Explaratﬁry Experimental Studies
Comparing Online and Offline
P 11“0gra"miming Perf(}rmance

H. Sacksman, W. J. Brksox, anp E. Tl Grant
Systenii Dewvelopment  Corporation
Santa Mondca, California

Two exploratory experiments were conducted at System
Development Corporation to compare debugging perform-
once of programmers warking under conditions of online and
offline access to o computer. These are the first known studies
that measure programmers’ performance under controlled
conditions for standard tasks.

Statistically significant results of both experiments indicated
faster debugging under online conditions, but perhaps the
most important practical finding involves the striking individual
differences in Methodological
probiems encountered in designing and conducting these
experiments are described; limitations of the findings are
pointed out; hypotheses are presented to account for results;
and suggestions are made for further research.

programmer performance.

KEY WORDS AND PHRASES: online vs. offline perfarmance, programmer/
computer communication, programming experimental-empirical studies,
programming cost effecliveness, programming performance, debugging
effectivenass, time sharing vs. batch processing, factor analysis application,
programmer trainee performance, bosic programming knowledge tfest,
experiencad progrommer study, analysis of variance, programmet indi-
viduat differences

CR CATEGORIES: 2.40

Introduction

Computer programming is & multibillion dollar indus-
try. Major resources are being expended on the develop-
ment of new programming languages, new software tech-
niques, and improved means for man-computer com-
rounications, As computer power grows and computer
hardware costs go down heeause of the advancing com-
puter techunology, the human costs of computer program-
ming continue to rise and one day will probably greatly
gxceed hardware costs.

This researsh was sponsored by the Advanced Research Projects
Ageney Tuformation Processing Techniques Office and was moni-
tored by the Eleetronic Systems Division, Air Foree Systems Com-
mand, snder contract F 1962867C0004, Information Processing
Techniques, with the System Developroent Corporstion.

Yolume 1L / Number 1 / Januavy, 1968

'B. RANDELL, Editor
Amid all these portents of the dominating role that com-
puter programming will play in the emerging computer
seene, one would expect that compuler programming
would be the object of intensive applied scientific study.
This is not the case. There 1s, in fact, an applied scientific
lag in the study of computer programmers and computer
programming—3a widening and eritieal lag that threatens
the industry and the profession with the great waste that
inevitably aceompanies the absence of systematic and es-
tablished methods and findings and their substitution by
anecdotal opinion, vested interests, and provincialism.

The problem of the applied seientific lag in computer
programming is strikingly highlighted in the field of online
versus offline programming. The gpectacular increase in
the number of time-shared computing systems over the
last few years has raised a critical issue for many, if not
most, managers of computing facilities. Should they or
should they not convert from a hatch-processing operation,
or from some other form of noninteractive information
processing, to time-shared operations? Spirited contro-
versy has been generated at professional meetings, in the
literature, and at grass roots, but virtually no experimen-
tal eomparisons have been made to test and evaluate these
competing alternatives objeetively under controlled con-
ditions. Except for related studies by Gold 1967 [4], and by
Schatzoff, Tsao, and Wiig 1967 [11], the two experimental
studies reported in this paper are, to our knowledge, the
first on this central issue to have appeared. They illustrate
the problems and pitfalls in doing applied experimental
work in computer programming. They spell out some of the
key dimensions of the scientific lag in computer program-
ming, and they provide some useful guidelines for future
work.

Time-sharing systems, because of requirements for ex-
panded hardware and more extensive software, are gener-
ally more expensive than closed-shop systems using the
same central computer. Time-sharing advocates think
that such systems more than pay for themselves in con-
venience to the user, in more rapid program development,
and in manpower savings. It appears that most program-
mers who have worked with both time-sharing and elosed-
shop systems are enthusiastic about the online way of life.

Time sharing, however, has its eritics. Their arguments
are often directed at the efficiency of time sharing; that
is, at how much of the computational power of the ma-
chine is actually used for productive data processing as
oppased to how much is devoted to relatively nonprodue-
tive funetions (program swapping, idle time, ete.). These

Counmunications of the AGM 3



pek 1963 181 Fmerson 1062 121 and Sace-

that the effieioney of tune-sharing

eritics (zes Pt
-

domald i%a 1713 eloim
gystems ¥ questionable when compared to modern closed-

]

shop methods, or with economical small compuiors, Hluee
onfing systems are premumnbly more expensive than off
hine systems, there i litle justiBession {ov thelr use
exeent In those situntions where online necess v manda-
tory for svstem operations {for examyple, 1o realtime come
mand and control svsiems) Tune-sharng advocates re-
spond to these eharpes by saving that, even if time shanng
s more costly with regand (o hardware and operating offi-
ciency. the savings In prograanaer man-hours and in the
time required to produce wm%&mg programs more than
offset such imeressed eosta, The erities, however, do not
concede this point either. Jlany believe that programmers
grow lazy and adopt (\szmiem and ineffivient work habits
under time sharmg. In {ael, they claim that instead of
wmproving, programmer performmnce s likelv to deterio-
rate.

