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Artificial Intelligence
for Software 
Engineering (AI for SE)
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One-Slide Summary
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• Foundations of Data Science: The theoretical basis of today's artificial 
intelligence systems and applications is built upon the foundations of data 
science, encompassing key concepts from statistics, operations research, 
machine learning, and computer science.

• AI for SE: Artificial Intelligence significantly enhances software engineering by 
automating and improving various aspects of the development process and 
maintaining code quality, making it a versatile tool for modern software 
development.

•  LLMs: Large Language Models (LLMs) are currently the most successful AI 
techniques in software engineering due to their ability to understand and 
generate human-like text, which bridges the gap between natural language 
and programming languages.
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Learning Objectives: by the end of today’s 
lecture, you should be able to…
1. (Knowledge) describe the primary activities in software engineering  

using AI

2. (Value) understand why the applications of AI in software 
engineering are important

3. (Skill) Review some recent papers



Overview
• Background
• What is Artificial Intelligence (AI) for Software Engineering 

(SE)?
• What are the applications of AI in SE?

• Can LLMs help us do program verification?
• Can LLMs help us write unit tests?
• Can LLMs help us do mutation testing?
• Can LLMs help us do vulnerability analysis?
• Can LLMs help us fix bugs and write new code?
• Can LLMs help us do test generation?
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Background
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A Brief History of AI
• Artificial Intelligence (AI) has a rich history that dates back to the mid-

20th century. The field was officially founded in 1956 during the 
Dartmouth Conference, where the term "artificial intelligence" was 
coined by John McCarthy. 

• Early AI research focused on symbolic methods and problem-solving. 
However, progress was slow due to limited computing power and data. 

• The 1980s saw a surge in AI interest, known as the first AI summer, 
driven by expert systems. This was followed by an AI winter in the late 
1980s and early 1990s, a period of reduced funding and interest due to 
unmet expectations.
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AI Summer from 2010-2017

• The resurgence of AI began in the 2000s with the 
advent of machine learning and the availability of big 
data. 

• The development of deep learning techniques in the 
2010s, particularly neural networks, marked another AI 
summer, leading to significant breakthroughs in image 
and speech recognition.

12/03/2024 EECS 481  F24 - AI for SE 8



Statistical Models to Neural Networks 

• The 2000s saw the rise of statistical models trained on large 
datasets, leveraging the increasing availability of internet data.

• In 2009, most NLP tasks used statistical language models as 
they could usefully ingest large datasets.

• Neural networks began to dominate NLP tasks around 2012, 
using dense vector representations of words.
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What is Deep Learning?
• The concept of deep learning typically involves the use of deep 

neural networks. 
• Deep learning is a subset of machine learning that uses neural 

networks with multiple layers (hence "deep") to model complex 
patterns in data.

• These deep neural networks are designed to simulate the way 
the human brain processes information, allowing them to perform 
tasks such as image and speech recognition, natural language 
processing, and more.

• https://www.ibm.com/topics/deep-learning
• https://builtin.com/machine-learning/deep-learning
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Deep Neural Networks (DNNs)

• Deep neural networks (DNNs) are a type of artificial 
neural network with multiple layers between the input 
and output layers.

•  These layers allow the network to learn and model 
complex patterns and relationships within data. 

• Each layer extracts increasingly abstract features from 
the input, enabling the network to perform tasks such 
as image and speech recognition, natural language 
processing, and more accurately.
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AI Spring or AI Golden Age: Since 2017 
• Many experts consider the period starting around 2017 as the 

beginning of a new "AI spring" or "golden age" of AI.
• This era is characterized by rapid advancements in deep 

learning, significant improvements in computational power, and 
the widespread availability of big data. 

• These factors have led to breakthroughs in various AI 
applications, such as natural language processing, computer 
vision, and autonomous systems.

• https://knowledge.wharton.upenn.edu/article/ai-entering-golden-age/

12/03/2024 EECS 481  F24 - AI for SE 12

https://knowledge.wharton.upenn.edu/article/ai-entering-golden-age/


Why DNNs are so dominant in today's AI 
applications?

• DNNs have become dominant in today's AI systems due to their 
superior performance and versatility. 

• They can handle large datasets and complex models, making 
them suitable for various applications. 

• Advances in computational power, such as GPUs, and algorithm 
improvements have enhanced their efficiency and effectiveness. 

• This combination of factors has made DNNs a cornerstone of 
modern AI, driving significant advancements across various 
industries.
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The Nobel Prize in Physics 2024

12/03/2024 EECS 481  F24 - AI for SE 14

The Nobel Prize in Physics 2024
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awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for 
foundational discoveries and 
inventions that enable machine 
learning with artificial neural 
networks"



The Transformer Era (2017- Present)
• The introduction of the transformer model using deep neural 

network (DNN) architecture in 2017 revolutionized the NLP field. 
• At the 2017 NeurIPS conference, Google researchers introduced 

the transformer architecture in their landmark paper "Attention Is 
All You Need,” which could handle long-range dependencies 
more efficiently than RNNs and LSTMs.

• https://web.eecs.umich.edu/~movaghar/Attention All You Need 2017.pdf
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Pre-trained Transformers
• Transformers led to the development of powerful LLMs like 

BERT (2018), which focuses on understanding context, and 
GPT-3 (2020), which excels at generating coherent and 
contextually relevant text.

• These models, like GPT (Generative Pre-trained Transformer), 
have significantly advanced the field of natural language 
processing (NLP) and AI.
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The Current State of AI 
• Artificial intelligence’s influence on society has never been 
more pronounced. 

• Since ChatGPT became a ubiquitous feature on computer 
desktops in late 2022, the rapid development and 
deployment of generative AI and large language model 
(LLM) tools have started to transform industries and show 
the potential to touch many aspects of modern life.

https://www.weforum.org/stories/2024/04/stanford-university-ai-index-report/
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Large Language Models (LLMs) 
• Large Language Models(LLMs) use deep learning techniques, 

particularly transformer architectures, to process and generate 
text. Some well-known examples include OpenAI's GPT series 
(GPT-3, GPT-3.5, GPT-4), Google's BERT, and Meta's 
LLaMA.

• These models have hundreds of billions of parameters and 
tokens, allowing them to capture intricate patterns in language 
and generate coherent, contextually relevant responses.

h6ps://en.wikipedia.org/wiki/Large_language_model
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Recent Advances and Applications
• LLMs have continued to evolve, with models like OpenAI's 

Codex (based on GPT-3) fine-tuned for specific tasks such as 
code generation.

• These models are now used in various applications, from 
chatbots and virtual assistants to automated content creation 
and programming assistance.

• LLMs have come a long way from their early days, and they 
continue to push the boundaries of what AI can achieve in 
understanding and generating human language.
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Book: Foundations of Data Science
• This book thoroughly introduces the fundamental concepts of 
data science, including probability, statistical inference, linear 
regression, and machine learning. 
• It strongly emphasizes the mathematical and algorithmic 
foundations of data science, making it particularly valuable for 
readers who want a deep understanding of the theoretical aspects.

