
12/03/2024 EECS 481 F24 - AI for SE 1

Artificial Intelligence
for Software
Engineering (AI for SE)

12/03/2024 EECS 481 F24 - AI for SE 2

One-Slide Summary

12/03/2024 EECS 481 F24 - AI for SE 3

• Foundations of Data Science: The theoretical basis of today's artificial
intelligence systems and applications is built upon the foundations of data
science, encompassing key concepts from statistics, operations research,
machine learning, and computer science.

• AI for SE: Artificial Intelligence significantly enhances software engineering by
automating and improving various aspects of the development process and
maintaining code quality, making it a versatile tool for modern software
development.

• LLMs: Large Language Models (LLMs) are currently the most successful AI
techniques in software engineering due to their ability to understand and
generate human-like text, which bridges the gap between natural language
and programming languages.

12/03/2024 EECS 481 F24 - AI for SE 4

Learning Objectives: by the end of today’s
lecture, you should be able to…
1. (Knowledge) describe the primary activities in software engineering

using AI

2. (Value) understand why the applications of AI in software
engineering are important

3. (Skill) Review some recent papers

Overview
• Background
• What is Artificial Intelligence (AI) for Software Engineering

(SE)?
• What are the applications of AI in SE?

• Can LLMs help us do program verification?
• Can LLMs help us write unit tests?
• Can LLMs help us do mutation testing?
• Can LLMs help us do vulnerability analysis?
• Can LLMs help us fix bugs and write new code?
• Can LLMs help us do test generation?

12/03/2024 EECS 481 F24 - AI for SE

5

Background

12/03/2024 EECS 481 F24 - AI for SE 6

A Brief History of AI
• Artificial Intelligence (AI) has a rich history that dates back to the mid-

20th century. The field was officially founded in 1956 during the
Dartmouth Conference, where the term "artificial intelligence" was
coined by John McCarthy.

• Early AI research focused on symbolic methods and problem-solving.
However, progress was slow due to limited computing power and data.

• The 1980s saw a surge in AI interest, known as the first AI summer,
driven by expert systems. This was followed by an AI winter in the late
1980s and early 1990s, a period of reduced funding and interest due to
unmet expectations.

12/03/2024 EECS 481 F24 - AI for SE 7

AI Summer from 2010-2017

• The resurgence of AI began in the 2000s with the
advent of machine learning and the availability of big
data.

• The development of deep learning techniques in the
2010s, particularly neural networks, marked another AI
summer, leading to significant breakthroughs in image
and speech recognition.

12/03/2024 EECS 481 F24 - AI for SE 8

Statistical Models to Neural Networks

• The 2000s saw the rise of statistical models trained on large
datasets, leveraging the increasing availability of internet data.

• In 2009, most NLP tasks used statistical language models as
they could usefully ingest large datasets.

• Neural networks began to dominate NLP tasks around 2012,
using dense vector representations of words.

12/03/2024 EECS 481 F24 - AI for SE 9

What is Deep Learning?
• The concept of deep learning typically involves the use of deep

neural networks.
• Deep learning is a subset of machine learning that uses neural

networks with multiple layers (hence "deep") to model complex
patterns in data.

• These deep neural networks are designed to simulate the way
the human brain processes information, allowing them to perform
tasks such as image and speech recognition, natural language
processing, and more.

• https://www.ibm.com/topics/deep-learning
• https://builtin.com/machine-learning/deep-learning

12/05/2024 EECS 481 F24 - SE for AI 10

https://www.ibm.com/topics/deep-learning
https://builtin.com/machine-learning/deep-learning

Deep Neural Networks (DNNs)

• Deep neural networks (DNNs) are a type of artificial
neural network with multiple layers between the input
and output layers.

• These layers allow the network to learn and model
complex patterns and relationships within data.

• Each layer extracts increasingly abstract features from
the input, enabling the network to perform tasks such
as image and speech recognition, natural language
processing, and more accurately.

12/05/2024 EECS 481 F24 - SE for AI 11

AI Spring or AI Golden Age: Since 2017
• Many experts consider the period starting around 2017 as the

beginning of a new "AI spring" or "golden age" of AI.
• This era is characterized by rapid advancements in deep

learning, significant improvements in computational power, and
the widespread availability of big data.

• These factors have led to breakthroughs in various AI
applications, such as natural language processing, computer
vision, and autonomous systems.

• https://knowledge.wharton.upenn.edu/article/ai-entering-golden-age/

12/03/2024 EECS 481 F24 - AI for SE 12

https://knowledge.wharton.upenn.edu/article/ai-entering-golden-age/

Why DNNs are so dominant in today's AI
applications?

• DNNs have become dominant in today's AI systems due to their
superior performance and versatility.

• They can handle large datasets and complex models, making
them suitable for various applications.

• Advances in computational power, such as GPUs, and algorithm
improvements have enhanced their efficiency and effectiveness.

• This combination of factors has made DNNs a cornerstone of
modern AI, driving significant advancements across various
industries.

12/05/2024 EECS 481 F24 - SE for AI 13

The Nobel Prize in Physics 2024

12/03/2024 EECS 481 F24 - AI for SE 14

The Nobel Prize in Physics 2024

Summary

Ill. Niklas Elmehed © Nobel Prize
Outreach

John J. Hop�ield
Prize share: 1/2

Ill. Niklas Elmehed © Nobel Prize
Outreach

Geoffrey Hinton
Prize share: 1/2

The Nobel Prize in Physics 2024 was awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for foundational discoveries and inventions that
enable machine learning with artificial neural networks"

To cite this section
MLA style: The Nobel Prize in Physics 2024. NobelPrize.org. Nobel Prize Outreach AB 2024. Fri. 22 Nov 2024.
<https://www.nobelprize.org/prizes/physics/2024/summary/>

By clicking “accept all cookies”, you agree to the storing of cookies on your
device to enhance site navigation, analyze site usage, and assist in our
marketing efforts. Our cookie policy.

Cookies settings

Accept all cookies

11/22/24, 10:48 AM The Nobel Prize in Physics 2024 - NobelPrize.org

https://www.nobelprize.org/prizes/physics/2024/summary/ 1/2

The Nobel Prize in Physics 2024 was
awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for
foundational discoveries and
inventions that enable machine
learning with artificial neural
networks"

The Transformer Era (2017- Present)
• The introduction of the transformer model using deep neural

network (DNN) architecture in 2017 revolutionized the NLP field.
• At the 2017 NeurIPS conference, Google researchers introduced

the transformer architecture in their landmark paper "Attention Is
All You Need,” which could handle long-range dependencies
more efficiently than RNNs and LSTMs.

• https://web.eecs.umich.edu/~movaghar/Attention All You Need 2017.pdf

12/03/2024 EECS 481 F24 - AI for SE 15

https://web.eecs.umich.edu/~movaghar/Attention%20All%20You%20Need%202017.pdf

Pre-trained Transformers
• Transformers led to the development of powerful LLMs like

BERT (2018), which focuses on understanding context, and
GPT-3 (2020), which excels at generating coherent and
contextually relevant text.

• These models, like GPT (Generative Pre-trained Transformer),
have significantly advanced the field of natural language
processing (NLP) and AI.

12/03/2024 EECS 481 F24 - AI for SE 16

The Current State of AI
• Artificial intelligence’s influence on society has never been
more pronounced.

• Since ChatGPT became a ubiquitous feature on computer
desktops in late 2022, the rapid development and
deployment of generative AI and large language model
(LLM) tools have started to transform industries and show
the potential to touch many aspects of modern life.

https://www.weforum.org/stories/2024/04/stanford-university-ai-index-report/

12/03/2024 EECS 481 F24 - AI for SE 17

https://www.weforum.org/stories/2024/04/stanford-university-ai-index-report/

Large Language Models (LLMs)
• Large Language Models(LLMs) use deep learning techniques,

particularly transformer architectures, to process and generate
text. Some well-known examples include OpenAI's GPT series
(GPT-3, GPT-3.5, GPT-4), Google's BERT, and Meta's
LLaMA.