Tha two exploratory studies summarized here wre found
i Grant and Saekman 1966 130 and in Erikson 1966
{31 The ariginal studies should be cwxxnhﬂi for technieal
derails that are bevond the seope of this paper, They
were performed by the System Development Corporation
for the Advaneed Heseareh Projects Ageney of the De-
partment of Defense. The first study i3 concerned with
ouline versus offline debugging performance for a group of
twelve Mpe?nemm programmers {average of soven vears’
experience). The second ipvestigation involved nine
programmer trainees in a comparison of interaciive ver-
sus norinteragtive program debugaing. The highlights of
each study are diseussed v tum, and the composite re
siilts are interproted in the concluding section. For casier
reforence, the first experiment is desertbed 23 the “Ex-
perienced Programroer” study, snd the sesond ss the
“Prograramer Traines” stuily,

The twe experiments wers conducted using the SDC
Time-Sharing Svsiem (TS5} under the normal caline
condition and simulsted offfine or nominteractive condi-

tions, IS8 i 8 geoeral puwpose svatem (see Schwarlz,
Coffinan, and Weissman 1964 [14], and Schwartz and

Weisstnan 1987 (181 similsr in many respects to the
jeet MAC system {sse Scherr 10986 [121) ab the AMasen-
chusetts Institute of Technology. SBchwartz 1965 [13] has
characterized this elass of tme-gharing system a8 providing
four wnbortant properties o the user: “lostantanesus”
reaponse, ndependent operstion for each ser, essentially
simultaneous operation for several users, and geveral por-
poee capability,

TRE utilizes an 1BM AN/FBO-3Z eomputer, The ol
fowing ¥ o general deseription of s operaiion. User pro-
grams sre stored on magnetic tape or in disk e mwmory.
When a user wishes 1o operate Ma program, he goem 1o
one of soveral teletype @*f,mf;i@fg, these conwoles are divect
inpat/output devices {o the (32 He mstruets the com-
puter, through the teletype, to lond and activate his pro-
gram. The systern then losds the program sither from the

4 Communications of the ACM

disk Lo or

Dromn magnetie tape nte setive storaee [dram

mewery Lo AN currently operating progrians are stored on
drire memory and e Deansforead, ene ol o time, o turn

e wehy

!
inte core memory for processing, §nder boaling
centrol, each program s proressed {or ooshort amount of

|

pinge {wsanlly 2 fraetion of o secondd and 8 then replacs
moactive storage (o awalt s next lurn,
transferved to care only i1 it reauives processing; otheraise
i passed up Tor that turn, Thus,
muteh fime a8 he needs thinking about what
without wasting the computational fime of the mnchine
Although » time-sharing svslem processes programs se-
quentinliy and diseontinuousty, it gives users the illusion
of sunultaneity and contiouity because of 1tg high spoeed.

A program i

wouser s spend s

tooce noxt

1. Esperienced Programmer Study

1.1 BExeermaeytan Dusen

The design used in this experiment i ustrated in
Figure 1.

Online Dflisr !

GROUP L Maze

V

Algebra (D)

D GROUP T Mauze {6 Algebrs  {6)
R ‘;
Totals 1123 127

A S S

Fra. 1.
grammer study

The 2 % 2 Latin-scquare design with repeated measures
for this experiment should be interpreted as follows. Two
experimental groups were emploved with six subjects
each; the two experimental treatments sere online and
oifline program debupgging; and the Algebra and Maze
problems were the two types of programs thal were coded
anid debugged. Repented measures were emploved in that
each subject, serving s bis own control, soived ong prob.
lern task under online conditions and the other under
offiine conditions. Note in Figure 1 that each of the two
prograse problesms appears once, and only unee, in each
ro and eohumn o meet the requirements of the 2 X 2
Latin-square. Bubjeets were assigned Lo the bwo groups at
random, and problem order and onling/offline order were
sounterbalanced.

The statistical treatment for this design involves an
analvsis of varisnee to test for the signibicance of meun
differences between the onbne and offline condivions
and between the Algebrs and Maze problens, There we
two analyses of varlance, corresponding to the two e
terion messures—onie 07 prograsuner mat-hours spend
in debugging snd the other for central processor tire, A
foading advantage of the Latinagoare design for this
experiment s that esch analysis of varianes incorporates a
total of 24 messurements, This configuration permiss
maximum pooled mumple size and high .@ai<1m“‘ar‘zi§ uffi-
wy i the soalysiz of the resulls —especially desirablo
festurey n view of the amall subjest mmp!@:» th:}w WETE
wapd.

Experimental desiga for the experiensed pro-

Volome 11/ Nuwber 1/ January, 1968 o



1.2 Murwon

A number of problems were encoundered in the design
and sonduet of thiz cxperiment. Many are illnsgtrative of
problemy i experimenting  with operational computer
svstems, and many stemmed from lack of experimental
precedent in this area. Key problems are deseribed below.

120 Online and Offline Conditions. Defining the
onhine condition posed no problems, Programmers de-
bugging ondine were sireply nstructed to use TSS in the
normal fashion. All the standard features of the system
were available to them for debugging. Defining the off-
line condition proved more difficult. Tt was desired to
provide a controlled and uniform turnaround time for the
offline eondition, Tt was further desired that this turn-
around tune ke short enough so that subjects could be
released to their regular jobs and the experiment com-
pleted in a reasonable amount of time; on the other hand,
the turnaround time had to be long enough to consiitule &
significant delay. The compromise reached was two
hours—considerably shorter than most offline systems
and vet long enough so that most of the programmer-
subjects complained about the delay.

Tt was decided to simulate an offline system using T'SS
and the Q-32 by requiring the programmer to submit a
work request to a member of the experimental staff to
have his program operated. The work request contained
specific instructions from the programmer on the proce-
dures to be followed in running the program-—essentially
the same approach used in closed-shop computer facilities.
Strictly speaking, then, this experiment was a comparison
between online and simulafed offiime operations.

Each programmer was required to code his own program
using his own logic and to rely on the specificity of the
problem requirements for eomparable programs. Program
coding procedures were independent of debugging condi-
tions; i.e., regardless of the condition imposed for check-
out—online or offline—all programimers coded offline.
Programmers primarily wrote their programs in JTs
{JoviarL Time-Sharing—a procedure-oriented language
for time sharing).

1.2.2  Fzperimenial Problems. Two program problem
statements were designed for the experiment. One prob-
lem required the subjects to write & program to interpret
teletype-inserted, algebraic equations. Each equation in-
volved o single dependent variable. The program was
required to compute the value of the dependent variable,
given teletype-inserted values for the independent vari-
ables, and to check for specific kinds of errors in teletype
input. All programmers were referred to a published source
{(Samelson and Bauer 1960 [10]) for a suggested workable
logic to solve the problem. Programs written to solve this
problem were referred to as Algebra programs.