• https://web.eecs.umich.edu/~movaghar/book Machine Learning 2018.pdf
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Excerpt from the Book

“ …we have written this book to cover the theory we expect 
to be useful in the next 40 years, just as an understanding of 
automata theory, algorithms, and related topics gave 
students an advantage in the last 40 years. One of the major 
changes is an increase in emphasis on probability, statistics, 
and numerical methods…”
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Interdisciplinary Nature of Data Science

• The book integrates concepts from statistics, operations research, 
and computer science, reflecting the interdisciplinary nature of data 
science. 
• It delves into the complexities of high-dimensional data, which is 
crucial for understanding modern data analysis.
• It covers practical techniques such as singular value 
decomposition (SVD), random walks, and Markov chains, which 
are essential for real-world data science applications.
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Theoretical Foundations of Machine 
Learning, Integration, and Ethics 

• The book discusses various machine learning algorithms and 
their theoretical foundations, helping readers understand the 
principles behind these powerful tools.

• It emphasizes the importance of collaboration between data 
scientists and domain experts, ensuring that assumptions are 
balanced with computational efficiency.

• The book also touches on the ethical use of data science, 
which is increasingly important in today's data-driven world.
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Overview
• Background
• What is Artificial Intelligence (AI) for Software Engineering 

(SE)?
• What are the applications of AI in SE?

• Can LLMs help us do program verification?
• Can LLMs help us write unit tests?
• Can LLMs help us do mutation testing?
• Can LLMs help us do vulnerability analysis?
• Can LLMs help us fix bugs and write new code?
• Can LLMs help us do test generation?
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What is Artificial Intelligence (AI) 
for Software Engineering (SE)?



AI for SE

• Artificial Intelligence for Software Engineering (AI for SE) 
involves using artificial intelligence and machine learning 
techniques to enhance and automate various software 
development and maintenance aspects. 

• AI for SE aims to make software development more efficient, 
reliable, and scalable by leveraging the power of AI.
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Automating Software Development
• AI has made tremendous progress in automating numerous jobs 

typically undertaken by software programmers. 
• AI-powered systems, for example, may produce code that fulfills 

a set of requirements. This method is known as automated 
programming, and it is becoming more popular.
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Improving Software Testing

• AI is altering the way software is tested. 
• Algorithms based on artificial intelligence may be used to 

automate testing, discover and diagnose mistakes, and 
optimize testing situations. 

• This strategy can greatly enhance software quality while 
lowering testing time and expense.
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Improving Software Upkeep

• AI may also aid with software maintenance. 
• AI systems can analyze massive volumes of software-

related data and make recommendations for upgrades 
and enhancements using machine learning. 

• This method can assist software developers in keeping 
software systems up to date and improving their overall 
quality.
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Intelligent System Enabling
• AI is also allowing for the creation of intelligent software 

systems. 
• These systems are capable of learning from data and 

adapting to changing conditions. 
• AI-powered chatbots, for example, may learn from prior 

discussions and improve their replies over time. 
• Similarly, recommendation systems can improve their 

recommendations by learning from user behavior.
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Increasing Software Security

• AI can also help to improve software security. 
• For example, AI algorithms may discover security flaws 

in software systems and offer fixes. 
• They can also recognize possible risks and take 

preventative steps.
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Addressing the Talent Shortage

• Finally, AI can assist in overcoming the software 
engineering skills problem.

•  AI-powered tools and systems may help software 
developers be more productive, efficient, and effective.

•  This can assist organizations in meeting their software 
development objectives while using fewer resources.
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Code Generation and Debugging
• AI can assist in writing code, reducing the time and 

effort required by developers.
• AI can identify bugs in the code and even suggest 

or implement fixes.
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Predictive Analytics and Automated Testing

•  AI can predict potential issues in software projects, 
such as delays or resources. 
•  AI can create and run tests to ensure software quality 
and reliability.
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LLMs for SE

• Many AI applications in software engineering (SE) 
leverage Large Language Models (LLMs). 

• These models have shown significant promise in 
various aspects of software development. 
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Code Completion and Code Generation

• Tools like GitHub Copilot use LLMs to provide intelligent code 
suggestions and auto-completion, enhancing developer 
productivity.

• LLMs can generate code snippets or even entire functions 
based on natural language descriptions, making it easier to 
implement features quickly.
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Testing, Debugging and Code Refactoring

• LLMs assist in identifying and fixing bugs by analyzing 
code and suggesting potential fixes.

• They help improve the structure of existing code without 
changing its functionality, making the codebase cleaner 
and more maintainable.

• LLMs can generate test cases based on the code, 
ensuring better coverage and reliability.
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Overview
• Background
• What is Artificial Intelligence (AI) for Software Engineering 

(SE)?
• What are the applications of AI in SE?

• Can LLMs help us do program verification?
• Can LLMs help us write unit tests?
• Can LLMs help us do mutation testing?
• Can LLMs help us do vulnerability analysis?
• Can LLMs help us fix bugs and write new code?
• Can LLMs help us do test generation?
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What are the applications of 
AI in SE?



Unleashing the Potential of OpenAI's 
Codex in Software Engineering

• OpenAI's Codex is extensively used in various applications 
within software engineering (SE). 

• Codex, which powers tools like GitHub Copilot, has become a 
valuable asset for developers by automating repetitive coding 
tasks, generating code snippets, and even assisting with code 
completion and debugging.

• https://www.toolify.ai/ai-news/unleashing-the-potential-of-openais-codex-in-software-engineering-2674967

• https://openai.com/index/openai-codex/
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Codex
• Codex is an advanced AI model developed by Open AI that 

translates natural language into code. It is a descendant of 
OpenAI's GPT-3 model, fine-tuned specifically for programming 
tasks.

• Based on GPT-3, a neural network trained on text, Codex was 
additionally trained on 159 gigabytes of Python code from 54 
million GitHub repositories.

• Open AI claims that Codex can create code in over a dozen 
programming languages, including Go, JavaScript, Perle, PHP, 
Ruby, Shell, Swift, and TypeScript, though it is most effective in 
Python.
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Codex Highlights
• OpenAI's Codex combines natural language understanding with 

code generation, revolutionizing software development.
• Codex excels at generating code snippets, automating repetitive 

coding tasks, and assisting beginners in learning programming.
• It has limitations in reasoning abstractly, handling novel or niche 

concepts, and generating code that meets complex requirements.
• Software engineers can use Codex as a tool to augment their work, 

ensuring human intervention to produce reliable code.
• The future possibilities of Codex include automated bug detection, 

code refactoring, and intelligent code completion.
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Can LLMs help us do program verification?



Result 1: LLM Capabilities in Loop Invariant 
Synthesis

•The authors observe that Large Language Models 
(LLMs) like GPT-3.5 and GPT-4 can synthesize 
loop invariants for a class of programs in a zero-
shot setting.

