strategies were regarded as separate methods. Higher neuron coverage with the same number of seeds was better.

steady decline of NC indicated that Test4Deep, DLFuzz, and
DeepXplore induced the activation of neurons strategically.
Apparently, the guideline of Test4Deep was more effective to
trigger a large number of activated neurons to generate test
cases as much as possible while the random selection method
was relatively blind and unguided.

C. Efficiency of Test4Deep

1) Higher Efficiency on Time and Neuron Coverage: We
calculated the average time of each test case generation by
three test methods on all DUTs, as shown in columns 9,
10, and 11 of Table II. For each test case generation,
Test4Deep consumed 58.32%, 51.80%, and 80.40% less time
than DLFuzz in MNIST, ImageNet, and Contagio/Virustotal,
respectively, while 60.53%, 51.48%, and 60.12% less than
DeepXplore.

Furthermore, as shown in the last column of Table III, time
consumption of each test case generation by DLFuzz with

two optimal neuron selection strategies [10] in LeNet-4 and
ResNet50 were 18.12 and 6.98 times that of Test4Deep while
that were 2.53 and 6.50 times that of DeepXplore.

DLFuzz with optimal neuron selection strategies won higher
neuron coverage and time efficiency (compared with Deep-
Xplore) in the early period of test case generation. In the
process of continuous generation, DLFuzz has to maintain
the list of neurons that fit for selection strategy constantly
and the fuzzing process of DLFuzz must traverse various
combinations of selected neurons in each iteration. Thus,
the time efficiency of DLFuzz decreased with inputting a
large number of seeds. As analyses in Section IV-B show,
in the later stage of generation, Strategy.3 will lose efficacy in
combined strategies and neuron selection strategies of DLFuzz
overlapped with Test4Deep. Nevertheless, Test4Deep does not
have the overhead of preservation list of neurons. DeepXplore
selects one inactive neuron randomly in each iteration. The
weak point of this strategy is needing a large number of
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trigger a large number of activated neurons to generate test
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was relatively blind and unguided.
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calculated the average time of each test case generation by
three test methods on all DUTs, as shown in columns 9,
10, and 11 of Table II. For each test case generation,
Test4Deep consumed 58.32%, 51.80%, and 80.40% less time
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respectively, while 60.53%, 51.48%, and 60.12% less than
DeepXplore.

Furthermore, as shown in the last column of Table III, time
consumption of each test case generation by DLFuzz with

two optimal neuron selection strategies [10] in LeNet-4 and
ResNet50 were 18.12 and 6.98 times that of Test4Deep while
that were 2.53 and 6.50 times that of DeepXplore.

DLFuzz with optimal neuron selection strategies won higher
neuron coverage and time efficiency (compared with Deep-
Xplore) in the early period of test case generation. In the
process of continuous generation, DLFuzz has to maintain
the list of neurons that fit for selection strategy constantly
and the fuzzing process of DLFuzz must traverse various
combinations of selected neurons in each iteration. Thus,
the time efficiency of DLFuzz decreased with inputting a
large number of seeds. As analyses in Section IV-B show,
in the later stage of generation, Strategy.3 will lose efficacy in
combined strategies and neuron selection strategies of DLFuzz
overlapped with Test4Deep. Nevertheless, Test4Deep does not
have the overhead of preservation list of neurons. DeepXplore
selects one inactive neuron randomly in each iteration. The
weak point of this strategy is needing a large number of
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Neuron Coverage Improvement
•Test4Deep enhances neuron coverage by 
tracking and activating inactive neurons 
during testing.

•This approach ensures a more 
comprehensive examination of the neural 
network's internal logic.
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Differential Testing Framework
•The paper introduces a differential testing 
framework that automatically verifies 
inconsistent behaviors in DNNs.

•This framework helps identify discrepancies 
between the original input and generated test 
data.
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Efficiency and Effectiveness

•Compared to other state-of-the-art methods like 
DLFuzz and DeepXplore, Test4Deep achieves 
higher neuron coverage (by 32.87% and 35.69% 
respectively) while reducing testing time (by 58.37% 
and 53.24% respectively).