• These models have hundreds of billions of parameters and
tokens, allowing them to capture intricate patterns in language
and generate coherent, contextually relevant responses.

h6ps://en.wikipedia.org/wiki/Large_language_model

12/03/2024 EECS 481 F24 - AI for SE 18

https://en.wikipedia.org/wiki/Large_language_model

Recent Advances and Applications
• LLMs have continued to evolve, with models like OpenAI's

Codex (based on GPT-3) fine-tuned for specific tasks such as
code generation.

• These models are now used in various applications, from
chatbots and virtual assistants to automated content creation
and programming assistance.

• LLMs have come a long way from their early days, and they
continue to push the boundaries of what AI can achieve in
understanding and generating human language.

12/03/2024 EECS 481 F24 - AI for SE 19

Book: Foundations of Data Science
• This book thoroughly introduces the fundamental concepts of
data science, including probability, statistical inference, linear
regression, and machine learning.
• It strongly emphasizes the mathematical and algorithmic
foundations of data science, making it particularly valuable for
readers who want a deep understanding of the theoretical aspects.

• https://web.eecs.umich.edu/~movaghar/book Machine Learning 2018.pdf

12/03/2024 EECS 481 F24 - AI for SE 20

https://web.eecs.umich.edu/~movaghar/book%20Machine%20Learning%202018.pdf

Excerpt from the Book

“ …we have written this book to cover the theory we expect
to be useful in the next 40 years, just as an understanding of
automata theory, algorithms, and related topics gave
students an advantage in the last 40 years. One of the major
changes is an increase in emphasis on probability, statistics,
and numerical methods…”

12/03/2024 EECS 481 F24 - AI for SE 21

Interdisciplinary Nature of Data Science

• The book integrates concepts from statistics, operations research,
and computer science, reflecting the interdisciplinary nature of data
science.
• It delves into the complexities of high-dimensional data, which is
crucial for understanding modern data analysis.
• It covers practical techniques such as singular value
decomposition (SVD), random walks, and Markov chains, which
are essential for real-world data science applications.

12/03/2024 EECS 481 F24 - AI for SE 22

Theoretical Foundations of Machine
Learning, Integration, and Ethics

• The book discusses various machine learning algorithms and
their theoretical foundations, helping readers understand the
principles behind these powerful tools.

• It emphasizes the importance of collaboration between data
scientists and domain experts, ensuring that assumptions are
balanced with computational efficiency.

• The book also touches on the ethical use of data science,
which is increasingly important in today's data-driven world.

12/03/2024 EECS 481 F24 - AI for SE 23

Overview
• Background
• What is Artificial Intelligence (AI) for Software Engineering

(SE)?
• What are the applications of AI in SE?

• Can LLMs help us do program verification?
• Can LLMs help us write unit tests?
• Can LLMs help us do mutation testing?
• Can LLMs help us do vulnerability analysis?
• Can LLMs help us fix bugs and write new code?
• Can LLMs help us do test generation?

12/03/2024 EECS 481 F24 - AI for SE

24

12/03/2024 EECS 481 F24 - AI for SE 25

What is Artificial Intelligence (AI)
for Software Engineering (SE)?

AI for SE

• Artificial Intelligence for Software Engineering (AI for SE)
involves using artificial intelligence and machine learning
techniques to enhance and automate various software
development and maintenance aspects.

• AI for SE aims to make software development more efficient,
reliable, and scalable by leveraging the power of AI.

12/03/2024 EECS 481 F24 - AI for SE

26

Automating Software Development
• AI has made tremendous progress in automating numerous jobs

typically undertaken by software programmers.
• AI-powered systems, for example, may produce code that fulfills

a set of requirements. This method is known as automated
programming, and it is becoming more popular.

12/03/2024 EECS 481 F24 - AI for SE 27

Improving Software Testing

• AI is altering the way software is tested.
• Algorithms based on artificial intelligence may be used to

automate testing, discover and diagnose mistakes, and
optimize testing situations.

• This strategy can greatly enhance software quality while
lowering testing time and expense.

12/03/2024 EECS 481 F24 - AI for SE 28

Improving Software Upkeep

• AI may also aid with software maintenance.
• AI systems can analyze massive volumes of software-

related data and make recommendations for upgrades
and enhancements using machine learning.

• This method can assist software developers in keeping
software systems up to date and improving their overall
quality.

12/03/2024 EECS 481 F24 - AI for SE 29

Intelligent System Enabling
• AI is also allowing for the creation of intelligent software

systems.
• These systems are capable of learning from data and

adapting to changing conditions.
• AI-powered chatbots, for example, may learn from prior

discussions and improve their replies over time.
• Similarly, recommendation systems can improve their

recommendations by learning from user behavior.

12/03/2024 EECS 481 F24 - AI for SE 30

Increasing Software Security

• AI can also help to improve software security.
• For example, AI algorithms may discover security flaws

in software systems and offer fixes.
• They can also recognize possible risks and take

preventative steps.

12/03/2024 EECS 481 F24 - AI for SE 31

Addressing the Talent Shortage

• Finally, AI can assist in overcoming the software
engineering skills problem.

• AI-powered tools and systems may help software
developers be more productive, efficient, and effective.

• This can assist organizations in meeting their software
development objectives while using fewer resources.

12/03/2024 EECS 481 F24 - AI for SE 32

Code Generation and Debugging
• AI can assist in writing code, reducing the time and

effort required by developers.
• AI can identify bugs in the code and even suggest

or implement fixes.

12/03/2024 EECS 481 F24 - AI for SE 33

Predictive Analytics and Automated Testing

• AI can predict potential issues in software projects,
such as delays or resources.
• AI can create and run tests to ensure software quality
and reliability.

12/03/2024 EECS 481 F24 - AI for SE 34

LLMs for SE

• Many AI applications in software engineering (SE)
leverage Large Language Models (LLMs).

• These models have shown significant promise in
various aspects of software development.

12/03/2024 EECS 481 F24 - AI for SE 35

Code Completion and Code Generation

• Tools like GitHub Copilot use LLMs to provide intelligent code
suggestions and auto-completion, enhancing developer
productivity.

• LLMs can generate code snippets or even entire functions
based on natural language descriptions, making it easier to
implement features quickly.

12/03/2024 EECS 481 F24 - AI for SE 36

Testing, Debugging and Code Refactoring

• LLMs assist in identifying and fixing bugs by analyzing
code and suggesting potential fixes.

• They help improve the structure of existing code without
changing its functionality, making the codebase cleaner
and more maintainable.

• LLMs can generate test cases based on the code,
ensuring better coverage and reliability.

12/03/2024 EECS 481 F24 - AI for SE 37

Overview
• Background
• What is Artificial Intelligence (AI) for Software Engineering

(SE)?
• What are the applications of AI in SE?

• Can LLMs help us do program verification?
• Can LLMs help us write unit tests?
• Can LLMs help us do mutation testing?
• Can LLMs help us do vulnerability analysis?
• Can LLMs help us fix bugs and write new code?
• Can LLMs help us do test generation?

12/03/2024 EECS 481 F24 - AI for SE

38

12/03/2024 EECS 481 F24 - AI for SE 39

What are the applications of
AI in SE?

Unleashing the Potential of OpenAI's
Codex in Software Engineering

• OpenAI's Codex is extensively used in various applications
within software engineering (SE).

• Codex, which powers tools like GitHub Copilot, has become a
valuable asset for developers by automating repetitive coding
tasks, generating code snippets, and even assisting with code
completion and debugging.

• https://www.toolify.ai/ai-news/unleashing-the-potential-of-openais-codex-in-software-engineering-2674967

• https://openai.com/index/openai-codex/

12/03/2024 EECS 481 F24 - AI for SE 40

https://www.toolify.ai/ai-news/unleashing-the-potential-of-openais-codex-in-software-engineering-2674967
https://openai.com/index/openai-codex/

Codex
• Codex is an advanced AI model developed by Open AI that

translates natural language into code. It is a descendant of
OpenAI's GPT-3 model, fine-tuned specifically for programming
tasks.