The other problem ealled for writing a program to find
the one and only path through a 20 X 20 cell maze. The
programs were required to print out the designators of the
eells constituting the path, Each cell was represented as
an entry in a 400-item table, and each entry eontained

Volume 11 / Number 1 / January, 1968

wformation on the directions in which movement was
possible from the cell. These programs were referred to as
Maze programs.

1.2.3 Performance Measures. Debugging time was
considered to begin when the programmer had coded and
compiled a program with no serious format ervors de-
tected by the compiler. Debugging was considered finished
when the subject’s program was able to process, without
errors, a standard set of test inputs. Two basic eriterion
measures were collected {or comparing online and offline
debugging—programumer man-hours and central processor
(CPU) time.

Man-hours for debugging were actual hours spent on
the preblem by the programmer (including turnaround
time). Hours were carefully recorded by elose personal
observation of each programmer by the experimental
staff in conjunction with a daily time log kept by the sub-
jects. Diserepancies between observed time and reported
{ime were resolved by tactful interviewing. 188 keeps
its own aceounting records on user activity; these records
provided accurate measures of the central proecssor time
used by each subject. The recorded CPU time included
program exceute time, some system overhead time, and
times for dumping the contents of program or system regis-
ters.

A variety of additional measures was obtained in the
course of the experiment to provide control data, and to
obtain additional iodices of programmer performance.
Control measures included: TSS experience, general pro-
gramming experience (excluding TSS experience), type of
programming language used (JTS or machine language),
and the number of computer runs submitted by each
subject in the offline condition. Additional programmer
performance measures included: man-hours spent on each
program until a successful pass was made through the
compiler (called coding time), program size in machine
instructions, program running time for a successful pass
through the test data, and scores on the Basic Program-
ming Knowledge Test (BPKT)—a paper-and-pencil
test developed by Berger, et al,, 1966 [1] at the Univer-
sity of Southern California.

1.3 Resurts

1.3.1 Criterion Performance. Table I shows the means
and standard deviations for the two criterion variables,
debug man-hours and CPU time. These raw score values
show a consistent and substantial superiority for online
debug man-hours, from 50 percent to 300 percent faster
than the offline condition. CPU time shows a reverse
trend ; the offline condition consistently required about 30
percent less CPU time than the online mode. The stand-
ard deviations are comparatively large in all cases, re-
flecting extensive individual differences. Are these results
atatistically significant with sueh small samples?

Table 1T shows three types of analysis of variance ap-
plied to the Latin-square experimental design. The first
is a straightforward analysis of raw scores. The second s

Communications of the ACM 5.



rerre daxck

e

Aean ERY .3
K13 4.3 3%

CEl Trun (sed)

Ferformanss megsures

1o Deeve Max-lioons
Ounlire v, Oiine

Algebra vs, Maze

Z.

Nong None None

N one 01 05

TABLE I Ravge orF Ispivipvar INFFERENCES
1% PROGRAMMING DERFORMANCE
Fesi sears

1 g 151
2 i 1
EOCPU vine ;”‘?U/?hm {zped 370 01
4. CH, vime Alaz 5 | 0 1101
B hours Algebra 7 1501
5. Code hours Maze 2 2351
Vo Program gize Algel JRNGH 611
B Program size Mare i53] 501
4. Hun rime Algebra s 1.6 301
10 Bun time Maze {5eed I 1301
an analvsis of sguare root sransformed seoves to obiain

e normal (h~‘z‘1§»nswn~. The third Is ako an anaivs]
; gare root soores but with the covarianes

t
dath prograromer Hsmsﬁ skl pareeled oud
) WETE vﬁﬂ‘u! oy enuated
Sihme differences could be

fii?{f:f'%i}',

sene Appleations resulied sy ansles TIRACE
Tthreo for ench orilerion measus v Tahle 11
Table 11 represent the three E‘ur“i of analy-
two CcTHEron mensires.,
2 for maenn differences

{he eobiimns in

“;é‘ TIPL R ,-La.‘m the

ool wvaranes, Lo

Por sacl

compared online versis  Algebrs
: .

3%
s show the
£

T Tl

6 Communications of the ACM

oo g
300

Whe resudie in Table 17 vovead Lea Dndings Tor thas ox-

pernrent, Tl (st row shows results for enline versas off-
Hoe pertormuanes as measured b debuag mon howess The

-

ravw seore nneldy ol varinnes <hows no osieniliend
ferenees, The o

shows o U pereen

doroed senres

tdevel of signi‘[’imm coan

nadvste ot saquaee tooh fn

of ouline

perforninee, The last avabisis of varisoee, with covian.

ANCE, U1 S Pool Rores, shows :-“1;1{‘1;\'?1«):1&;’ st liennd
differences m Gvor of the online rondition o the 0235
level, This progoes=ive trerad townrd more eleareut menn
differences Tor shorter debug man-ours with
formanee reflecis the Inereming statisticsl conteol over

individunl differences i the three tvpes of analvses, In

A,Jizlifaé‘ Per-

contrast to debug man tumrzs: no significant trend s jndi
cated for online versus offfine conditions for CPU time
11 real differences do exist
Table § for wore OPU time in the onling maode,
differences were not strong enough to show statistical
sigmificanee wikh and with the large
wdividual differences belween programmers, even with
the square reot and eovariance trans{ormations.

The resulty for Algebra versus Muze differsnces ser
not surprising. The Algebry & dotger
and harder problem thao by
all the performance measures. The [anly consistent sig-
nticant differences between Algebra and Maze seores
shown i Table 1T reflect the differential effects of the {huee
testz of aoalysis of varianee, al, in particular, polnt up
the greater sensitiviey of the suare root transformations
(mn the rniginal raw scores In demonstr
problem differences,

132 Dubividual Liifferences. The observed manges of
wmdividual differences are lsted in Table TIT for the ten
performanece varimbles measured in this study, The ralis
Detween bighest and lowe shinvn.