• It also generates more test cases with fewer 
perturbations.

12/05/2024 EECS 481  F24 - SE for AI 54



Improving DNN Robustness

•By merging generated test cases and 
retraining the DNNs, Test4Deep can improve 
the accuracy and robustness of the networks.

12/05/2024 EECS 481  F24 - SE for AI 55



12/05/2024 EECS 481  F24 - SE for AI 56
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Black-Box Testing of Deep Neural Networks 
through Test Case Diversity
• This paper investigates diversity metrics as an alternative 

to white-box coverage criteria. Such metrics are required to 
be black-box and not rely on the execution and outputs of 
DNNs under test. 

• It is shown that relying on the diversity of image features 
embedded in test input sets is a more reliable indicator than 
coverage criteria to effectively guide DNN testing.

• https://web.eecs.umich.edu/~movaghar/BBT DNN TSE 2023 - 1.pdf
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Diversity Metrics

•The paper proposes the use of black-box diversity 
metrics to guide the testing of DNN models.

•These metrics help identify diverse test cases that can 
reveal different types of faults in the network.
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What are faults?
• In this paper, faults refer to erroneous behaviors exhibited by 

deep neural networks (DNNs) that can lead to critical errors, 
especially in safety-critical systems.

• These faults can manifest as incorrect predictions or 
misclassifications when the DNN is presented with certain 
inputs. 

• The paper investigates the use of black-box input diversity 
metrics to guide the testing of DNNs, aiming to detect these 
faults more effectively.
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Geometric Diversity
•Geometric diversity is shown to be particularly 
effective in guiding the testing process.

•This metric helps identify similar mispredicted inputs 
caused by the same issues in the DNN model.
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Coverage versus Faults
• The study finds that there is no direct correlation 

between traditional coverage metrics and the presence 
of faults in DNN models.

• Instead, diversity metrics provide a more reliable 
indicator for effective testing.
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Main Result
•The paper demonstrates that relying on the diversity of 
image features embedded in test input sets is a more 
reliable method than coverage criteria for effectively 
guiding the testing of DNNs.
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Feature-Guided Black-Box Safety Testing of 
Deep Neural Networks

• The paper focuses on image classifiers and proposes a 
feature-guided black-box approach to test the safety of deep 
neural networks that require no such knowledge.

• It uses object detection techniques such as SIFT (Scale 
Invariant Feature Transform) to extract features from an image. 

• These features are converted into a mutable saliency 
distribution, where high probability is assigned to pixels that 
affect the composition of the image concerning the human 
visual system.

https://web.eecs.umich.edu/~movaghar/Black-Box Testing DNN 2018.pdf
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Feature-Guided Approach

•The paper introduces a novel feature-guided approach 
for black-box safety testing of deep neural networks.

•This method leverages object detection techniques like 
SIFT (Scale Invariant Feature Transform) to extract 
features from images.
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Adversarial Example Generation

•The authors formulate the crafting of adversarial 
examples as a two-player turn-based stochastic game.

•This game-theoretic approach helps in identifying 
minimal adversarial examples that can fool the neural 
network.
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Safety Guarantees

•For Lipschitz networks, the paper identifies conditions 
that provide safety guarantees, ensuring that no 
adversarial examples exist under certain conditions.
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Monte Carlo Tree Search
• The paper employs Monte Carlo tree search to explore the 

game state space gradually, searching for adversarial examples.
• This method is shown to be competitive with state-of-the-art 

white-box methods.
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Application to Safety-Critical Systems
• The proposed method is demonstrated in safety-critical 

applications, such as traffic sign recognition in self-driving cars, 
highlighting its practical relevance and effectiveness.

• These contributions underscore the importance of robust and 
effective testing methodologies for ensuring the safety and 
reliability of deep neural networks.
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Deep Statistical Model Checking

• This paper presents several significant contributions to the 
field of neural network verification, particularly in the 
context of Markov Decision Processes (MDPs).