• Based on GPT-3, a neural network trained on text, Codex was
additionally trained on 159 gigabytes of Python code from 54
million GitHub repositories.

• Open AI claims that Codex can create code in over a dozen
programming languages, including Go, JavaScript, Perle, PHP,
Ruby, Shell, Swift, and TypeScript, though it is most effective in
Python.

12/03/2024 EECS 481 F24 - AI for SE 41

Codex Highlights
• OpenAI's Codex combines natural language understanding with

code generation, revolutionizing software development.
• Codex excels at generating code snippets, automating repetitive

coding tasks, and assisting beginners in learning programming.
• It has limitations in reasoning abstractly, handling novel or niche

concepts, and generating code that meets complex requirements.
• Software engineers can use Codex as a tool to augment their work,

ensuring human intervention to produce reliable code.
• The future possibilities of Codex include automated bug detection,

code refactoring, and intelligent code completion.

12/03/2024 EECS 481 F24 - AI for SE 42

12/03/2024 EECS 481 F24 - AI for SE 43

Can LLMs help us do program verification?

Result 1: LLM Capabilities in Loop Invariant
Synthesis

•The authors observe that Large Language Models
(LLMs) like GPT-3.5 and GPT-4 can synthesize
loop invariants for a class of programs in a zero-
shot setting.

•However, they require multiple samples to
generate the correct invariants.

https://web.eecs.umich.edu/~movaghar/Sarah Fakhoury 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 44

https://web.eecs.umich.edu/~movaghar/Sarah%20Fakhoury%202024.pdf

Leveraging LLMs

• The approach leverages an LLM for generation and ranks using
a purely neural model and does not require a program verifier at
the inference time.

• This approach involves designing a ranker that can distinguish
between correct and incorrect invariants based on problem
definition.

• The ranker is optimized as a contrastive ranker, which helps in
prioritizing the most promising invariants for verification.

12/03/2024 EECS 481 F24 - AI for SE 45

Ranking Mechanism

•The paper introduces a ranking mechanism to
evaluate and prioritize the generated loop
invariants.

•This helps in reducing the number of calls to a
program verifier, making the process more
efficient.

12/03/2024 EECS 481 F24 - AI for SE 46

Empirical Evaluation

• The authors conduct an empirical evaluation to
demonstrate the effectiveness of their approach.

• They show that their ranking mechanism significantly
improves the performance of LLMs in generating
correct loop invariant.

• These contributions aim to enhance the usability and
efficiency of LLMs in program verification tasks,
particularly in the context of loop invariant synthesis.

12/03/2024 EECS 481 F24 - AI for SE 47

Result 2: LEMUR: INTEGRATING LARGE LANGUAGE
MODELS IN AUTOMATED PROGRAM VERIFICATION

• The paper introduces a novel framework that integrates LLMs with
automated reasoners for program verification.

• This framework leverages LLMs' high-level reasoning capabilities and
automated reasoners' precise low-level reasoning.

• The authors present LEMUR as a proof system and provide formal
proof of its soundness.

• This is the first formalization of such a hybrid approach, demonstrating
that the integration of LLMs and automated reasoners can be both
sound and effective.

• https://web.eecs.umich.edu/~movaghar/LEMUR 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 48

https://web.eecs.umich.edu/~movaghar/LEMUR%202024.pdf

Sound and Terminating Algorithm

•The paper describes an instantiation of the
LEMUR calculus that results in a sound and
terminating algorithm.

•This ensures that the verification process is
reliable and can be completed within a finite
amount of time.

12/03/2024 EECS 481 F24 - AI for SE 49

Implementation and Optimizations,
Evaluation and Results
• The authors implement the proposed framework and introduce

several practical optimizations to enhance its performance.
• These optimizations make the framework more efficient and

applicable to real-world verification tasks.
• The paper includes an evaluation of the framework,

demonstrating its effectiveness in various program verification
scenarios.

• The results show that the integration of LLMs and automated
reasoners can significantly improve the verification process.

12/03/2024 EECS 481 F24 - AI for SE 50

12/03/2024 EECS 481 F24 - AI for SE 51

Can LLMs help us write unit tests?

Result 3: Unit Test Generation

• LLMs can generate unit tests by analyzing the code and
creating test cases that cover various scenarios.

• The generated tests can achieve higher code coverage and
better quality by using LLMs.

• These models can identify edge cases and generate tests that
human developers might overlook

• https://web.eecs.umich.edu/~movaghar/Multi-language Unit Testing LLM 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 52

https://web.eecs.umich.edu/~movaghar/Multi-language%20Unit%20Testing%20LLM%202024.pdf

Result 4: Natural Language Processing

•LLMs can understand and generate human-like
text, making the tests readable and maintainable.

• This helps in creating tests that are closer to
what a developer might write.

• https://web.eecs.umich.edu/~movaghar/Unit Test Generation LLM 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 53

https://web.eecs.umich.edu/~movaghar/Unit%20Test%20Generation%20LLM%202024.pdf

Result 5: Empirical Study of Unit Test Generation
with LLMs
This study investigates the effectiveness of using LLMs for
generating unit tests compared to traditional tools like EvoSuite.
It evaluates various open-source LLMs and their performance
in generating unit tests for Java projects.
The findings highlight the potential of LLMs in this domain while
also identifying areas for improvement.
https://web.eecs.umich.edu/~movaghar/EVosuite-LLM-2024-1.pdf

12/03/2024 EECS 481 F24 - AI for SE 54

https://web.eecs.umich.edu/~movaghar/EVosuite-LLM-2024-1.pdf

Result 6: Large-scale Study on LLMs for Test Case
Generation

• This comprehensive study assesses the capabilities of
several LLMs, including GPT and Mistral, for generating unit
tests.

• The research compares the correctness, understandability,
coverage, and bug-detection capabilities of LLM-generated
tests against those produced by EvoSuite.

• The results indicate that while LLMs show promise, there are
still challenges to be addressed to match the effectiveness of
traditional methods.

• https://web.eecs.umich.edu/~movaghar/Evosuite-LLM-2024-2.pdf

12/03/2024 EECS 481 F24 - AI for SE 55

https://web.eecs.umich.edu/~movaghar/Evosuite-LLM-2024-2.pdf

Result 7: Meta’s TestGen-LLM

• Meta's TestGen-LLM tackles the time-consuming task of unit
test writing by leveraging the power of Large Language
Models (LLMs).

• General-purpose LLMs like Gemini or ChatGPT might struggle
with the specific domain of unit test code, testing syntax, and
generating tests that don't add value.

• TestGen-LLM is specifically tailored for unit testing.
https://www.freecodecamp.org/news/automated-unit-testing-with-testgen-llm-and-cover-agent/

12/03/2024 EECS 481 F24 - AI for SE 56

https://www.freecodecamp.org/news/automated-unit-testing-with-testgen-llm-and-cover-agent/

12/03/2024 EECS 481 F24 - AI for SE 57

Can LLMs help us do mutation testing?

Result 8: An Exploratory Study on Using Large
Language Models for Mutation Testing

• This paper investigates the performance of LLMs in generating
effective mutations, focusing on their usability, fault detection
potential, and relationship with real bugs.

• https://web.eecs.umich.edu/~movaghar/Mutation-Testing-LLMS-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 58

https://web.eecs.umich.edu/~movaghar/Mutation-Testing-LLMS-2024.pdf

Result 9: Mutation-based Consistency Testing for Evaluating
the Code Understanding Capability of LLMs

• This study introduces a method to assess the code
understanding performance of LLMs by applying code
mutations to existing code generation datasets.