Pabsle 11T points up the very large individual differences,
typicatly by an order of magnitude, for most performance

variables, Tn paraphrase o nursery rhyme:

¢ along the hnes mdienied
twese

these small samples

iask was obviousiy

the AMaze task, as irubicated

ating sighificant

st values = also s

When a programmaer is good,
He is wery, very good,

But when he 1z had,

He da horrid.

The “hoprd” portion of the performanes frequency dis-
tributinn i the long tall ot the high end,
skowed part whieh shows that one poor 3;{% rformer con

0 good pnes,

the positively

sonsEaGe o much Ltime or cost as 5, 10, or
Valudated tachnitgues to detert :mai wued ot these T

performers could result o vast saviogs 1o e, offor,

arel eost
g

s ebtein further information on these stelking nde

v ]
duetedd on the

Vdilerences, an explorptory factor analyads was rone

wlercorreintions of 15 porformancs and
gonbrol varinbles In the o s;ns*a'm'\z«fa‘:;ai datin, Coupled with
won of the empivical corre m Gt metrix, the

rasis resulte w

visnal Insp
g

wo A substantinl performunes facior dosignated ns Spro-
ginrorng speed,”” pssoeistod with fnater coding and de-

YVolume 11 /) Number 1/ Jarnuary, 1968



A welldelined “program ceonomy’ factor marked
by shorber and fastor running programs, assoeiated to
some extent with grester programming experience and
with the uze of mnchine language ravher than higher order
Lrigunge,

This coneludes the deseription of the method and re-
salts of the first study. The second study on programmer
tratnees follows,

2. Programmer Traines Study

2.1 Bxeepniventan Desion

A 22 Latin-square design was also wed in thiz ex-
periment. With this design, as shown in igure 2, the Sort
Rowiine problem was solved by Group T {consisting of
four subjects) in the noninteractive mode and by Group
I {eonsisting of the other five subjeets) in the interactive
mode, Similarly, the second problem, a Cube Puzzle, was
worked by Group I in the interactive mode and by Group
I in the nonivieracsive mode.

!

| Frteractive Nouinterastive

Sort Routine
Cube Puzzle

IGROUP 1 () Cube Puzzle
HIROUP T (5 Sort Routiue

Toinl 9 Bubjects

Fia. 2. Lxperimental design for the programmer trainee
study

Analysis of variance was used to test the significance
of the differences between the mean values of the two
test conditions (interasctive and noninteractive) and the
two problems. The first ({est eonditions] was the central
experimeental inguiry, and the other was of interest from
the point of view of control.

2.2 Megruop

Nine programmer teainees were randomly divided into
two groups of four and five each, One group coded and
debugged the first problem interactively while the other
group did the spme problem in a noninteractive mode. The
bwo groups switched computer system type for the second
problem. Al subjects used Trvr (Kennedy 1965 [6]) for
both problems. {(Tivr is a dialect of Joviarn that is used
interpretively with TS88.)

2,21 Interactive and Noninderactive Conditions, “In-
teractive,” for this experiment, meant the use of T88
and the Tiny language with all of its associated aids, No
restrictions in the use of this language were placed upon
the subjects.

The novinteractive condition was the same as the in-
terachive except that the subjects were required to guit
after every sttempted execution. The subjects ran their
own programs under close supervision fo assure that they
were 1ot inadvertently running their jobs in an interasctive
manner. If o member of the noninteractive group imme-
dintely saw his error and if there were no other members

Yolume 11 / Nuamber 1 / January, 1968

of the nonintersctive group waiting for a teletype, then,
after he quit, be was allowed to log in again without any
waiting period. Walting time for an available console in
the noninteractive mode fluetuated greatly but typically
involved minutes rather than hours.

2.2.2  Beperimentol Problems. The two experimental
bushks were relatively simple problems that were normally
given to students by the training staff, The first involved
writing a numerical sort routine, and the second required
finding the arrangement of four specially marked cubes
bliat ot a given condition. The second problem was mare
difficult than the first, but neither required more than five
days of elapsed fime for a solution by any subject. The
subjects worked at cach problem until they were able to
produce a correct solution with & run of their program.

2.23  FPerformance M easures. CPU time, antomatically
recorded for each frainee, and programmer man-hours
spent debugging the problem, recorded by individual
work logs, were the two major measures of performance.
Debugging was assumed to begin when a subject logged in
for the first time, that i3, after he had finished coding his
program at hiz desk and was ready for initial runs to check
and test his program.

2.3 Resuvrs

231 Criterion Performance. A summary of the results
of this experiment is shown in Table IV, Analvsis of vari-
ance showed the difference between the raw score mean
values of debug hours for the interactive and the nonin-
teractive conditions to be significant at the .13 level. The
difference between the two experimental conditions for
mean values of CPU seconds was significant at the .08
level. In both cases, better performance (faster solutions)
was obtained under the interactive mode. In the previous
experiment, the use of square root transformed seores
and the use of coding hours as a covariate aliowed better
statistical conirol over the differences between individual
subjects. No such result was found in this experiment,

If each of the subjeets could be directly compared to
himself as he worked with each of the systems, the prob-
lem of matehing subjects or subjeet groups and the need
for extensive statistical analysis could be eliminated.
Unfortunately, it is not meaningful to have the same sub-
ject code and debug the same problem twice; and it is
extremely difficult to develop different problems that are
at the same level of difficully. One possible solution to
this problem would be to use some measure of problem
difficulty. as a normalizing factor. It should be recognized
that the use of any normalizing factor can introduce prob-
lems in analysis and interpretation. It was decided to use
one of the more popular of such measures, namely, the
number of instruetions in the program, CPU time per
instruction and debug man-hours per imstruction were
compared on the two problems for each subject for the
intoractive and noninteractive conditions. The resulls
showed that the interactive subjects had significantly
lower values on both compute seconds per instruction
{01 level) and debug hours per instruction (06 level).