•However, they require multiple samples to 
generate the correct invariants.

https://web.eecs.umich.edu/~movaghar/Sarah Fakhoury 2024.pdf
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Leveraging LLMs

• The approach leverages an LLM for generation and ranks using 
a purely neural model and does not require a program verifier at 
the inference time.

• This approach involves designing a ranker that can distinguish 
between correct and incorrect invariants based on problem 
definition.

• The ranker is optimized as a contrastive ranker, which helps in 
prioritizing the most promising invariants for verification.
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Ranking Mechanism

•The paper introduces a ranking mechanism to 
evaluate and prioritize the generated loop 
invariants.

•This helps in reducing the number of calls to a 
program verifier, making the process more 
efficient.
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Empirical Evaluation

• The authors conduct an empirical evaluation to 
demonstrate the effectiveness of their approach.

• They show that their ranking mechanism significantly 
improves the performance of LLMs in generating 
correct loop invariant.

• These contributions aim to enhance the usability and 
efficiency of LLMs in program verification tasks, 
particularly in the context of loop invariant synthesis.
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Result 2: LEMUR: INTEGRATING LARGE LANGUAGE 
MODELS IN AUTOMATED PROGRAM VERIFICATION

• The paper introduces a novel framework that integrates LLMs with 
automated reasoners for program verification.

• This framework leverages LLMs' high-level reasoning capabilities and 
automated reasoners' precise low-level reasoning.

• The authors present LEMUR as a proof system and provide formal 
proof of its soundness.

• This is the first formalization of such a hybrid approach, demonstrating 
that the integration of LLMs and automated reasoners can be both 
sound and effective.

• https://web.eecs.umich.edu/~movaghar/LEMUR 2024.pdf
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Sound and Terminating Algorithm

•The paper describes an instantiation of the 
LEMUR calculus that results in a sound and 
terminating algorithm.

•This ensures that the verification process is 
reliable and can be completed within a finite 
amount of time.
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Implementation and Optimizations, 
Evaluation and Results
• The authors implement the proposed framework and introduce 

several practical optimizations to enhance its performance.
• These optimizations make the framework more efficient and 

applicable to real-world verification tasks.
• The paper includes an evaluation of the framework, 

demonstrating its effectiveness in various program verification 
scenarios.

• The results show that the integration of LLMs and automated 
reasoners can significantly improve the verification process.
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Can LLMs help us write unit tests?



Result 3: Unit Test Generation

• LLMs can generate unit tests by analyzing the code and 
creating test cases that cover various scenarios. 

• The generated tests can achieve higher code coverage and 
better quality by using LLMs. 

• These models can identify edge cases and generate tests that 
human developers might overlook

• https://web.eecs.umich.edu/~movaghar/Multi-language Unit Testing LLM 2024.pdf
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Result 4: Natural Language Processing

•LLMs can understand and generate human-like 
text, making the tests readable and maintainable.

•  This helps in creating tests that are closer to 
what a developer might write.

• https://web.eecs.umich.edu/~movaghar/Unit Test Generation LLM 2024.pdf
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Result 5: Empirical Study of Unit Test Generation 
with LLMs
This study investigates the effectiveness of using LLMs for 
generating unit tests compared to traditional tools like EvoSuite. 
It evaluates various open-source LLMs and their performance 
in generating unit tests for Java projects. 
The findings highlight the potential of LLMs in this domain while 
also identifying areas for improvement.
https://web.eecs.umich.edu/~movaghar/EVosuite-LLM-2024-1.pdf
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Result 6: Large-scale Study on LLMs for Test Case 
Generation

• This comprehensive study assesses the capabilities of 
several LLMs, including GPT and Mistral, for generating unit 
tests. 

• The research compares the correctness, understandability, 
coverage, and bug-detection capabilities of LLM-generated 
tests against those produced by EvoSuite.

• The results indicate that while LLMs show promise, there are 
still challenges to be addressed to match the effectiveness of 
traditional methods.

• https://web.eecs.umich.edu/~movaghar/Evosuite-LLM-2024-2.pdf
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Result 7: Meta’s TestGen-LLM

• Meta's TestGen-LLM tackles the time-consuming task of unit 
test writing by leveraging the power of Large Language 
Models (LLMs). 

• General-purpose LLMs like Gemini or ChatGPT might struggle 
with the specific domain of unit test code, testing syntax, and 
generating tests that don't add value. 

• TestGen-LLM is specifically tailored for unit testing.
https://www.freecodecamp.org/news/automated-unit-testing-with-testgen-llm-and-cover-agent/
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Can LLMs help us do mutation testing?



Result 8: An Exploratory Study on Using Large 
Language Models for Mutation Testing 

• This paper investigates the performance of LLMs in generating 
effective mutations, focusing on their usability, fault detection 
potential, and relationship with real bugs.

• https://web.eecs.umich.edu/~movaghar/Mutation-Testing-LLMS-2024.pdf
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Result 9: Mutation-based Consistency Testing for Evaluating 
the Code Understanding Capability of LLMs 

• This study introduces a method to assess the code 
understanding performance of LLMs by applying code 
mutations to existing code generation datasets.

• https://web.eecs.umich.edu/~movaghar/Mutattion-Testing-Code-Understanding-LLMs-2024.pdf
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Result 10: A Mutation Testing Framework of In-
Context Learning Systems 

• This paper proposes a mutation testing framework 
specifically designed for in-context learning systems, 
leveraging LLMs to evaluate the quality and effectiveness 
of test data.

• https://web.eecs.umich.edu/~movaghar/Mutation-Testing-Framework-LLMs-2024 .pdf
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Result 11: On the Use of Large Language Models for 
Mutation Testing 
• The authors conducted a large-scale empirical study involving 

six large language models (LLMs) and 851 real bugs from two 
Java benchmarks (Defects4J 2.0 and ConDefects) to evaluate 
the effectiveness of LLMs in generating mutations.

• The study found that LLMs generate more diverse mutations 
that are behaviorally closer to real bugs, leading to 
approximately 19% higher fault detection compared to existing 
approaches.

• https://web.eecs.umich.edu/~movaghar/Mutation Testing LLM 2025.pdf
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Challenges and Prompt Engineering
• Despite their effectiveness, the mutants generated by LLMs 

had lower compilability rates and higher useless and equivalent 
mutation rates compared to rule-based approaches

• The paper also explores alternative prompt engineering 
strategies and identifies the root causes of uncompilable 
mutations, providing insights for improving the performance of 
LLMs in mutation testing.
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On the Use of Large Language Models in Mutation Testing 1:5

Table 1. Real Bugs Used in Our Experiment

Dataset Project # of Bugs Time Span

Defects4J (D4J)

Math 106 2006/06/05 - 2013/08/31
Lang 65 2006/07/16 - 2013/07/07
Chart 26 2007/07/06 - 2010/02/09
Time 27 2010/10/27 - 2013/12/02
Closure 133 2009/11/12 - 2013/10/23
Mockito 38 2009/06/20 - 2015/05/20
Cli 39 2007/05/15 - 2018/02/26
Codec 18 2008/04/27 - 2017/03/26
Csv 16 2012/03/27 - 2018/05/18
Gson 18 2010/11/02 - 2017/09/21
JacksonCore 26 2013/08/28 - 2019/04/05
Jsoup 93 2011/07/02 - 2019/07/04

ConDefects (CD) — 246 2024/03/01 - 2024/06/30
Total — 851 2006/07/16 - 2024/06/30

• RQ4: How do di!erent prompts a!ect the performance in generating mutations?
• RQ5: What are the root causes and compilation error types for the generation of
non-compilable mutations?