• https://web.eecs.umich.edu/~movaghar/Mutattion-Testing-Code-Understanding-LLMs-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 59

https://web.eecs.umich.edu/~movaghar/Mutattion-Testing-Code-Understanding-LLMs-2024.pdf

Result 10: A Mutation Testing Framework of In-
Context Learning Systems

• This paper proposes a mutation testing framework
specifically designed for in-context learning systems,
leveraging LLMs to evaluate the quality and effectiveness
of test data.

• https://web.eecs.umich.edu/~movaghar/Mutation-Testing-Framework-LLMs-2024 .pdf

12/03/2024 EECS 481 F24 - AI for SE 60

https://web.eecs.umich.edu/~movaghar/Mutation-Testing-Framework-LLMs-2024%20.pdf

Result 11: On the Use of Large Language Models for
Mutation Testing
• The authors conducted a large-scale empirical study involving

six large language models (LLMs) and 851 real bugs from two
Java benchmarks (Defects4J 2.0 and ConDefects) to evaluate
the effectiveness of LLMs in generating mutations.

• The study found that LLMs generate more diverse mutations
that are behaviorally closer to real bugs, leading to
approximately 19% higher fault detection compared to existing
approaches.

• https://web.eecs.umich.edu/~movaghar/Mutation Testing LLM 2025.pdf

12/03/2024 EECS 481 F24 - AI for SE 61

https://web.eecs.umich.edu/~movaghar/Mutation%20Testing%20LLM%202025.pdf

Challenges and Prompt Engineering
• Despite their effectiveness, the mutants generated by LLMs

had lower compilability rates and higher useless and equivalent
mutation rates compared to rule-based approaches

• The paper also explores alternative prompt engineering
strategies and identifies the root causes of uncompilable
mutations, providing insights for improving the performance of
LLMs in mutation testing.

12/03/2024 EECS 481 F24 - AI for SE 62

12/03/2024 EECS 481 F24 - AI for SE 63

On the Use of Large Language Models in Mutation Testing 1:5

Table 1. Real Bugs Used in Our Experiment

Dataset Project # of Bugs Time Span

Defects4J (D4J)

Math 106 2006/06/05 - 2013/08/31
Lang 65 2006/07/16 - 2013/07/07
Chart 26 2007/07/06 - 2010/02/09
Time 27 2010/10/27 - 2013/12/02
Closure 133 2009/11/12 - 2013/10/23
Mockito 38 2009/06/20 - 2015/05/20
Cli 39 2007/05/15 - 2018/02/26
Codec 18 2008/04/27 - 2017/03/26
Csv 16 2012/03/27 - 2018/05/18
Gson 18 2010/11/02 - 2017/09/21
JacksonCore 26 2013/08/28 - 2019/04/05
Jsoup 93 2011/07/02 - 2019/07/04

ConDefects (CD) — 246 2024/03/01 - 2024/06/30
Total — 851 2006/07/16 - 2024/06/30

• RQ4: How do di!erent prompts a!ect the performance in generating mutations?
• RQ5: What are the root causes and compilation error types for the generation of
non-compilable mutations?

3.2 Datasets
We intend to evaluate our approach with real bugs, and thus we need to use bug datasets with the
following properties:

• The datasets should comprise Java programs, as existing methods are primarily based on
Java, and we need to compare with them.

• The bugs of the datasets should be real-world bugs so that we can compare the di!erence
between mutations and real bugs.

• Every bug in datasets has the correctly "xed version provided by developers so that we can
mutate the "xed version and compare them with the corresponding real bugs.

• Every bug is accompanied by at least one bug-triggering test because we need to measure
whether the mutations a!ect the execution of bug-triggering tests.

To this end, we employ the Defects4J 2.0 [35] and ConDefects [78] to evaluate the mutation
generation approaches, shown as Table 1. In total, we conducted experiments on 851 bugs.
Defects4J 2.0 is a widely used benchmark in the "eld of mutation testing [15, 36, 38, 40, 54, 68],

which contains history bugs from open-source projects of diverse domains, ensuring a broad
representation of real-world bugs. We select the most widely used 12 projects from the Defects4J
2.0, which contains 605 bugs in total. However, from Table 2 and Table 1, we observe the time
spans of the Defects4J bugs are earlier than the LLMs’ training time, which may introduce data
leakage. Therefore, we supplement another dataset, ConDefects [78], designed to address the data
leakage concerns. ConDefects consists of tasks from AtCoder1 programming contest. To prevent
data leakage, we use data from the four most recent months following the release of the LLMs (i.e.,
from March 1, 2024, to June 30, 2024), during which we collected 246 Java bugs.

3.3 Mutation Generation via LLMs
Given the location of a Java program, we extract essential information (e.g., the context method
or the corresponding unit tests) to formulate prompts instructing mutation generation, then feed
prompts to the selected LLM. Once the LLM returns its responses, we "lter out mutations that are

1https://atcoder.jp

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

12/03/2024 EECS 481 F24 - AI for SE 64

1:6 Wang et al.

Table 2. Studied LLMs

Model Type Studied Model Base Model Training Data Time Release Time Size

Closed
GPT-3.5-Turbo GPT 2021/09 2023/03 —
GPT-4o GPT 2023/10 2024/05 —
GPT-4o-Mini GPT 2023/10 2024/07 —

Open
StarChat-𝐿-16b StarCoder — 2023/06 16B
CodeLlama-Instruct-13b Llama — 2023/08 13B
DeepSeek-Coder-V2-236b DeepSeek 2023/09 2024/07 236B

non-compilable, redundant, or identical to the original code, and return the generated mutations. As
shown in Section 3.4, our study supports a comprehensive set of metrics for evaluating mutations.

3.3.1 Studied Models. We aim to comprehensively compare the existing LLMs in their ability to
generate mutations from various perspectives. This includes evaluating the capabilities of models
that are !ne-tuned on di"erent base models and contrasting the performance of commercial
closed-source models with open-source alternatives. In our study, we select a representative set
of LLMs with code capabilities. Following recent studies on evaluating the code capabilities of
LLMs [25, 76, 84], we adopt the closed-source LLMs from GPT family, includingGPT-3.5-Turbo [2],
GPT-4o [2], and GPT-4o-Mini [2]. Moreover, we employ the popular open-sourced LLMs that
are used by recent studies [46, 51, 79, 83], including DeepSeek-Coder-V2-236b [89], StarChat-𝐿-
16b [42], and CodeLlama-Instruct-13b [62]. The details of these models are shown as Table 2.
Note that OpenAI has not o#cially released the parameter size of their closed-source models. The
parameter size of the open-sourced models we studied ranges from 13 billion to 236 billion.

3.3.2 Prompts. Prompts are crucial for LLMs because they guide the models’ responses and
determine the direction of the generated output. A well-crafted prompt can signi!cantly in$uence
the utility, relevance, and accuracy of the code produced by an LLM. This subsection introduces
how we design the prompts.

Figure 1 shows the default prompt template in our study. To design e"ective prompts for mutation
generation, we follow the best practices suggesting prompts should comprise four aspects, namely,
Instruction, Context, Input Data, and Output Indicator [25, 46]. In the Instructions, we direct the LLMs
to generate mutants for the target code element. In the Context, we clearly state that mutant is the
concept of mutation testing, and additionally provide various sources of information to observe
the impact on the performance of LLMs, including the whole Java method surrounding the target
code element and few-shot examples sampled from real-world bugs from another benchmark. In
the Input Data, we specify the code element to be mutated and the number of mutants to generate.
In the Output Indicator, we specify the JSON !le format for mutation outputs, facilitating further
experiments.

In addition, our prompts need few-shot examples, which should originate from real bugs enabling
LLMs to learn how to mutate code from real bugs. This allows the model to understand the context
and logic behind the changes, improving its ability to generate relevant and e"ective mutations.