Communications of the ACM 1



UMER  LRATNEE
PERFOuMAaNGE

Proweo dav-Hovus

RAIFN Lwhe
N K
Twiergeie Nowimieracing ‘
Mean 0,71 3T g JENE
=1 (b s 3.8 4. T
UHL Time axeed
RELHERTIRE S Cude puziie
Traterocises Suoriniprocsizg Tuicvadtine B
Mean 1 et a0 B75. 3
=i Y 858 213.0 U

3.2 Individual Drifferen
ous stady was that there were nvge nudividunl
Because of differences
variation

g One of the kev Hndings of
the IJM“
differsnecs bhetwoeen ;)3“!)5_"_1’:111\1‘&(‘3'5‘.

%sx samphing amd seale faetors, mwi*‘ivémtzﬁ of
woere computed to compare mdivicduad d
stuchies, H
poercentage: it is equal 1o the \Hmi*ﬁd devi
bvothe mean, multipied by 1000 The
showed 1l coeffieients of
and CPU time m
staadler than coeflicients of vasianon s the
{median values of 86
percent and 37 percent, swpa?ct%wi ). These oh
able, in part, Lo the greater dif-
of the problems in 121 g p{*n{mux{ pYOEram-

Terences m both
sariation §>" papreseed wy

ation divides

{The poetheient o 3

£
cveradl resuglis

varigtion for debug man-
frours this experiment were oundy 16
pereaent
experenced  progriovimer study

served difs

ferences muy be i
fionlty

wier <tucdy, and 1o the much greater range of programming
pxperience  Detween sub) which aeme%i to rnagndy

individual programmer differences,

I an attempt o determune i there are messures of

can be u as o prelimlnary sereening tool to

were eathered on the \isﬂ(‘ s

grades in the SDC pro

wenticoned earlier. they were alzo given the P‘w:ie‘ Progrum
=1 (PR v all
ENIET ;,wijfzi\sﬂﬂ SOTEE, and the
BUPRT results were determined, Dxeept for some spurions
PEIT-5 fuy

Correlations hetwee

ming Koowledge Te

nenial messures, grades

i rorrplations the resilis showed no consisient

(ST Lin hr_t AR [ ruy we measires aned the varous

candd rest seores, The most Interesting resule of this

pploriory analysie, howsver was that ohsss grades o

antial utercorrelntions. This

v the firer of the 1wo BPRT
{:;;rsrffi;msagz:c ranged bebween
BPRT twe vt of these four

tieons areoat the 3 pareent leved and one

BT seores shonved snbs

woempecinily aotable w ?ma k3

A

S AL RE S ST si‘%')iifwlz‘,iﬂ"t

Sband K3 Gy Part T ol the

EOTT pxeands
H 5‘1&‘ 1

siprnnabos.

pereent level of sgnifieance even for these sraald

This imphes that the BPR

#omeastring the
firpds of skills ther are messured o traines clnes

SIS ETN

medead 1hal neither el
] g};‘m‘i;if«:xi

.
rnnnies. 18 shonld alee be :

uor BURT we

g of traines performanes in the test siustion

3 3
wen Wil DAYe

that was wasd i thesenperment, This observation may be

8 Communieations of the AUM

and lnrge,

shared ermmputing fusility

i!'zia‘-rpa'r!vﬁ three basie waoves Dest)

ehims wndes are valid amd fhat the peablems dooant cepre.

sent generid programmnng tehoas secotd, thnt the probliong

are valid, bot that the BPRT cod comss wiwdes are oo

mdicadive of working progrminer perfornanee: o thind,
BT ol edaes

thot verrelitions between the arnales

Jdon Swet enish w i respoet to programiing performanee,
Bt that the ntereoreelations are only low 1o mmi*‘i‘;l!&\
which eannet be deteeted by the vory samdlsimplies tsed
i these cxperiments, The resuales of those =tudies e wne

71‘:9;_{{11!{334 with :";\»‘p(‘s'i co these three ?vj.;aﬁwf%w"‘.‘it\rl; fortliep

wvestioarion s reired toodetermine whether one or any

of them will hold,

corabinatiion

3. Interpretation
Helore drawing any eonclusions fron the results, eon
sider the = eh o dealt with ool

number of subjects

spe of the twe spadies. T
DETTOFIIIE 1easures W ere Trkesd
by hirge error varianes and wide ranging H'rfii\'i-,l%.uﬂ if-
whdeh made <tatistiend inference difficnll and

forenees,

riskv, The sahieet skl ronge was copspderable, Trom

provesioer Drinees 11 one stiady 1o highly experieneed

research and development programmers o the othern
The programming languages ncluded one e lan
gunge and two subsets of Joviar, w higher order Innguage,
D both experimoents TR8 served as the enline or mierac.
tive condiiion whereas the offline ar noninteractive mode
hued to be simulated on TES nevording to speeified rales.
Only one fueility was used for both experlimenis T8
The problems ranged fvom the coneeptually simple tasks
administered to the
mare difficult pro blems given to the experienced program-
The represernativeness of these problems for pro

DrOgrainmer irninees 1o the muceh

mers.
gramming fasks is unknown, The point of this thumbnail
skereht of the two stodies 1s simply 1o x‘-za:p?s;asé:«') their
tentative, exploratory nature —at best they cover o bighty
eirpiynseribed set of online and offfine programming be-

IR,

ha

The interpretation of the resubte iz diseussed under thres
arcas, corresponding 1o three lending objectives of
onbine awl oftline pro-
dividuasl differenees

these two stidies: compurison of

gramming poerformanee, ansiveis of

i progmmming proficienesy and fmpheations of  the

q

methededogy and findings e Duture rescarch.