3.2 Datasets
We intend to evaluate our approach with real bugs, and thus we need to use bug datasets with the
following properties:

• The datasets should comprise Java programs, as existing methods are primarily based on
Java, and we need to compare with them.

• The bugs of the datasets should be real-world bugs so that we can compare the di!erence
between mutations and real bugs.

• Every bug in datasets has the correctly "xed version provided by developers so that we can
mutate the "xed version and compare them with the corresponding real bugs.

• Every bug is accompanied by at least one bug-triggering test because we need to measure
whether the mutations a!ect the execution of bug-triggering tests.

To this end, we employ the Defects4J 2.0 [35] and ConDefects [78] to evaluate the mutation
generation approaches, shown as Table 1. In total, we conducted experiments on 851 bugs.
Defects4J 2.0 is a widely used benchmark in the "eld of mutation testing [15, 36, 38, 40, 54, 68],

which contains history bugs from open-source projects of diverse domains, ensuring a broad
representation of real-world bugs. We select the most widely used 12 projects from the Defects4J
2.0, which contains 605 bugs in total. However, from Table 2 and Table 1, we observe the time
spans of the Defects4J bugs are earlier than the LLMs’ training time, which may introduce data
leakage. Therefore, we supplement another dataset, ConDefects [78], designed to address the data
leakage concerns. ConDefects consists of tasks from AtCoder1 programming contest. To prevent
data leakage, we use data from the four most recent months following the release of the LLMs (i.e.,
from March 1, 2024, to June 30, 2024), during which we collected 246 Java bugs.

3.3 Mutation Generation via LLMs
Given the location of a Java program, we extract essential information (e.g., the context method
or the corresponding unit tests) to formulate prompts instructing mutation generation, then feed
prompts to the selected LLM. Once the LLM returns its responses, we "lter out mutations that are

1https://atcoder.jp
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Table 2. Studied LLMs

Model Type Studied Model Base Model Training Data Time Release Time Size

Closed
GPT-3.5-Turbo GPT 2021/09 2023/03 —
GPT-4o GPT 2023/10 2024/05 —
GPT-4o-Mini GPT 2023/10 2024/07 —

Open
StarChat-𝐿-16b StarCoder — 2023/06 16B
CodeLlama-Instruct-13b Llama — 2023/08 13B
DeepSeek-Coder-V2-236b DeepSeek 2023/09 2024/07 236B

non-compilable, redundant, or identical to the original code, and return the generated mutations. As
shown in Section 3.4, our study supports a comprehensive set of metrics for evaluating mutations.

3.3.1 Studied Models. We aim to comprehensively compare the existing LLMs in their ability to
generate mutations from various perspectives. This includes evaluating the capabilities of models
that are !ne-tuned on di"erent base models and contrasting the performance of commercial
closed-source models with open-source alternatives. In our study, we select a representative set
of LLMs with code capabilities. Following recent studies on evaluating the code capabilities of
LLMs [25, 76, 84], we adopt the closed-source LLMs from GPT family, includingGPT-3.5-Turbo [2],
GPT-4o [2], and GPT-4o-Mini [2]. Moreover, we employ the popular open-sourced LLMs that
are used by recent studies [46, 51, 79, 83], including DeepSeek-Coder-V2-236b [89], StarChat-𝐿-
16b [42], and CodeLlama-Instruct-13b [62]. The details of these models are shown as Table 2.
Note that OpenAI has not o#cially released the parameter size of their closed-source models. The
parameter size of the open-sourced models we studied ranges from 13 billion to 236 billion.

3.3.2 Prompts. Prompts are crucial for LLMs because they guide the models’ responses and
determine the direction of the generated output. A well-crafted prompt can signi!cantly in$uence
the utility, relevance, and accuracy of the code produced by an LLM. This subsection introduces
how we design the prompts.

Figure 1 shows the default prompt template in our study. To design e"ective prompts for mutation
generation, we follow the best practices suggesting prompts should comprise four aspects, namely,
Instruction, Context, Input Data, and Output Indicator [25, 46]. In the Instructions, we direct the LLMs
to generate mutants for the target code element. In the Context, we clearly state that mutant is the
concept of mutation testing, and additionally provide various sources of information to observe
the impact on the performance of LLMs, including the whole Java method surrounding the target
code element and few-shot examples sampled from real-world bugs from another benchmark. In
the Input Data, we specify the code element to be mutated and the number of mutants to generate.
In the Output Indicator, we specify the JSON !le format for mutation outputs, facilitating further
experiments.

In addition, our prompts need few-shot examples, which should originate from real bugs enabling
LLMs to learn how to mutate code from real bugs. This allows the model to understand the context
and logic behind the changes, improving its ability to generate relevant and e"ective mutations.

To avoid the few-shot examples leaking information, beyond Defects4J and ConDefects, we em-
ploy another benchmark QuixBugs [44], which comprises 40 real-world Java bugs and is commonly
used by the testing and debugging community [33, 43, 80, 90]. Referring to the study by Deng et
al. [19], LLMs perform best in generating valid code when using around six few-shot examples.
Therefore, we sample six bugs from QuixBugs for few-shot learning in our default prompt. To
guarantee the diversity of the examples, we randomly select one bug from the dataset and assess
whether its modi!cation pattern is similar to the examples already collected. If it is di"erent, we
add it to our collection and continue, until we have collected all six examples, shown as Table 3.
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Table 3. Default Few-Shot Examples from!ixBugs

Correct Version Buggy Version
n = (n & (n - 1)); n = (n ˆ (n - 1));

while (!queue.isEmpty()) while (true)

return depth==0; return true;

ArrayList r = new ArrayList();

r.add(first).addll(subset);

to_add(r);

to_add.addAll(subset);

c = bin_op.apply(b,a); c = bin_op.apply(a,b);

while(Math.abs(x-approx*approx)>epsilon) while(Math.abs(x-approx)>epsilon)

Fig. 1. The Default Prompt Template

3.4 Evaluation Metrics
To assess the utility of the LLM-generated mutations, we should de!ne a set of metrics that
comprehensively evaluate them. Therefore, we designed several categories of metrics capturing
di"erent aspects as follows: Cost Metric, Usability Metrics, and Behavior Metrics. Besides these
metrics, we also additionally report the Mutation Count and Mutation Score. Note that both of them
cannot directly re#ect the quality of generated mutations. For example, a higher mutation score
does not indicate a higher quality, which may also be caused by generating a large proportion of
mutants that are easily killed.