To avoid the few-shot examples leaking information, beyond Defects4J and ConDefects, we em-
ploy another benchmark QuixBugs [44], which comprises 40 real-world Java bugs and is commonly
used by the testing and debugging community [33, 43, 80, 90]. Referring to the study by Deng et
al. [19], LLMs perform best in generating valid code when using around six few-shot examples.
Therefore, we sample six bugs from QuixBugs for few-shot learning in our default prompt. To
guarantee the diversity of the examples, we randomly select one bug from the dataset and assess
whether its modi!cation pattern is similar to the examples already collected. If it is di"erent, we
add it to our collection and continue, until we have collected all six examples, shown as Table 3.

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

h6ps://blog.spheron.network/choosing-the-right-llm-2024-comparison-of-open-source-vs-closed-source-llms

https://blog.spheron.network/choosing-the-right-llm-2024-comparison-of-open-source-vs-closed-source-llms

12/03/2024 EECS 481 F24 - AI for SE 65

On the Use of Large Language Models in Mutation Testing 1:7

Table 3. Default Few-Shot Examples from!ixBugs

Correct Version Buggy Version
n = (n & (n - 1)); n = (n ˆ (n - 1));

while (!queue.isEmpty()) while (true)

return depth==0; return true;

ArrayList r = new ArrayList();

r.add(first).addll(subset);

to_add(r);

to_add.addAll(subset);

c = bin_op.apply(b,a); c = bin_op.apply(a,b);

while(Math.abs(x-approx*approx)>epsilon) while(Math.abs(x-approx)>epsilon)

Fig. 1. The Default Prompt Template

3.4 Evaluation Metrics
To assess the utility of the LLM-generated mutations, we should de!ne a set of metrics that
comprehensively evaluate them. Therefore, we designed several categories of metrics capturing
di"erent aspects as follows: Cost Metric, Usability Metrics, and Behavior Metrics. Besides these
metrics, we also additionally report the Mutation Count and Mutation Score. Note that both of them
cannot directly re#ect the quality of generated mutations. For example, a higher mutation score
does not indicate a higher quality, which may also be caused by generating a large proportion of
mutants that are easily killed.

To better understand the metrics, we !rst illustrate the categories of mutations. Let all generated
mutations be the set 𝐿, where LLMs may generate syntactically incorrect mutations that can
not pass compilation. Thus we denote the compilable mutations as the set 𝑀 . Note that the set 𝑀
contains two types of mutations that should be removed, the useless mutations (denoted as 𝑁)
and equivalent mutations (denoted as 𝑂). The useless mutations refer to those that are identical to
the original code or other mutations. In mutation testing, the ideal set of mutations to employ is
from the set (𝑀 → 𝑂 →𝑁), excluding equivalent mutations that have no contributions to discovering
the weakness of tests. However, determining the equivalent mutations set 𝑂 is undecidable, so
we follow the common practice and use the set (𝑀 →𝑁) as a practical approximation to perform
mutation testing [21, 68, 88].

3.4.1 Cost Metric. The Cost Metric indicates time costs in mutation generation.
Average Generation Time: the average duration needed to produce each mutation, measuring
the e$ciency of an approach.

3.4.2 Usability Metrics. The Usability Metrics serve as key indicators of the practical utility of
generated mutations.

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

12/03/2024 EECS 481 F24 - AI for SE 66

On the Use of Large Language Models in Mutation Testing 1:7

Table 3. Default Few-Shot Examples from!ixBugs

Correct Version Buggy Version
n = (n & (n - 1)); n = (n ˆ (n - 1));

while (!queue.isEmpty()) while (true)

return depth==0; return true;

ArrayList r = new ArrayList();

r.add(first).addll(subset);

to_add(r);

to_add.addAll(subset);

c = bin_op.apply(b,a); c = bin_op.apply(a,b);

while(Math.abs(x-approx*approx)>epsilon) while(Math.abs(x-approx)>epsilon)

'{WHOLE_JAVA_METHOD}'
Above is the original code. your task is to generate '{MUT_NUMBER}' mutants, (notice: mutant
refers to the mutant in software engineering, i.e., making subtle changes to the original code) in:
'{CODE_ELEMENT}’, as follows are some examples of mutants which you can refer to:
{…

"precode": "while (Math.abs(x-approx*approx) > epsilon) { "
"aftercode": " while (Math.abs(x-approx) > epsilon) {",

…}
#Requirement:

1. Provide generated mutants directly
2. A mutation can only occur on one line
3. Your output must be like:

[{ "id":, "line":, "precode":"", "filepath":"kk", "aftercode":"" }],
where "id" stands for the mutant serial number, "Line" represents the line number of the

mutated, "precode" represents the line of code before mutation and it can not be empty,
"aftercode" represents the line of code after mutation
4. Prohibit generating the exact same mutants
5. All write in a JSON file

Context
(Few-Shot
Examples)

Instructions
and Input

Data

Context
(Whole
Method)

Output
Indicator

Fig. 1. The Default Prompt Template

3.4 Evaluation Metrics
To assess the utility of the LLM-generated mutations, we should de!ne a set of metrics that
comprehensively evaluate them. Therefore, we designed several categories of metrics capturing
di"erent aspects as follows: Cost Metric, Usability Metrics, and Behavior Metrics. Besides these
metrics, we also additionally report the Mutation Count and Mutation Score. Note that both of them
cannot directly re#ect the quality of generated mutations. For example, a higher mutation score
does not indicate a higher quality, which may also be caused by generating a large proportion of
mutants that are easily killed.

To better understand the metrics, we !rst illustrate the categories of mutations. Let all generated
mutations be the set 𝐿, where LLMs may generate syntactically incorrect mutations that can
not pass compilation. Thus we denote the compilable mutations as the set 𝑀 . Note that the set 𝑀
contains two types of mutations that should be removed, the useless mutations (denoted as 𝑁)
and equivalent mutations (denoted as 𝑂). The useless mutations refer to those that are identical to
the original code or other mutations. In mutation testing, the ideal set of mutations to employ is
from the set (𝑀 → 𝑂 →𝑁), excluding equivalent mutations that have no contributions to discovering
the weakness of tests. However, determining the equivalent mutations set 𝑂 is undecidable, so
we follow the common practice and use the set (𝑀 →𝑁) as a practical approximation to perform
mutation testing [21, 68, 88].

3.4.1 Cost Metric. The Cost Metric indicates time costs in mutation generation.
Average Generation Time: the average duration needed to produce each mutation, measuring
the e$ciency of an approach.

3.4.2 Usability Metrics. The Usability Metrics serve as key indicators of the practical utility of
generated mutations.

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

12/03/2024 EECS 481 F24 - AI for SE 67

1:10 Wang et al.

Table 4. Overall Performance of All the Mutation Generation Techniques

Metric GPT-3.5 GPT-4o GPT-4o-M DC-236b SC-16b CL-13b LEAM 𝐿Bert PIT Major
Mut. Score 0.697 0.726 0.708 0.694 0.516 0.700 0.545 0.675 0.581 0.486
Mut. Count 538338 539715 588803 594711 463248 457195 890417 200896 2890433 346282
Avg. Gen. Time 1.79 1.76 1.65 4.25 7.53 9.06 3.06 2.33 0.02 0.08
Comp. Rate 60.2% 75.6% 73.6% 75.5% 11.1% 70.2% 35.0% 22.5% —— 98.6%
Useless Mut. Rate 10.9% 7.8% 6.7% 8.3% 8.9% 39.3% 1.0% 1.7% 0.0% 0.0%
Eq. Mut. Rate 2.2% 1.2% 1.7% 1.2% 1.8% 1.2% 1.3% 2.5% 0.0% 0.6%
Real Bug Detec. 91.7% 93.4% 93.4% 92.8% 47.1% 83.1% 71.7% 71.3% 51.3% 74.4%
Coupling Rate 41.4% 43.6% 44.1% 41.5% 29.4% 39.8% 28.7% 41.6% 14.0% 36.0%
Ochiai Coe!. 65.0% 68.5% 66.9% 61.8% 19.3% 40.8% 37.4% 31.6% 31.5% 44.4%

mutation score ranging from 0.516 to 0.726. Overall, traditional approaches (e.g., LEAM and PIT)
yield lower mutation scores among all the approaches.
In terms of time cost, the six LLMs cost 1.79s, 1.76s, 1.65s, 4.25s, 7.53s, and 9.06s to generate

mutations, respectively. In comparison, LEAM, 𝐿Bert, PIT, and Major take 3.06s, 2.23s, 0.02s, and
0.08s, respectively. The rule-based approaches, PIT and Major, are the fastest, while LLMs show a
competitive speed with small model-based approaches, LEAM and 𝐿Bert.