S8 Onnane v, DFFLINE PROGEAMMING DERFORMANCE

{35 tho
the onbne ronditions resylied in

busts of the conerote pealts of these oxperuments,
“13'%&“!.&5“ anrd, by
sigrificantly better prformanee for debug man
e Lhan the cffline conditions, The crucial questions are
1y what sxtent may these resuits he genernlized 1o other
computing faodidies, 10 other PEOEIRMICTS, 10 x'fu‘}’izig
lovels of turnsround Yine ) anrd 1o obher types of prograns
ming problems? Provisional aoswers to these fonr e
taons haghlight problem aress ropinog Turther research,
The onbne/offfine compnrleons were made oot
in swhigh the online eoudition

Vidurae 31 / Number 1/ January, 1968



was the natwal operationa! mode, whereas offline condi-
tiong had to be sioddaled, 6 might be argued that in
aualogous experiments, couducted with a baleh-processing
faciity, with real offtine conditions and simulnted online
eonclitions, the resulls might be reversed. One wav to
newtralize this methodologicsl biag is to conduct an experi-
ment in o hybrid facility that uses holh time-sharing and
batch-processing  procedures on the sare computer so
that peither has to be simulated. Another approach is o
compare facilities matched on type of compuber, program-
ning languages, compilers, and other tools for eoding and
debugging, but different in online and offline operations.
It might also be argued that the use of new and different
programping languages, methods, and tools might lead
t0 entirely different results.

The generalization of these results to other programmers
essentially boils down to the representativeness of the ex-
perimental samples with regard to an objective and well-
defined eriterion population. A universally aceepted classi-
fication scheme for programmers does not exist, nor are
there accepted nortas with regard to biographieal, educa-
tional and job experience data.

In ecrtain respects, the differences hetween online and
offline periormance hinge on the length and variability
of turnaround time. The critical experimental question is
not whether one mode is superior to the ather mode,
since, all other things equal, offline facilities with long
surnaround times consume more elapsed programming
time than either online facilities or offline facilities with
short turnaround times. The critical comparison is with
online versus offline operations that have short response
times. The data from the experienced programmer study
suggest the possibility that, as offine turnaround time
approaches zero, the performance differential between the
fwo modes with regard to debug man-hours tends to dis-
appear. The programmer trainee study, however, tends to
refute this hypothesis since the mean performance ad-
vantage of the interactive mode was cousiderably larger
than waiting time for computer availability. Other experi-
mental studies need to be conducted to determine whether
online systems offer a man-hour performance advantage
sbove and beyond the elimination of turnaround time in
converting from offline to online operations.

The last of the four considerations crucial to any general-
ization of the experimental findings—type of program-
ming problem—presents a baffling obstacle. How does
an investigator select & “typical” programming problem
or set of problems? No suitable classification of computing
systems exists, let alone a classification of types of pro-
grams. Seientific versus business, online versus offiine,
auntornated versus semiautomated, realtime versus non-
realtime—-these and many other tags for computer systems
and computer programs are much too gross to provide
systemutic classification. In the absence of a systematic
elagsifieation of computer programs with respect to under-
Iying skills, programming techuiques and applieations,
all that enn be done i to extend the selection of experi-

Volume 11 / Number 1/ Janosry, 1968

mental problems to cover a broader speetrum ot program-
ming activity.

In the preceding diseussiom we have been primanly
concerned with consistent findings on debug man-hours
for hoth experiments. The opposite findings in both studies
with regard o CPLU time require some comment. The
results of the programmer trainee study seem to indicate
that online programming permits the programmer o
solve his problem in a direct, winlerrupted manner, which
results wot only in less human time but also less CPU
time. The programmer does not have to “warm up”
and remember his problem in all its details if he has access
to the computer whenever he needs it. In contrast, the
apparent reduction of CP'U time in the experienced pro-
grammer study under the offline condition suggests an
oppusing hypothesis; that is, perhaps there is a deliberate
tradeoff, on the part of the programmer, to use more
machine time in an exploratory trial-aud-error manner
in order to reduce his own time and effort in solving his
problem. The results of these two studics are ambiguous
with respect to these opposing hypotheses. One or both of
them may be true to different degrees under different con-
ditions. Then again, perhaps these explanations are too
erude to account for complex problem-solving in pro-
gramming tasks, Mare definitive rescarch is needed.

3.2 InpivibuaL DIFFERENCES

These studies revealed large individual differences be-
tween high and low performers, often by an order of mag-
nitude. It is apparent from the spread of the data that
very substantial savings can be effected by successtfully
detecting low performers. Technigues measuring individual
programming skills should be vigorously pursued, tested
and evaluated, and developed on a broad front for the
growing variety of programming jobs.

These two studies suggest that such paper-and-pencil
tests may work best in predieting the performance of pro-
grammer trainees and relatively inexpericnced program-
mers. The observed pattern was one of substantive cor-
relations of BPKT test scores with programmer traince
class grades but of no deteetable correlation with experi-
enced programmer performance. These tentative findings
on our small samples are consistent with internal valida-
tion data for the BPKT. The test discriminates best be-
tween low experience levels and fails to diseriminate signifi-
cantly ameng highest experience levels. This situation
suggests that general programming skill may dominate
early training and initial on-the-job experience, but that
such skill is progressively transformed and displaced by
more specialized skills with inereasing experience.

If programmers show such large performance differences,
even larger and more striking differences may he expected
in general user performance levels with the advent of in-
formation utilities (such as large networks of time-shared
computing facilities with a broad range of information
services available to the general public), The computer
seience comrounity has not meogni_zed {let alone faced up

Communications of the ACM %



10} the problem of nutivipating and dealing with very lavge

individual dafferences mo performing tasks involving man-

compitter comminications for the general pubdlic,

Tvoan at{empt 1o oxplain the 3“&,*%‘11%‘ of both sbudies n
(o oifer o romework

differences iy

vegerd (o mudividual dilforenoes andd
for future analvacs of budividund
mer shills, a dfferentintion hypothesis g offered, s
ows: when progrannners are Orst exposed to and ndoe-
trinated m the wse of computers,

asnd during thew enrly
expericuer with computers, a geaeral faclor of program-
mer proficiency i held o aceount for o lavge proportion
of observed mdividual differencos. However, with the
iiin—‘-rﬂfled and extended experionce,
erentlates into separate

advent of
ernl programming skill faeror Qiff

and relutively independent factors related 1o specialized
experience.