• Its contributions highlight the effectiveness of Deep 
Statistical Model Checking (DSMC) in providing a robust 
framework for the verification of neural networks within the 
context of MDPs.

https://web.eecs.umich.edu/~movaghar/Deep Statistical Model Checking 2020.pdf
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Integration of Neural Networks and MDPs

•The paper introduces a method where a neural network 
(NN) is used to represent a policy that takes action 
decisions within an MDP.

•This integration results in a Markov chain, which can be 
analyzed using statistical model checking.
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Scalable Verification Method
•The proposed method, termed Deep Statistical Model 
Checking (DSMC), is a scalable approach that extends 
traditional statistical model checking.

• It allows for the verification of systems incorporating 
neural networks by treating the NN as a determiner of 
the MDP.
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Insight into NN Behavior

•DSMC provides deep insights into various 
aspects of neural network behavior, such as the 
safety risks induced by the NN, the 
performance of the NN compared to the optimal 
policy, and the impact of further training on the 
NN.
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Light-Weight Verification

•The methodology described is a lightweight 
approach to checking the behavior of systems 
that incorporate neural networks, making it 
practical for real-world applications.
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Book: Introduction to Neural Networks Verification
• This book provides a comprehensive overview of the methods 

and principles for verifying neural networks. 
• It covers foundational concepts from formal verification and 

their adaptation to neural networks and deep learning.
• These contributions aim to provide formal guarantees on the 

safety, security, correctness, and robustness of neural 
networks, which are crucial for their deployment in real-world 
applications.

https://web.eecs.umich.edu/~movaghar/nnv_book-2021.pdf
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Constraint-based techniques for DNN verification

• It discusses various techniques for constraint-based 
verification, including logic and satisfiability, encodings of 
neural networks, and neural theory solvers.

• These techniques involve formulating the verification problem 
as a set of constraints that the neural network must satisfy.

• These techniques are crucial for ensuring the reliability and 
safety of neural networks, especially in applications where 
correctness is critical.
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Constraint Solving

•This involves encoding the neural network's behavior 
and the properties to be verified as mathematical 
constraints.  

•These constraints are then solved using various 
techniques such as Satisfiability Modulo Theories 
(SMT) solvers.
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Linear and Non-linear Constraints

• For linear regions of the network, constraints can be precisely 
encoded. 

• However, non-linear behaviors, such as those introduced by 
activation functions like ReLU, require more complex 
handling.

• Techniques like piecewise linear approximation are often used 
to manage these non-linearities.
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Abstraction Techniques

• Abstraction is used to simplify the verification problem by 
creating a more manageable representation of the neural 
network.

• This can involve over-approximating the network's behavior to 
ensure that all possible behaviors are considered, which can 
help in proving the properties of the network.
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Combining Techniques

•Modern approaches often combine constraint solving 
with other techniques like abstraction and neuron 
splitting.

•Neuron splitting involves breaking down the verification 
problem into smaller subproblems, which can be 
solved more efficiently.
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Scalability

• One of the main challenges addressed is the scalability of these 
techniques. 

• As neural networks grow in size and complexity, the verification 
process becomes more computationally intensive.

• The book discusses various methods to improve the scalability 
of constraint-based verification.
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Abstraction-based techniques for DNN 
verification
• The book explores abstraction techniques such as neural 

interval abstraction, zonotope abstraction, and polyhedron 
abstraction.

• Abstraction-based techniques for Deep Neural Network (DNN) 
verification are crucial for managing the complexity of verifying 
large and intricate networks.

• It also covers verification with abstract interpretation and 
abstract training of neural networks.
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Over-approximation
• This technique involves creating a simplified version of the 

neural network that over-approximates its behavior. 
• The idea is to ensure that if a property holds for the abstract 

(simplified) network, it will also hold for the original network.
• This makes the verification process more manageable.
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Abstract Interpretation
• This method uses mathematical abstractions to represent 

sets of possible states of the neural network.
• By analyzing these abstract states, it is possible to infer 

properties about the network without having to examine 
every possible state explicitly.
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Zonotope and Polyhedron Abstractions

• These are specific types of abstractions used to 
represent the possible values of neurons in the 
network.