Finding 1 (RQ1): Rule-based approaches cost less time than LLMs in generating mutations.
For example, GPT LLMs take fewer than 1.8s per mutation. In contrast, PIT and Major only
require 0.02s and 0.08s, respectively, while small model-based approaches (i.e., LEAM and
𝐿Bert) take 2-3s.

4.1.2 Mutation Usability. The usability of mutations (i.e., whether the mutations can be used to
calculate mutation score) is a!ected by the capabilities of LLMs in correctly understanding the task
and generating compilable, non-duplicate, and non-equivalent mutations. The results are shown as
the Comp. Rate, Useless Mut. Rate, and Eq. Mut. Rate rows in Table 4. Since the mutation generation
process of the PIT model is not visible and it only outputs mutations that pass the tests, we excluded
it from the compilability rate calculation.
Compilability Rate: Four out of the six LLMs (i.e., GPT-4o, GPT-4o-Mini, DeepSeek, CodeLlama)
achieve over 70%, with one exceeding 60% (i.e., GPT-3.5). In contrast, the small model-based
approaches, LEAM and 𝐿Bert, have rates at 35.0% and 22.5%, respectively. Compared to small
models, LLMs like GPTs and DeepSeek show signi"cantly higher compilation success rates. For
example, the compilability rate of GPT-4o is over 40% higher than that of LEAM and 𝐿Bert. The
rule-based approach Major signi"cantly outperforms, with nearly 99% of its mutations successfully
compiling. Note that although Major operates under simple syntax rules, it can still generate non-
compilable mutants. For example, the Java compiler’s analyzer rejects constructs like while(true).
Useless Mutation Rate: We also observe that LLMs generate a signi"cant portion of duplicate
and useless mutations. For useless mutations, the percentage generated by LLMs ranges from a
minimum of 6.7% (GPT-4o-Mini) to a maximum of 39.3% (CodeLlama), and "ve out of the six LLMs
have a useless mutation rate below 11%. In contrast, all the traditional approaches rarely generate
duplicate mutations, which is likely due to them being governed by strict grammar rules that limit
the production of redundant mutations. For example, PIT and Major iteratively apply di!erent
mutation operators producing no redundant mutants.
Equivalent Mutation Rate: Equivalent mutations change the source code syntactically without
a!ecting the program’s functionality, thereby a!ecting the accuracy of mutation score calculations.
Due to the undecidable nature of identifying equivalent mutations [7], it is not feasible to design

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

1. How many LLMs have a Mutation Score of more than 70%?
2. How many LLMs have Real Bug Detection of more than 90%?
3. How many LLMs achieve a Compilability rate of more than 70%?
4. Which LLM excels w.r.t. Compilability Rate and Equivalent Mutation Rate?

Answers

1. 6
2. 4
3. 4
4. Major

12/03/2024 EECS 481 F24 - AI for SE 68

12/03/2024 EECS 481 F24 - AI for SE 69

On the Use of Large Language Models in Mutation Testing 1:17

Table 12. Performance Under the Same Number of Mutations

Metric GPT-3.5 GPT-4o GPT-4o-M DC-236b SC-16b CL-13b LEAM 𝐿Bert Major PIT
Comp. Rate 62.9% 77.4% 70.1% 73.0% 39.3% 74.2% 38.9% 18.5% 96.5% ——
Useless Mut. Rate 11.0% 7.3% 7.0% 8.9% 27.1% 39.0% 1.4% 1.4% 0.0% ——
Real Bug Det. 89.2% 90.8% 91.3% 89.7% 58.0% 73.5% 67.5% 55.0% 83.3% 43.7%
Coupling Rate 13.3% 14.6% 12.6% 13.4% 11.9% 10.5% 13.2% 13.2% 12.8% 2.4%
Ochiai Coe!cient 35.8% 45.0% 40.8% 35.3% 15.3% 17.8% 17.0% 15.0% 34.1% 19.2%

5.1.3 Performance of Using the Same Number of Mutations. In Section 4, we did not restrict the
number of mutations generated by each approach. To study the performance of each approach under
!xed quantity conditions, we followed the setting of existing study [27, 68] and limited the number
of mutations generated by all methods to the minimum produced by 𝐿Bert [15], which is 16,785.
For counts exceeding this number, we randomly selected the speci!ed number of mutations for
analysis. We conducted 10 rounds of random sampling comparisons, and the results are presented
in Table 12. Therefore, under !xed quantity conditions, the mutations generated by two GPT-4
LLMs are still the closest to real bugs in behavior.

5.2 Economic Costs
Closed-source LLMs (e.g., GPT LLMs) are typically billed based on the number of tokens used. As
these models continue to evolve, their pricing rates also change, and we here discuss the costs of the
proprietary models used in our experiments. For the three models involved, GPT-3.5 incurred a total
cost of $108, GPT-4o cost $1531, and GPT-4o-Mini cost $47. Therefore, for every 1,000 mutations,
GPT-3.5, GPT-4o, and GPT-4o-Mini cost about $0.16, $2.84, and $0.08, respectively. GPT-4o is
signi!cantly more expansive than the others. Given the e"ectiveness of mutations generated by
GPTs, the cost is feasible for large-scale applications.

5.3 Implications
Based on our !ndings, we discuss the pros and cons of using LLMs for generating mutations and
suggest potential improvements.

First, our study shows that existing LLMs have the potential to generate high-quality mutations
for mutation testing with acceptable costs. The greatest advantage of LLMs is their ability to
generate mutations that more closely mimic real bugs in behavior. For example, Listing 1 shows
two compilable mutations generated by GPT-3.5 in Chart-1, which are theoretically beyond the
capabilities of existing approaches. In Mutation-1, the LLM inferences there must exist leftBlock
because of the occurrence of rightBlock, and replaces the variable correspondingly. This mutation
is not killed by the bug-triggering test. Without natural language understanding capabilities
(i.e., understanding the correspondence between “right” and “left”), it is di#cult to create such
mutations. In Mutation-2, the LLM modi!es the else branch to else if, employing an integer
variable seriesCount from context to synthesize the condition, showing the capabilities of code
structural changing that existing methods cannot achieve. Also, this mutation is alive and can guide
test enhancement.
Second, our study explores how di"erent prompts, models, contexts, and few-shot examples

impact mutation generation performance. Our study highlights the importance of using proper
prompts and models with stronger coding capabilities. In particular, designing prompts requires
providing essential context information (such as the whole method), but including too much
information (such as the target unit test) may reduce e"ectiveness.
Third, although LLMs achieve promising results in mutation testing, our study indicates that

there is still signi!cant room for improvement. Speci!cally, current LLMs generate a substantial

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

12/03/2024 EECS 481 F24 - AI for SE 70

On the Use of Large Language Models in Mutation Testing 1:11

Table 5. Sample Results for Equivalent Mutations

Dataset Type GPT-3.5 GPT-4o GPT-4o-M DC-236b SC-16b CL-13b LEAM 𝐿Bert PIT Major

D4J
#All 537109 538509 587583 593481 462042 455634 888452 199347 2888641 345292
#Sampled 384 384 384 384 384 384 384 384 384 384
#Eq. Mut 9 3 5 4 8 5 6 8 0 2

CD
#All 1229 1206 1220 1230 1206 1561 1965 1549 1792 990
#Sampled 293 292 293 293 292 309 322 308 317 277
#Eq. Mut 6 5 7 4 4 3 3 9 0 2

an algorithm that can completely detect them. Therefore, we sample a subset of mutations for each
technique and manually assess whether they are equivalent. Following the common practice of
sampling [13, 45, 47, 71], to maintain a 95% con!dence level and a 5% margin of error, we sampled a
!xed number of mutations from each approach’s output, to calculate the Equivalent Mutation Rate.
Following the protocol of existing studies [25, 30], two authors, each with over !ve years of Java
programming experience, !rst received training on the equivalent mutants, and then independently
labeled the mutations. The !nal Cohen’s Kappa coe"cient score [73] is more than 90%, indicating
a high level of agreement. All labeling results are available in our package for reproducibility [1],
and Table 5 presents the sampling and labeling results.