To better understand the metrics, we !rst illustrate the categories of mutations. Let all generated
mutations be the set 𝐿, where LLMs may generate syntactically incorrect mutations that can
not pass compilation. Thus we denote the compilable mutations as the set 𝑀 . Note that the set 𝑀
contains two types of mutations that should be removed, the useless mutations (denoted as 𝑁 )
and equivalent mutations (denoted as 𝑂). The useless mutations refer to those that are identical to
the original code or other mutations. In mutation testing, the ideal set of mutations to employ is
from the set (𝑀 → 𝑂 →𝑁 ), excluding equivalent mutations that have no contributions to discovering
the weakness of tests. However, determining the equivalent mutations set 𝑂 is undecidable, so
we follow the common practice and use the set (𝑀 →𝑁 ) as a practical approximation to perform
mutation testing [21, 68, 88].

3.4.1 Cost Metric. The Cost Metric indicates time costs in mutation generation.
Average Generation Time: the average duration needed to produce each mutation, measuring
the e$ciency of an approach.

3.4.2 Usability Metrics. The Usability Metrics serve as key indicators of the practical utility of
generated mutations.

J. ACM, Vol. 1, No. FSE, Article 1. Publication date: June 2025.
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Table 3. Default Few-Shot Examples from!ixBugs

Correct Version Buggy Version
n = (n & (n - 1)); n = (n ˆ (n - 1));

while (!queue.isEmpty()) while (true)

return depth==0; return true;

ArrayList r = new ArrayList();

r.add(first).addll(subset);

to_add(r);

to_add.addAll(subset);

c = bin_op.apply(b,a); c = bin_op.apply(a,b);

while(Math.abs(x-approx*approx)>epsilon) while(Math.abs(x-approx)>epsilon)

'{WHOLE_JAVA_METHOD}'
Above is the original code. your task is to generate '{MUT_NUMBER}' mutants, (notice: mutant 
refers to the mutant in software engineering, i.e., making subtle changes to the original code) in: 
'{CODE_ELEMENT}’, as follows are some examples of mutants which you can refer to:
{…

"precode": "while (Math.abs(x-approx*approx) > epsilon) { "     
"aftercode": " while (Math.abs(x-approx) > epsilon) {",

…}
#Requirement: 

1. Provide generated mutants directly 
2. A mutation can only occur on one line 
3. Your output must be like:  

[  {   "id":,   "line":,   "precode":"",   "filepath":"kk",   "aftercode":""  }  ],  
where "id" stands for the mutant serial number, "Line" represents the line number      of the 

mutated, "precode" represents the line of code before mutation and it can not be empty, 
"aftercode" represents the line of code after mutation 
4. Prohibit generating the exact same mutants 
5. All write in a JSON file

Context
(Few-Shot 
Examples)

Instructions
and Input 

Data

Context
(Whole 
Method)

Output 
Indicator

Fig. 1. The Default Prompt Template

3.4 Evaluation Metrics
To assess the utility of the LLM-generated mutations, we should de!ne a set of metrics that
comprehensively evaluate them. Therefore, we designed several categories of metrics capturing
di"erent aspects as follows: Cost Metric, Usability Metrics, and Behavior Metrics. Besides these
metrics, we also additionally report the Mutation Count and Mutation Score. Note that both of them
cannot directly re#ect the quality of generated mutations. For example, a higher mutation score
does not indicate a higher quality, which may also be caused by generating a large proportion of
mutants that are easily killed.

To better understand the metrics, we !rst illustrate the categories of mutations. Let all generated
mutations be the set 𝐿, where LLMs may generate syntactically incorrect mutations that can
not pass compilation. Thus we denote the compilable mutations as the set 𝑀 . Note that the set 𝑀
contains two types of mutations that should be removed, the useless mutations (denoted as 𝑁 )
and equivalent mutations (denoted as 𝑂). The useless mutations refer to those that are identical to
the original code or other mutations. In mutation testing, the ideal set of mutations to employ is
from the set (𝑀 → 𝑂 →𝑁 ), excluding equivalent mutations that have no contributions to discovering
the weakness of tests. However, determining the equivalent mutations set 𝑂 is undecidable, so
we follow the common practice and use the set (𝑀 →𝑁 ) as a practical approximation to perform
mutation testing [21, 68, 88].

3.4.1 Cost Metric. The Cost Metric indicates time costs in mutation generation.
Average Generation Time: the average duration needed to produce each mutation, measuring
the e$ciency of an approach.

3.4.2 Usability Metrics. The Usability Metrics serve as key indicators of the practical utility of
generated mutations.
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Table 4. Overall Performance of All the Mutation Generation Techniques

Metric GPT-3.5 GPT-4o GPT-4o-M DC-236b SC-16b CL-13b LEAM 𝐿Bert PIT Major
Mut. Score 0.697 0.726 0.708 0.694 0.516 0.700 0.545 0.675 0.581 0.486
Mut. Count 538338 539715 588803 594711 463248 457195 890417 200896 2890433 346282
Avg. Gen. Time 1.79 1.76 1.65 4.25 7.53 9.06 3.06 2.33 0.02 0.08
Comp. Rate 60.2% 75.6% 73.6% 75.5% 11.1% 70.2% 35.0% 22.5% —— 98.6%
Useless Mut. Rate 10.9% 7.8% 6.7% 8.3% 8.9% 39.3% 1.0% 1.7% 0.0% 0.0%
Eq. Mut. Rate 2.2% 1.2% 1.7% 1.2% 1.8% 1.2% 1.3% 2.5% 0.0% 0.6%
Real Bug Detec. 91.7% 93.4% 93.4% 92.8% 47.1% 83.1% 71.7% 71.3% 51.3% 74.4%
Coupling Rate 41.4% 43.6% 44.1% 41.5% 29.4% 39.8% 28.7% 41.6% 14.0% 36.0%
Ochiai Coe!. 65.0% 68.5% 66.9% 61.8% 19.3% 40.8% 37.4% 31.6% 31.5% 44.4%

mutation score ranging from 0.516 to 0.726. Overall, traditional approaches (e.g., LEAM and PIT)
yield lower mutation scores among all the approaches.
In terms of time cost, the six LLMs cost 1.79s, 1.76s, 1.65s, 4.25s, 7.53s, and 9.06s to generate

mutations, respectively. In comparison, LEAM, 𝐿Bert, PIT, and Major take 3.06s, 2.23s, 0.02s, and
0.08s, respectively. The rule-based approaches, PIT and Major, are the fastest, while LLMs show a
competitive speed with small model-based approaches, LEAM and 𝐿Bert.

Finding 1 (RQ1): Rule-based approaches cost less time than LLMs in generating mutations.
For example, GPT LLMs take fewer than 1.8s per mutation. In contrast, PIT and Major only
require 0.02s and 0.08s, respectively, while small model-based approaches (i.e., LEAM and
𝐿Bert) take 2-3s.