Frov a broader and longer o
i computer seience sod &u&m(ﬁn'r‘x 1 foward mor
fied computers, programming luguages, aud compuier
applieations, This general hm*ﬁi toward Inereasing variety

is Likelv 1o require an equivalent diversifieation of humean

ige perspoctive, the trend

e rdiversi-

skiils 1o prograny such systenms, A pluralistic hypothesis,
siuch as the snggested differentintion hypothesis, seemns

more appropriate to anticipate and deal with this type of
rechnologiesl evolution, not ouly {or programmers, bat

ral user of computing feilith

for the gen

35 Torree Heseparen
These studies with o rather straightforward ob.
f

anof ouline and offin

er controlled ¢

jective—the comparis 1e p?'axi’f""illlil'iﬁi‘

condhitions, Bt

TETTOITRANCS Ul
i order 1o dead m&s the online, offline compzn it

: 3 noeonsider many other factors related
to man-machine performancnr, T or example, i was neces-

1o ook into t sties and correlates of io
ex, WWe had o recoenize that

VRV To assess the representativencss of The

e characier
ttherewasnn

a1l

for dats processing in general,
Fere copstraned 10w siugle computing factlify

- ‘mgw emdine operntions, The debugming criterion

relgtionships with off

wtistionl  eomparison
> pevformance had to glve way
sais n order o interpret the
POSRILTS 0D THOFE T

Ir shorr, o

s ﬁriusﬁ

i oan {»::.gng»cﬁa,i*fm MBnner

tive seientific informa-

ii:a‘a: O COITH pemat ratred

T4 GUNIIE Deriormante—
il

g i compulor PrOgrRIBIG,

tor the f’,»p%f%%ii’i&.{ i,m:fz:'af';. §, %m’ %zxsz; 15

to eqmpniaer

fope Dnnedumental eoperimental b

ZEETE ﬂ &h13

rase for this

Gf ag eompLey f'*'.?ﬁii'ii?.e!:if‘éﬁ_%e"p{‘

i0 Communicatinna of the ACM

ob the =iahi ang

w‘,o‘pg
charw b maek,

asseriion nvolves o or

wobwvotnd the

whieh

direction of compuier =clrnee
pre=enld

arions consbderntions 1k

of this aviiele; this analyvaws
w1067 (8D Bnovien
reconuuended that fuiure
ondine and
within the brosd Daoewerk of

Sof these v

(‘\}wt'lma‘n(n? ;-4)3:33::;:%-4>'H qf
feted
(RERRTRNY gwt‘!aai‘m:m%

$Hine progranmung m-rirz:'m:rw b ¢

wosepnrnde data.

and pot av a4 =imple l””‘mnz:a}

processang werhd oL 1o e dienlt nnd
taborious 1o vonstrue! o =ciendte seaifold for the man.

msehine components and characiensties of progrommey
pevformanee than it s 1o fry 10 coneentrate exclusively
O x'i}zu]‘m;:s comparEon of online and offline progran.
min

Fight brosd arens for

further vesenrveh are indiented:

a. Development of enapineal, normative data on com.

tem performanee with respect to tvpe of appl ‘

man-maching envivenoent, and Dvpes of eomputer

;.\f«w'r-‘w s relation Lo leading tasks an object systems,
. Comparative experimental studies of computer facit

hvbrid instal.

E‘H Hlu, kY

4 ii\)ﬂ‘

ity performance, such as onling, offfing, and
lations, Uy perovuted sgamst broad clisses of
program angaages fmachine-ovicnted, procodure-oriented,

reprostnialive

sveiematica
and  problemeonented  langunges),  and
classes of prograraming {ashs,

g Development of eost-effectiveness models lor coms
tiag man and machine olements,
allv validated measure

puting facilities, Incorpory
with preater emphasis on empir
of effectiveness and less emphasis on abstract models
than hes been the case in the pust
. ?I‘Bgmmmm* job aned task anal
sentaiive
toward the

yaig based on repre
s, leading
vaidated nnd up-

activi

sampling  of
development of empivieally
assification procedures.
colleetion,
whies correlates, and variation
{i‘i‘f&“l‘{’l\f‘”* fﬂ?

prograrnimner

g, = natic anndvals, and evalunoon of
the cmpirical charaete
associated with individual
programmers, inelading analyse of team efleenveness and
team diffsrences,
Development of o variety «
the Basle Programming
ment of and specific programuner shills i

perinrmance

f prper-and-peneil fe
fnnwindge Test, for

FeRRTILANIVE,

relution to rep normstive populiniion,

g. Diotailedt case histories on the genesis ond eonrse of
prograrnmer problemesclving, the Trequeney and noture of
achine errors in the problera wolving
foeriback nnd

the ddehueation of ernieal pro
the e evele of the design,

human and m
the role of machine

PrOseng,

retuforeenent in pree

ranmgner belavior, and
grammer idecision g}s»m't% i
developent and
B Aru

the bronder ar

g

installation of compuler  programs.
13

ity

v, integration of the above findings
s of man-eompuler communioadion for i

Foris ,{‘“ TSET,

Maore powerful npphed research on programoer per
formance, ineluding experimentad {':v*zzyh:ti"érrmzir-" of online
and offine programming. will reguire the developioent

depth of busic concepts and provedures for the field a8 8

Volume 11 / Bumber 1/ Tanuary, 198



whoicen development that can ouly be achieved by a
concerted offtnt to bridge the scientific gap  bebween
kunowledge and application,

BEFERENCES

1, Benaer, Bavwono M, 51 an. Cojmputer personne] selection
and eriverion development: 11, The basic prograriming
Znawle: st. UL of 8. California, Los Angeles, June 1966.