As shown in the Eq. Mut. Rate row of Table 4, we again observe that the rule-based approaches,
PIT and Major, perform the best in generating non-equivalent mutants, with an equivalent mutation
rate of less than 1.0%. All six LLMs exhibit an equivalent mutation rate ranging from 1.2% to 2.2%,
similar to LEAM and 𝐿Bert. Overall, the equivalent mutation rates for all approaches studied are
relatively low and can be ignored during mutation testing. We further analyzed the mutations
generated by PIT and Major, and found that they apply speci!c mutation operators to a statement
(e.g., for a < b, only generating !(a < b), true, and false), signi!cantly reducing the equivalent
mutation rate.

Finding 2 (RQ1): Rule-based approaches, PIT and Major, outperform others in terms of
compilability rate, useless mutation rate, and equivalent mutation rate. In particular, GPT-4o
exhibits a compilability rate of 75.6%, a useless mutation rate of 7.8%, and an equivalent
mutation rate of 1.2%. In contrast, Major excels with a compilability rate of 98.3%, a useless
mutation rate of 0%, and an equivalent mutation rate of 0.6%.

LLM
Traditional Approach
Examples

Fig. 2. Number of newly introduced AST nodes of the
studied approaches and the few-shot examples.

4.1.3 AST Node Dirversity. To assess the diver-
sity of AST node types, we !rst determine if
a mutation involves deletion (i.e., removing a
code element). For the non-deletion mutations,
we parse the code before and after mutation by
the parser Javalang, to observe which new AST
node types are introduced. A larger number
of newly introduced AST node types indicates
richer diversity.
Figure 2 shows the number of introduced

types, which reveals that LLM-based mutation
approaches introduce more types of new AST nodes than other approaches. The best of LLMs,
GPT-4o-Mini and DeepSeek, exhibit the greatest diversity, introducing 57 new AST node types.
Among the traditional approaches, LEAM, 𝐿Bert, and Major introduce 31, 30, and 2 new types
of AST nodes, respectively. Additionally, all six LLMs signi!cantly are higher than traditional
approaches in AST node types. We also check the AST node diversity of the examples we provided

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.

12/03/2024 EECS 481 F24 - AI for SE 71

• Finding 1: Rule-based approaches cost less time than LLMs in
generating mutations. For example, GPT LLMs take fewer than
1.8s per mutation. In contrast, PIT and Major only require 0.02s
and 0.08s, respectively, while small model-based approaches
(i.e., LEAM and𝜇Bert) take 2-3s.

• Finding 2: Rule-based approaches, PIT and Major, outperform
others in terms of compilability rate, useless mutation rate, and
equivalent mutation rate. In particular, GPT-4o exhibits a
compilability rate of 75.6%, a useless mutation rate of 7.8%, and
an equivalent mutation rate of 1.2%. In contrast, Major excels
with a compilability rate of 98.3%, a useless mutation rate of
0%, and an equivalent mutation rate of 0.6%.

12/03/2024 EECS 481 F24 - AI for SE 72

• Finding 3: LLM-based mutation approaches introduce more types of new
AST nodes than traditional approaches, while less inclined to generation
deletion mutations.

• Finding 4: Five out of six LLMs significantly outperform traditional
approaches in Real Bug Detectability. In particular, on ConDefects, GPT-4o
outperforms nearly 29% over the best of the conventional approach, Major,
highlighting the advantages of LLMs in detecting real bugs.

• Finding 5: GPT-4 achieves the highest Coupling Rate at 44.1%,
outperforming all traditional approaches, including the best traditional
approach, 𝜇Bert, by 2.5%.

• Finding 6: Five LLMs surpass all traditional generation approaches in the
Ochiai Coefficient. In particular, the best LLM, GPT-4o, exceeds the best of
traditional approaches, Major, by 24.1%.

12/03/2024 EECS 481 F24 - AI for SE 73

• Finding 7: Two GPT-4 models perform best, while DeepSeek has a similar
performance to GPT -3.5, standing out among open-source models. The
newer models exhibit better performance in mutation generation.

• Finding 8: The prompt with the whole method and few-shot examples as
context (i.e., P1) achieves the best performance across all Behavior Metrics,
whereas adding the code of test suites (i.e., P4) decreases performance.

• Finding 9: The mutations generated by GPT models have nine main types of
compilation errors, with Usage of Unknown Methods and Code Structural
Destruction being the two most prevalent types.

• Finding 10: Member references and method invocations within the code
context are the most likely triggers for LLMs to generate non-compilable
mutations.

12/03/2024 EECS 481 F24 - AI for SE 74

Can LLMs help us do vulnerability analysis?

Result 12: LLMs in Source Code Vulnerability
Detection

• This paper discusses how LLMs can be used to analyze source
code and detect known vulnerabilities.

• It highlights the use of LLMs to capture complex patterns in
code and convert source code to intermediate representations
for better analysis.

• https://web.eecs.umich.edu/~movaghar/Vulnerability-detection-LLMs-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 75

https://web.eecs.umich.edu/~movaghar/Vulnerability-detection-LLMs-2024.pdf

Result 13: LLM-based Agents for Software
Engineering

• This survey paper reviews the current state of LLM
applications in software engineering, including vulnerability
and defect detection.

• It covers various topics, such as code generation, autonomous
decision-making, and software maintenance.

• https://web.eecs.umich.edu/~movaghar/LLM-based-agent-se-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 76

https://web.eecs.umich.edu/~movaghar/LLM-based-agent-se-2024.pdf

Result 14: Large Language Model for
Vulnerability Detection and Repair

• This systematic literature review examines approaches aimed
at improving vulnerability detection and repair through LLMs.

• It covers research from leading software engineering, AI, and
security conferences and journals.

• https://web.eecs.umich.edu/~movaghar/Source-code-valnurability-detection-LLMs-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 77

https://web.eecs.umich.edu/~movaghar/Source-code-valnurability-detection-LLMs-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 78

Can LLMs help us fix bugs and write new code?

Result 15: Teaching Large Language Models to
Self-Debug
• The paper introduces a self-debugging approach that

enables Large Language Models (LLMs) to identify and
correct their mistakes without human feedback. This is
achieved through few-shot demonstrations.

• It implements a method where the LLM performs
"rubber duck debugging," explaining its generated code
in natural language to identify errors by investigating
execution results.

h6ps://web.eecs.umich.edu/~movaghar/Self-Debgging -LLM 2023.pdf

12/03/2024 EECS 481 F24 - AI for SE 79

https://web.eecs.umich.edu/~movaghar/Self-Debgging%20-LLM%202023.pdf

Accuracy and Efficiency Improvement

• It demonstrates that the self-debugging approach achieves state-of-the-
art performance on several code generation benchmarks, including
Spider (text-to-SQL), TransCoder (C++-to-Python translation), and MBPP
(text-to-Python generation).

• It shows significant improvements in prediction accuracy, particularly on
complex problems. For example, it improves baseline accuracy by up to
12% on benchmarks with unit tests.

• It highlights that leveraging feedback messages and reusing failed
predictions notably improves sample efficiency, matching or
outperforming baseline models that generate more than 10 times the
number of candidate programs.