4.1.2 Mutation Usability. The usability of mutations (i.e., whether the mutations can be used to
calculate mutation score) is a!ected by the capabilities of LLMs in correctly understanding the task
and generating compilable, non-duplicate, and non-equivalent mutations. The results are shown as
the Comp. Rate, Useless Mut. Rate, and Eq. Mut. Rate rows in Table 4. Since the mutation generation
process of the PIT model is not visible and it only outputs mutations that pass the tests, we excluded
it from the compilability rate calculation.
Compilability Rate: Four out of the six LLMs (i.e., GPT-4o, GPT-4o-Mini, DeepSeek, CodeLlama)
achieve over 70%, with one exceeding 60% (i.e., GPT-3.5). In contrast, the small model-based
approaches, LEAM and 𝐿Bert, have rates at 35.0% and 22.5%, respectively. Compared to small
models, LLMs like GPTs and DeepSeek show signi"cantly higher compilation success rates. For
example, the compilability rate of GPT-4o is over 40% higher than that of LEAM and 𝐿Bert. The
rule-based approach Major signi"cantly outperforms, with nearly 99% of its mutations successfully
compiling. Note that although Major operates under simple syntax rules, it can still generate non-
compilable mutants. For example, the Java compiler’s analyzer rejects constructs like while(true).
Useless Mutation Rate: We also observe that LLMs generate a signi"cant portion of duplicate
and useless mutations. For useless mutations, the percentage generated by LLMs ranges from a
minimum of 6.7% (GPT-4o-Mini) to a maximum of 39.3% (CodeLlama), and "ve out of the six LLMs
have a useless mutation rate below 11%. In contrast, all the traditional approaches rarely generate
duplicate mutations, which is likely due to them being governed by strict grammar rules that limit
the production of redundant mutations. For example, PIT and Major iteratively apply di!erent
mutation operators producing no redundant mutants.
Equivalent Mutation Rate: Equivalent mutations change the source code syntactically without
a!ecting the program’s functionality, thereby a!ecting the accuracy of mutation score calculations.
Due to the undecidable nature of identifying equivalent mutations [7], it is not feasible to design
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1. How many LLMs have a Mutation Score of more than 70%?
2. How many LLMs have Real Bug Detection of more than 90%?  
3. How many LLMs achieve a Compilability rate of more than 70%?
4. Which LLM excels w.r.t. Compilability Rate and Equivalent Mutation Rate?



Answers

1. 6
2. 4
3. 4
4. Major
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Table 12. Performance Under the Same Number of Mutations

Metric GPT-3.5 GPT-4o GPT-4o-M DC-236b SC-16b CL-13b LEAM 𝐿Bert Major PIT
Comp. Rate 62.9% 77.4% 70.1% 73.0% 39.3% 74.2% 38.9% 18.5% 96.5% ——
Useless Mut. Rate 11.0% 7.3% 7.0% 8.9% 27.1% 39.0% 1.4% 1.4% 0.0% ——
Real Bug Det. 89.2% 90.8% 91.3% 89.7% 58.0% 73.5% 67.5% 55.0% 83.3% 43.7%
Coupling Rate 13.3% 14.6% 12.6% 13.4% 11.9% 10.5% 13.2% 13.2% 12.8% 2.4%
Ochiai Coe!cient 35.8% 45.0% 40.8% 35.3% 15.3% 17.8% 17.0% 15.0% 34.1% 19.2%

5.1.3 Performance of Using the Same Number of Mutations. In Section 4, we did not restrict the
number of mutations generated by each approach. To study the performance of each approach under
!xed quantity conditions, we followed the setting of existing study [27, 68] and limited the number
of mutations generated by all methods to the minimum produced by 𝐿Bert [15], which is 16,785.
For counts exceeding this number, we randomly selected the speci!ed number of mutations for
analysis. We conducted 10 rounds of random sampling comparisons, and the results are presented
in Table 12. Therefore, under !xed quantity conditions, the mutations generated by two GPT-4
LLMs are still the closest to real bugs in behavior.

5.2 Economic Costs
Closed-source LLMs (e.g., GPT LLMs) are typically billed based on the number of tokens used. As
these models continue to evolve, their pricing rates also change, and we here discuss the costs of the
proprietary models used in our experiments. For the three models involved, GPT-3.5 incurred a total
cost of $108, GPT-4o cost $1531, and GPT-4o-Mini cost $47. Therefore, for every 1,000 mutations,
GPT-3.5, GPT-4o, and GPT-4o-Mini cost about $0.16, $2.84, and $0.08, respectively. GPT-4o is
signi!cantly more expansive than the others. Given the e"ectiveness of mutations generated by
GPTs, the cost is feasible for large-scale applications.

5.3 Implications
Based on our !ndings, we discuss the pros and cons of using LLMs for generating mutations and
suggest potential improvements.

First, our study shows that existing LLMs have the potential to generate high-quality mutations
for mutation testing with acceptable costs. The greatest advantage of LLMs is their ability to
generate mutations that more closely mimic real bugs in behavior. For example, Listing 1 shows
two compilable mutations generated by GPT-3.5 in Chart-1, which are theoretically beyond the
capabilities of existing approaches. In Mutation-1, the LLM inferences there must exist leftBlock
because of the occurrence of rightBlock, and replaces the variable correspondingly. This mutation
is not killed by the bug-triggering test. Without natural language understanding capabilities
(i.e., understanding the correspondence between “right” and “left”), it is di#cult to create such
mutations. In Mutation-2, the LLM modi!es the else branch to else if, employing an integer
variable seriesCount from context to synthesize the condition, showing the capabilities of code
structural changing that existing methods cannot achieve. Also, this mutation is alive and can guide
test enhancement.
Second, our study explores how di"erent prompts, models, contexts, and few-shot examples

impact mutation generation performance. Our study highlights the importance of using proper
prompts and models with stronger coding capabilities. In particular, designing prompts requires
providing essential context information (such as the whole method), but including too much
information (such as the target unit test) may reduce e"ectiveness.
Third, although LLMs achieve promising results in mutation testing, our study indicates that

there is still signi!cant room for improvement. Speci!cally, current LLMs generate a substantial
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Table 5. Sample Results for Equivalent Mutations

Dataset Type GPT-3.5 GPT-4o GPT-4o-M DC-236b SC-16b CL-13b LEAM 𝐿Bert PIT Major

D4J
#All 537109 538509 587583 593481 462042 455634 888452 199347 2888641 345292
#Sampled 384 384 384 384 384 384 384 384 384 384
#Eq. Mut 9 3 5 4 8 5 6 8 0 2

CD
#All 1229 1206 1220 1230 1206 1561 1965 1549 1792 990
#Sampled 293 292 293 293 292 309 322 308 317 277
#Eq. Mut 6 5 7 4 4 3 3 9 0 2

an algorithm that can completely detect them. Therefore, we sample a subset of mutations for each
technique and manually assess whether they are equivalent. Following the common practice of
sampling [13, 45, 47, 71], to maintain a 95% con!dence level and a 5% margin of error, we sampled a
!xed number of mutations from each approach’s output, to calculate the Equivalent Mutation Rate.
Following the protocol of existing studies [25, 30], two authors, each with over !ve years of Java
programming experience, !rst received training on the equivalent mutants, and then independently
labeled the mutations. The !nal Cohen’s Kappa coe"cient score [73] is more than 90%, indicating
a high level of agreement. All labeling results are available in our package for reproducibility [1],
and Table 5 presents the sampling and labeling results.