• Zonotopes are geometric shapes that can efficiently 
represent linear transformations, while polyhedra can 
represent more complex relationships between neuron 
values. 
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Refinement

• When an over-approximation is too coarse and leads to 
spurious counterexamples (false positives), refinement 
techniques are used to make the abstraction more 
precise.

• This iterative process continues until the abstraction is 
accurate enough to verify the desired properties.
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Scalability
• One of the main advantages of abstraction-based techniques 

is their scalability.
• By reducing the complexity of the verification problem, these 

techniques make it feasible to verify larger and more 
complex neural networks.
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Toward Verified Artificial Intelligence
•This paper discusses the goal of creating AI systems 
with strong, ideally provable, assurances of 
correctness based on mathematically specified 
requirements.

•The paper primarily focuses on the theoretical and 
methodological aspects of achieving Verified AI. 

• It does not mention detailed case studies but discusses 
the challenges and principles needed to ensure that AI 
systems are verifiable and reliable.

h?ps://web.eecs.umich.edu/~movaghar/Toward Verified ArFficial Intelligence 2022.pdf
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3. The property to be verified, .
The verifier generates a “yes/no” an-

swer as output, indicating whether S 
satisfies the property  in environment 
E. Typically, a “no” output is accompa-
nied by a counterexample, also called an 
error trace, which is an execution of the 
system that indicates how  is falsified. 
Some verification tools also include a 
proof or certificate of correctness with 
a “yes” answer. We take a broad view 
of formal methods to include any tech-
nique that uses some aspect of formal 
specification, verification, or synthesis. 
For instance, we include simulation-
based hardware verification methods 
or model-based testing methods for 
software since they use formal specifica-
tions or models to guide the process of 
simulation or testing.

To apply formal verification to AI 
systems, one must be able to represent, 
at a minimum, the three inputs S, E, 
and  in formalisms for which (ideally) 
there exist efficient decision proce-

dures to answer the “yes/no” question 
described previously. However, as will 
be shown, even constructing good rep-
resentations of the three inputs is not 
straightforward, let alone dealing with 
the complexity of underlying design 
and verification problems.

We will illustrate the ideas in this 
article with examples from the domain 
of semiautonomous driving. Figure 2 
shows an illustrative example of an AI 
system: a closed-loop CPS comprising 
a semiautonomous vehicle, with ML 
components, along with its environ-
ment. Specifically, assume the semi-
autonomous “ego” vehicle has an au-
tomated emergency braking system 
(AEBS) that attempts to detect and 
classify objects in front of it and actu-
ate the brakes when needed to avert 
a collision. Figure 2 shows the AEBS 
as a system composed of a controller 
(automatic braking), a plant (vehicle 
sub-system under control, including 
other parts of the autonomy stack), 

mal methods has traditionally been 
applied, identify the unique challeng-
es arising in AI systems, and present 
ideas and recent advances towards 
overcoming these challenges.

This article seeks to address more 
than just specific types of AI compo-
nents, such as deep neural networks 
(DNNs), or specific methods, such 
as reinforcement learning (RL). It at-
tempts to cover the broad range of AI 
systems and their design processes. 
Additionally, recognizing that formal 
methods provide but one approach 
to trustworthy AI, our perspective is 
meant to complement those from oth-
er areas. Our views are largely shaped 
by problems arising from the use of AI 
in autonomous and semiautonomous 
systems, where safety and correctness 
concerns are more acute, though we 
believe the ideas presented here apply 
more broadly. This article is written 
for formal methods researchers and 
practitioners as well as for the broader 
computer science community. For the 
former, we present our viewpoint on 
where the real problems lie and how 
formal methods can have the greatest 
impact. For the latter, we sketch out 
our vision of how formal methods can 
be a key enabler for trustworthy AI.