12/03/2024 EECS 481 F24 - AI for SE 80

Result 16: Evaluating LLMs at Detecting
Errors in LLM Responses
• The paper introduces ReaLMistake, the first error

detection benchmark that consists of objective, realistic,
and diverse errors made by LLMs.

• This benchmark includes three challenging tasks that
introduce objectively assessable errors in four
categories: reasoning correctness, instruction-following,
context-faithfulness, and parameterized knowledge.

https://web.eecs.umich.edu/~movaghar/LLM Error Detection 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 81

https://web.eecs.umich.edu/~movaghar/LLM%20Error%20Detection%202024.pdf

Evaluation of Error Detectors and the
Analysis of Explanations

• The authors use ReaLMistake to evaluate error detectors based on 12
different LLMs.

• They find that top LLMs like GPT-4 and Claude 3 detect errors at very
low recall rates, and all LLM-based error detectors perform significantly
worse than humans.

• The paper highlights that explanations provided by LLM-based error
detectors lack reliability.

• This finding underscores the need for more robust methods to explain
and justify the detected errors.

12/03/2024 EECS 481 F24 - AI for SE 82

Sensitivity to Prompt Changes and Evaluation
of Improvement Approaches

• The study shows that LLM-based error detection is highly
sensitive to small changes in prompts, making it challenging to
improve the performance of these detectors.

• The paper evaluates popular approaches to improving LLMs,
such as self-consistency and majority vote, and finds that these
methods do not enhance error detection performance.

12/03/2024 EECS 481 F24 - AI for SE 83

Result 17: Enhancing the Code Debugging
Ability of LLMs

• This paper introduces DEBUGEVAL, a benchmark designed
to evaluate the debugging capabilities of LLMs.

• It proposes a framework called MASTER to enhance
debugging abilities through data refinement and supervised
fine-tuning.

• https://web.eecs.umich.edu/~movaghar/Code-Debugging-LLMs-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 84

https://web.eecs.umich.edu/~movaghar/Code-Debugging-LLMs-2024.pdf

Result 18: LLMs for Software Engineering

• This comprehensive review covers various applications of
LLMs in software engineering, including debugging
automation.

• It analyzes methods used in data collection, preprocessing,
and application, highlighting the role of well-curated
datasets.

• https://web.eecs.umich.edu/~movaghar/LLM-SE-Review-2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 85

https://web.eecs.umich.edu/~movaghar/LLM-SE-Review-2024.pdf

Result 19: LLM Assisted Software
Engineering

• This paper provides an overview of the current state-of-
the-art in LLM support for software construction,
including debugging.

• It illustrates the potential and challenges of using LLMs
in software engineering tasks.

• https://web.eecs.umich.edu/~movaghar/LLM-Assisted-SE-2023-Review.pdf

12/03/2024 EECS 481 F24 - AI for SE 86

https://web.eecs.umich.edu/~movaghar/LLM-Assisted-SE-2023-Review.pdf

12/03/2024 EECS 481 F24 - AI for SE 87

Can LLMs help us do test generation?

Result 20: CoverUp: Coverage-Guided LLM-
Based Test Generation

• The paper introduces CoverUp, a system that combines
coverage analysis with Large Language Models (LLMs) to
generate high-coverage Python regression tests.

• It utilizes an iterative process where coverage information is
used to guide the LLM in refining tests to cover more lines and
branches of code.

https://web.eecs.umich.edu/~movaghar/Coverup Regression Testing 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 88

https://web.eecs.umich.edu/~movaghar/Coverup%20Regression%20Testing%202024.pdf

Coverage Improvement
• The paper demonstrates through empirical analysis that

CoverUp significantly improves test coverage compared to
existing methods.

• For example, it achieves a median line+branch coverage of
80% per module, compared to 47% by CodaMosa, and an
overall coverage of 90%, compared to 77% by MuTAP.

• The paper highlights that the iterative, coverage-guided
approach is crucial to its success, contributing to nearly 40%
of its effectiveness.

12/03/2024 EECS 481 F24 - AI for SE 89

Result 21: Automated Unit Test Improvement
using Large Language Models at Meta

• The paper introduces TestGen-LLM, a tool that uses Large Language
Models (LLMs) to automatically improve existing human-written unit
tests.

• It demonstrates that TestGen-LLM can generate additional test cases
that cover previously missed corner cases, thereby increasing overall
test coverage.

• It implements a set of filters to ensure that the generated test classes
provide measurable improvements over the original test suite,
reducing issues related to LLM hallucination.

https://web.eecs.umich.edu/~movaghar/Automatic Test Generation Meta 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 90

https://web.eecs.umich.edu/~movaghar/Automatic%20Test%20Generation%20Meta%202024.pdf

Increased Reliability and Coverage of Test Cases

• The paper describes the deployment of TestGen-LLM at Meta's
test-a-thons for Instagram and Facebook platforms, where it
improved 11.5% of all classes to which it was applied.

• It reports that 75% of TestGen-LLM's test cases were built
correctly, 57% passed reliably, and 25% increased coverage.

• Additionally, 73% of its recommendations were accepted for
production deployment by Meta software engineers.

12/03/2024 EECS 481 F24 - AI for SE 91

Result 22: Large Language Models as Test Case
Generators: Performance Evaluation and
Enhancement

•The paper conducts an extensive evaluation of Large
Language Models (LLMs) in generating test cases.

• The study finds that the performance of LLMs
declines significantly when handling more complex
problems, often resulting in errors in the generated
test cases.

• https://web.eecs.umich.edu/~movaghar/LLM Test Case Generators 2024.pdf

12/03/2024 EECS 481 F24 - AI for SE 92

https://web.eecs.umich.edu/~movaghar/LLM%20Test%20Case%20Generators%202024.pdf

Improved Accuracy of Test cases
• It proposes a multi-agent framework called TestChain, which

decouples the generation of test inputs and test outputs. This
framework uses a ReAct format conversation chain for LLMs to
interact with a Python interpreter, leading to more accurate test
outputs.

• It demonstrates that TestChain significantly outperforms the
baseline. Specifically, using GPT-4 as the backbone, TestChain
achieves a 13.84% improvement in the accuracy of test cases
on the LeetCode-hard dataset.

12/03/2024 EECS 481 F24 - AI for SE 93

Software Testing with Large Language
Models: Survey, Landscape, and Vision

12/03/2024 EECS 481 F24 - AI for SE 94

• The paper provides a comprehensive review of the utilization of
large language models (LLMs) in software testing.

• It analyzes 102 relevant studies, highlighting the various software
testing tasks for which LLMs are commonly used, such as test
case preparation and program repair.

• The paper discusses the types of LLMs employed, the prompt
engineering techniques used, and the accompanying methods that
enhance their effectiveness.

• https://web.eecs.umich.edu/~movaghar/Testing LLMs Survey 2024.pdf

https://web.eecs.umich.edu/~movaghar/Testing%20LLMs%20Survey%202024.pdf

12/03/2024 EECS 481 F24 - AI for SE 95

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 3/67

12/03/2024 EECS 481 F24 - AI for SE 96

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 12/67

12/03/2024 EECS 481 F24 - AI for SE 97

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 12/67

12/03/2024 EECS 481 F24 - AI for SE 98

 Coverage LLM Paper

5 Java projects from Defects4J 16.21% 5%-13% (line coverage) BART [26]

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 13/67
10 Jave projects 40% 89% (line coverage), 90% (branch coverage) ChatGPT [36]

CodeSearchNet 41% N/A ChatGPT [7]

HumanEval 78% 87% (line coverage), 92% (branch coverage) Codex [39]

SF110 2% 2% (line coverage), 1% (branch coverage) Codex [39]

Note that, [39] experiments with Codex, CodeGen, and ChatGPT, and the best performance was achieved by Codex.

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 14/67

12/03/2024 EECS 481 F24 - AI for SE 99

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 23/67