As shown in the Eq. Mut. Rate row of Table 4, we again observe that the rule-based approaches,
PIT and Major, perform the best in generating non-equivalent mutants, with an equivalent mutation
rate of less than 1.0%. All six LLMs exhibit an equivalent mutation rate ranging from 1.2% to 2.2%,
similar to LEAM and 𝐿Bert. Overall, the equivalent mutation rates for all approaches studied are
relatively low and can be ignored during mutation testing. We further analyzed the mutations
generated by PIT and Major, and found that they apply speci!c mutation operators to a statement
(e.g., for a < b, only generating !(a < b), true, and false), signi!cantly reducing the equivalent
mutation rate.

Finding 2 (RQ1): Rule-based approaches, PIT and Major, outperform others in terms of
compilability rate, useless mutation rate, and equivalent mutation rate. In particular, GPT-4o
exhibits a compilability rate of 75.6%, a useless mutation rate of 7.8%, and an equivalent
mutation rate of 1.2%. In contrast, Major excels with a compilability rate of 98.3%, a useless
mutation rate of 0%, and an equivalent mutation rate of 0.6%.

LLM
Traditional Approach
Examples

Fig. 2. Number of newly introduced AST nodes of the
studied approaches and the few-shot examples.

4.1.3 AST Node Dirversity. To assess the diver-
sity of AST node types, we !rst determine if
a mutation involves deletion (i.e., removing a
code element). For the non-deletion mutations,
we parse the code before and after mutation by
the parser Javalang, to observe which new AST
node types are introduced. A larger number
of newly introduced AST node types indicates
richer diversity.
Figure 2 shows the number of introduced

types, which reveals that LLM-based mutation
approaches introduce more types of new AST nodes than other approaches. The best of LLMs,
GPT-4o-Mini and DeepSeek, exhibit the greatest diversity, introducing 57 new AST node types.
Among the traditional approaches, LEAM, 𝐿Bert, and Major introduce 31, 30, and 2 new types
of AST nodes, respectively. Additionally, all six LLMs signi!cantly are higher than traditional
approaches in AST node types. We also check the AST node diversity of the examples we provided
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• Finding 1: Rule-based approaches cost less time than LLMs in 
generating mutations. For example, GPT LLMs take fewer than 
1.8s per mutation. In contrast, PIT and Major only require 0.02s 
and 0.08s, respectively, while small model-based approaches 
(i.e., LEAM and𝜇Bert) take 2-3s.

• Finding 2: Rule-based approaches, PIT and Major, outperform 
others in terms of compilability rate, useless mutation rate, and 
equivalent mutation rate. In particular, GPT-4o exhibits a 
compilability rate of 75.6%, a useless mutation rate of 7.8%, and 
an equivalent mutation rate of 1.2%. In contrast, Major excels 
with a compilability rate of 98.3%, a useless mutation rate of 
0%, and an equivalent mutation rate of 0.6%.
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• Finding 3: LLM-based mutation approaches introduce more types of new 
AST nodes than traditional approaches, while less inclined to generation 
deletion mutations.

• Finding 4: Five out of six LLMs significantly outperform traditional 
approaches in Real Bug Detectability. In particular, on ConDefects, GPT-4o 
outperforms nearly 29% over the best of the conventional approach, Major, 
highlighting the advantages of LLMs in detecting real bugs.

• Finding 5: GPT-4 achieves the highest Coupling Rate at 44.1%, 
outperforming all traditional approaches, including the best traditional 
approach, 𝜇Bert, by 2.5%.

• Finding 6: Five LLMs surpass all traditional generation approaches in the 
Ochiai Coefficient. In particular, the best LLM, GPT-4o, exceeds the best of 
traditional approaches, Major, by 24.1%. 
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• Finding 7: Two GPT-4 models perform best, while DeepSeek has a similar 
performance to GPT -3.5, standing out among open-source models. The 
newer models exhibit better performance in mutation generation.

• Finding 8: The prompt with the whole method and few-shot examples as 
context (i.e., P1) achieves the best performance across all Behavior Metrics, 
whereas adding the code of test suites (i.e., P4) decreases performance.

• Finding 9: The mutations generated by GPT models have nine main types of 
compilation errors, with Usage of Unknown Methods and Code Structural 
Destruction being the two most prevalent types.

• Finding 10: Member references and method invocations within the code 
context are the most likely triggers for LLMs to generate non-compilable 
mutations.
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Can LLMs help us do vulnerability analysis?



Result 12: LLMs in Source Code Vulnerability 
Detection

• This paper discusses how LLMs can be used to analyze source 
code and detect known vulnerabilities.

•  It highlights the use of LLMs to capture complex patterns in 
code and convert source code to intermediate representations 
for better analysis.

• https://web.eecs.umich.edu/~movaghar/Vulnerability-detection-LLMs-2024.pdf
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Result 13: LLM-based Agents for Software 
Engineering

• This survey paper reviews the current state of LLM 
applications in software engineering, including vulnerability 
and defect detection. 

• It covers various topics, such as code generation, autonomous 
decision-making, and software maintenance.

• https://web.eecs.umich.edu/~movaghar/LLM-based-agent-se-2024.pdf
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Result 14: Large Language Model for 
Vulnerability Detection and Repair

• This systematic literature review examines approaches aimed 
at improving vulnerability detection and repair through LLMs.

• It covers research from leading software engineering, AI, and 
security conferences and journals.

• https://web.eecs.umich.edu/~movaghar/Source-code-valnurability-detection-LLMs-2024.pdf
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Can LLMs help us fix bugs and write new code?



Result 15: Teaching Large Language Models to 
Self-Debug 
• The paper introduces a self-debugging approach that 

enables Large Language Models (LLMs) to identify and 
correct their mistakes without human feedback. This is 
achieved through few-shot demonstrations.

• It implements a method where the LLM performs 
"rubber duck debugging," explaining its generated code 
in natural language to identify errors by investigating 
execution results.

h6ps://web.eecs.umich.edu/~movaghar/Self-Debgging -LLM 2023.pdf
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Accuracy and Efficiency Improvement

• It demonstrates that the self-debugging approach achieves state-of-the-
art performance on several code generation benchmarks, including 
Spider (text-to-SQL), TransCoder (C++-to-Python translation), and MBPP 
(text-to-Python generation).

• It shows significant improvements in prediction accuracy, particularly on 
complex problems. For example, it improves baseline accuracy by up to 
12% on benchmarks with unit tests.