2, Prapwson, Manviz, The'small” somputer versus time-shared
syaterox. Compud. Aulom,, Sept, 1085,

3. Bwrmson, Wareen J. A pilot study of interaetive versus non-
interactive  debugging, TM-3206, Bystem Development
Coeporation, Santa Monica, Calif., Dee, 13, 1966.

4. Gowp, M. M. Methodological for evaluaiing time-shared com-

puker usage. Doctoral dissertation, Alfred P. Sloan School
of Management, M.L'T., 1067,

. Grawe, I B, axp Saceman, . An exploratory Investiga-
tion of programmer performance under online and offfine
condiflons., BE-2581, Mystern Development Corp., Santa
Monica, Calif., Sept. 2, 1966,

6. Keswepy, Povias B TINT users guide. TM-1833/00/03,
Syst. Develop, Corp., Santa Monies, Calif., July. 1965,

7. Macponanh, NErL, A time shared computer system—~—the dis-
sdvantages. Comput. Aulom. (Sept. 1965).

8, Parrick, R. L. So you want to go online? Datamation §, 10
(Oct. 1063), 25-27.

9. Sackman, H. Compulers, System Science, and Evolving Society,
John Wiley & Sons, New York, (n press) 1967.

10, Saversor, K., axp Baver, F.  Sequential formula transia-
tion. Comm, ACM 3 (Feb. 1960), 76-83.

11. Senarzorr, M., Tsao, I, avo Witg, K. An experimental
comparigon of time sharing and bateh processing. Comm.
ACM 10 (May 1967), 261-265.

12. Scoerre, A L. Time sharing measurement. Datamation 12,
4 {April 1966), 22-26.

13, Beawartz, 4. 1. Observations on time sharved systems. Proc.
ACM 20th Nat. Conf., 1965, pp. b25-642,

14, ———, Corruan, B. (1., aNp Werssman, C. A general purpose
time sharing system. Proc. AFIPS 1984 Spring Joint Comp.
Conf., Vol. 25, pp. 387-411.

15, e, anDp Wrissman, €. The 8DC time sharing system re-
vigited. Proc. ACM 220d Nat. Counf., 1967, pp. 263-271.

ot}

Scientific Applications
Corrigenda

James C. Howard, “Computer Formulation of the Equa-
tionz of Motion Using Tensor Notation,”” Comm. ACH 10,
9 (Bept. 1967, 543-H48.

Page Now reads
545, Bq. (1) —= = | A o = to
45, Ha. (13) dat (d_q;#-' + Juk (amk

545, Bg. (14

Shonld read

545, I (1:') ?_‘{\ {?.f}j — 9:& = ?_if,,_.
S B de® Yk e

the eomputer output
shown in Figure 4 . . .

87, LY the following computer

output . ..

B8, Ack. ... Howard Tashjian .. .

All the changes above are due to printing errors.

. Howard Tasjian . ..

Vohume §1 / Numher 1/ Janunary, 1968

Letters to the Editar——Continued from Page 1

{On Meeting Coverage in CACM)

that the techrical sessiong rate no more coverage. Were these seg-
slons deficient, though, they shouldn’s have bean touted “vital,”
Rather ACM should stop breaking its arem patbing ibs own back and
sbart contemplating why, as o learned society, its sessions fall
short of those of the catchall AFIPS, whose claim to learnedness
is certainly less.

I hiad the dishonor of helping seleet papers for one of the ges-
siong, whoge cancellution T subsequently recommended. The ses-
$10m came on anyway; the meeting must go on, and if the field is
moribund, well lower your sights and follow it to the grave,

Hnough digression to the business of program chairman, let’s
return to the Communications. News is okay; ACM undoubtedly
bas news and makes it, and it’s more convenient to have news
bound with the CACH than to ship vet another mireo around to
the membership. Still, if we are going to tell the news, let’s tell it
well. Science magazine is a good model, and I think James P. Titus
does a comeparable job for his seetion of the CACH. But meeting
reports are vastly better done by Science. One might even do Sei-
ence one hetter by tresting meeting reports in the style of hook
reviews, full of opinion; this could have a compelling effect on
seszion organization. Whatever the ultimate style may be, ihe
CACH should be professionsal and honest in all departments, and
i no one can be found to do a depariment right, drop it.

M. DovGras MolLroy
Ozfurd Universily
Computing Laboratory
46 Banbury Road
Oxford, Englond

On CR Format

Eorror:

I havenothing to add to Dr. T. Gabay’s proposal concerning jour-
nal formats [Letter o the Editor, Comm. ACM 10, 9 (Sept. 19673,
531}, only that he missed one more publication, Computing Eeviews.

Here is my proposal for the Reviews:

{13 All sections, e.g. 1.0 General. 4.3 Supervisory Systems, ete.,
should start at the top of an odd-numbered page. This page should
notb contain any information from the previous section.

(2) Left-hard margins should be wide enough for punching
holes; pages may be perforated for easy tear-out.

{3) Extended running numbers should be used, including the
classifying number, also crosgs references.

All this would permit the eollection of each section separately.

Costs might be kept at the same level, if paper of lesser quality
than the present were used. Most important with R is a qguick
aceess to general information about a given seetion, and this could
maost easily be achieved with separate collecting.

GERALD KarsER
D-Y808 Denzlingen
Schasarzwaldsirasse 39
West Germany

Protection of Computer Programs ~ A Bibliography (Page 84, CACM, this 1ssue) [
Reprints Availabls from ACM Headguariers
Single coples fo inddviduals, free; Sinple copies to componies, 508,
Multiple copies: first 10, 50§ ea.; nexl 100, 83¢ eq,; oll over 110, 104 o,
All ordars must be prepuid,

Communicatioens of the ACM 1L