We begin with a brief background of 
formal verification, an illustrative ex-
ample, and a summary of the article’s 
key ideas. We then outline five chal-
lenges to verified AI, discussing recent 
progress and presenting principles to 
address them.a

Overview
Figure 1 shows the typical processes for 
formal verification, formal synthesis, 
and formally guided runtime resilience. 
Consider the formal verification pro-
cess, which begins with three inputs:

1. A model of the system to be veri-
fied, S.

2. A model of the environment, E.

a The first version of this article was published 
on arXiv in July 2016 in response to a call for 
white papers for the 2016 CMU Exploratory 
Workshop on Safety and Control for AI. Two 
revisions have been completed since. This 
latest version reflects the evolution of the au-
thors’ perspective on verified AI. Since 2016, 
literature on the topic has grown substantially; 
however, per Communications guidelines we 
are limited to 40 references, so a comprehen-
sive survey of the topic is out of scope.

Figure 1. Formal methods for verification, synthesis, and runtime resilience.
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Figure 2. Example of a closed-loop cyber-physical system with machine-learning components 
(introduced in Dreossi et al.5).
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Formal Modeling of Environment, Specification, 
and Learning Systems
• Formal modeling of the environment in which AI operates is 

usually a challenge.

• Defining precise and unambiguous specifications for AI 
behavior is not usually easy.

Modeling Learning Systems makes it difficult for the overall 
system to be formally verified.
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Scalability and Design Correctness
• Developing scalable computational tools that can handle the 

complexity of AI systems is not usually practical.

• Designing correct AI systems from the outset is usually too 
difficult to be realized.
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Applications: Safety-Critical Systems and 
Financial Systems

• Verified AI can be applied to systems where safety is paramount, 
such as autonomous vehicles, medical devices, and aerospace 
systems. Ensuring these systems operate correctly under all 
conditions is crucial.

• In financial technology, Verified AI can help create algorithms 
that are robust against errors and fraud, ensuring the integrity 
and reliability of financial transactions and trading systems.
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Applications: Robotics, Cybersecurity, and Legal 
Systems

• Verified AI can be used in robotics to ensure that robots perform 
tasks accurately and safely, especially in environments where 
they interact closely with humans.

• AI systems designed to detect and respond to cyber threats can 
benefit from verification to ensure they correctly identify and 
mitigate threats without false positives or negatives.

• Verified AI can help ensure that AI systems comply with legal and 
regulatory requirements, reducing the risk of non-compliance 
and associated penalties.
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How can we evaluate or write tests for LLMs



Large Language Models (LLMs)
• Large Language Models (LLMs) have transformed AI with 

their ability to process and generate human-like responses. 
• These models can now tackle complex problems, but how do 

we know if they deliver reliable, actionable insights? 
• The key lies in precise evaluation. Like any machine learning 

model, one should rigorously test LLMs to ensure accuracy, 
trustworthiness, and relevance.
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Widespread Use of Benchmarks
• Standardized benchmarks like GLUE, SuperGLUE, and 

others are extensively used to evaluate LLMs. 
• These benchmarks provide a common ground for 

comparing different models and are a staple in the 
research community.

• https://composio.dev/blog/llm-evaluation-guide/
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Automated Tes,ng Tools
• There are numerous automated tools and frameworks 

designed to streamline the evaluation process. 
• These tools help in efficiently assessing various 

aspects of LLM performance, such as accuracy, 
fluency, and bias.

• https://www.lakera.ai/blog/large-language-model-evaluation
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Human Evaluation

• Despite advances in automated testing, human evaluation 
remains crucial. 

• Human judges assess the quality of the model's outputs 
based on criteria like coherence, relevance, and fluency, 
which are difficult to measure automatically.
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Ethical and Bias Testing
• Evaluating LLMs for ethical considerations, such as 

bias and fairness, is a growing area of focus.
•  Researchers are developing specific tests to identify 

and mitigate biases in LLM outputs.
• The field of LLM evaluation is continuously evolving, 

with ongoing research aimed at improving the 
robustness, fairness, and efficiency of evaluations.
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