• It highlights that leveraging feedback messages and reusing failed 
predictions notably improves sample efficiency, matching or 
outperforming baseline models that generate more than 10 times the 
number of candidate programs.
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Result 16: Evaluating LLMs at Detecting 
Errors in LLM Responses 
• The paper introduces ReaLMistake, the first error 

detection benchmark that consists of objective, realistic, 
and diverse errors made by LLMs.

• This benchmark includes three challenging tasks that 
introduce objectively assessable errors in four 
categories: reasoning correctness, instruction-following, 
context-faithfulness, and parameterized knowledge.

https://web.eecs.umich.edu/~movaghar/LLM Error Detection 2024.pdf
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Evaluation of Error Detectors and the 
Analysis of Explanations 

• The authors use ReaLMistake to evaluate error detectors based on 12 
different LLMs.

• They find that top LLMs like GPT-4 and Claude 3 detect errors at very 
low recall rates, and all LLM-based error detectors perform significantly 
worse than humans.

• The paper highlights that explanations provided by LLM-based error 
detectors lack reliability.

• This finding underscores the need for more robust methods to explain 
and justify the detected errors.

12/03/2024 EECS 481  F24 - AI for SE 82



Sensitivity to Prompt Changes and Evaluation 
of Improvement Approaches

• The study shows that LLM-based error detection is highly 
sensitive to small changes in prompts, making it challenging to 
improve the performance of these detectors.

• The paper evaluates popular approaches to improving LLMs, 
such as self-consistency and majority vote, and finds that these 
methods do not enhance error detection performance.
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Result 17: Enhancing the Code Debugging 
Ability of LLMs

• This paper introduces DEBUGEVAL, a benchmark designed 
to evaluate the debugging capabilities of LLMs.

• It proposes a framework called MASTER to enhance 
debugging abilities through data refinement and supervised 
fine-tuning.

• https://web.eecs.umich.edu/~movaghar/Code-Debugging-LLMs-2024.pdf
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Result 18: LLMs for Software Engineering

• This comprehensive review covers various applications of 
LLMs in software engineering, including debugging 
automation.

• It analyzes methods used in data collection, preprocessing, 
and application, highlighting the role of well-curated 
datasets.

• https://web.eecs.umich.edu/~movaghar/LLM-SE-Review-2024.pdf
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Result 19: LLM Assisted Software 
Engineering

• This paper provides an overview of the current state-of-
the-art in LLM support for software construction, 
including debugging.

• It illustrates the potential and challenges of using LLMs 
in software engineering tasks.

• https://web.eecs.umich.edu/~movaghar/LLM-Assisted-SE-2023-Review.pdf
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Can LLMs help us do test generation?



Result 20: CoverUp: Coverage-Guided LLM-
Based Test Generation 

• The paper introduces CoverUp, a system that combines 
coverage analysis with Large Language Models (LLMs) to 
generate high-coverage Python regression tests.

• It utilizes an iterative process where coverage information is 
used to guide the LLM in refining tests to cover more lines and 
branches of code.

https://web.eecs.umich.edu/~movaghar/Coverup Regression Testing 2024.pdf
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Coverage Improvement
• The paper demonstrates through empirical analysis that 

CoverUp significantly improves test coverage compared to 
existing methods. 

• For example, it achieves a median line+branch coverage of 
80% per module, compared to 47% by CodaMosa, and an 
overall coverage of 90%, compared to 77% by MuTAP.

• The paper highlights that the iterative, coverage-guided 
approach is crucial to its success, contributing to nearly 40% 
of its effectiveness.
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Result 21: Automated Unit Test Improvement 
using Large Language Models at Meta 

• The paper introduces TestGen-LLM, a tool that uses Large Language 
Models (LLMs) to automatically improve existing human-written unit 
tests.

• It demonstrates that TestGen-LLM can generate additional test cases 
that cover previously missed corner cases, thereby increasing overall 
test coverage.

• It implements a set of filters to ensure that the generated test classes 
provide measurable improvements over the original test suite, 
reducing issues related to LLM hallucination.

https://web.eecs.umich.edu/~movaghar/Automatic Test Generation Meta 2024.pdf
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Increased Reliability and Coverage of Test Cases

• The paper describes the deployment of TestGen-LLM at Meta's 
test-a-thons for Instagram and Facebook platforms, where it 
improved 11.5% of all classes to which it was applied.

• It reports that 75% of TestGen-LLM's test cases were built 
correctly, 57% passed reliably, and 25% increased coverage.

•  Additionally, 73% of its recommendations were accepted for 
production deployment by Meta software engineers.
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Result 22: Large Language Models as Test Case 
Generators: Performance Evaluation and 
Enhancement 

•The paper conducts an extensive evaluation of Large 
Language Models (LLMs) in generating test cases.

•  The study finds that the performance of LLMs 
declines significantly when handling more complex 
problems, often resulting in errors in the generated 
test cases.

• https://web.eecs.umich.edu/~movaghar/LLM Test Case Generators 2024.pdf
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Improved Accuracy of Test cases
• It proposes a multi-agent framework called TestChain, which 

decouples the generation of test inputs and test outputs. This 
framework uses a ReAct format conversation chain for LLMs to 
interact with a Python interpreter, leading to more accurate test 
outputs.

• It demonstrates that TestChain significantly outperforms the 
baseline. Specifically, using GPT-4 as the backbone, TestChain 
achieves a 13.84% improvement in the accuracy of test cases 
on the LeetCode-hard dataset.
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Software Testing with Large Language
Models: Survey, Landscape, and Vision
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• The paper provides a comprehensive review of the utilization of 
large language models (LLMs) in software testing. 

• It analyzes 102 relevant studies, highlighting the various software 
testing tasks for which LLMs are commonly used, such as test 
case preparation and program repair.

• The paper discusses the types of LLMs employed, the prompt 
engineering techniques used, and the accompanying methods that 
enhance their effectiveness.

•  https://web.eecs.umich.edu/~movaghar/Testing LLMs Survey 2024.pdf

https://web.eecs.umich.edu/~movaghar/Testing%20LLMs%20Survey%202024.pdf


12/03/2024 EECS 481  F24 - AI for SE 95

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 3/67



12/03/2024 EECS 481  F24 - AI for SE 96

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 12/67



12/03/2024 EECS 481  F24 - AI for SE 97

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 12/67



12/03/2024 EECS 481  F24 - AI for SE 98

 Coverage LLM Paper

5 Java projects from Defects4J 16.21% 5%-13% (line coverage) BART [26]

11/8/24, 6:27 PM [2307.07221] Software Testing with Large Language Models: Survey, Landscape, and Vision

https://ar5iv.labs.arxiv.org/html/2307.07221 13/67
10 Jave projects 40% 89% (line coverage), 90% (branch coverage) ChatGPT [36]

CodeSearchNet 41% N/A ChatGPT [7]

HumanEval 78% 87% (line coverage), 92% (branch coverage) Codex [39]

SF110 2% 2% (line coverage), 1% (branch coverage) Codex [39]

Note that, [39] experiments with Codex, CodeGen, and ChatGPT, and the best performance was achieved by Codex.
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