
Quality Assurance and Testing
The Quest for Nice Things!

1

One-slide summary

2

● Testing is a fundamental way that we ensure our
software is correct.

● There are numerous methods of testing, such as unit
testing, regression testing, and integration testing.

● We can use mocking to test things that are otherwise
difficult to test.

● Testing effectively requires planning.

Boring Technical Definition

Quality assurance - The maintenance of a desired

level of quality in a service or product, especially by means of
attention to every stage of the process of delivery or
production.

- Oxford English Dictionary

3

Motivation

● Programs should be understandable and
maintainable.

● Programs should “do the right thing.”

4

Maintainability

5

● How do we make sure that software is easy to
maintain?
○ Human code review
○ Static analysis tools and linters
○ Use established programming idioms and design

patterns
○ Follow your team’s coding standards

● (More on this in future lectures)

Do the right thing?

● Behave according to specification
○ Foreshadowing: How do we come up with a good spec?

● “Don’t do bad things”
○ Security issues, crashes, Blue Screen of Death
○ If some amount of failure is inevitable, do we handle it well?

● Robustness against regression
○ Do “fixed” bugs sneak back into the code?

6

Do the right thing: How?
● How about we just write a program that tells us if our

software is correct?

7

● How about we just write a program that tells us if our
software is correct?
○ Static analysis, linting, type checking, etc. can approximate

Do the right thing: How?

8

Practical Solution

9

Testing in EECS Courses

10

● EECS 183 and 482:
○ 1 main() function == 1 test
○ Grading process:

■ For each test:
● Run test against correct solution, save output
● For each buggy solution:

○ Run test against buggy solution, diff output with result
from correct solution

○ If output different, bug exposed

Testing in EECS Courses

11

● EECS 281:
○ 1 input file == 1 test
○ Grading process:

■ For each test:
● Pipe input to correct solution, save output
● For each buggy solution:

○ Pipe input to buggy solution, diff output with result
from correct solution

○ If output different, bug exposed

Testing in EECS Courses

12

● EECS 280:
○ 1 function with asserts() == 1 test
○ Grading process:

■ For each test:
● Run test against correct solution, throw out the test if it

fails
● For each buggy solution:

○ Run test against buggy solution
○ If assertion fails, bug exposed

● With your neighbor, discuss the pros and cons of each
method of testing.
○ Summary:

■ 183/482: 1 main() function == 1 test, output diff
■ 281: 1 input file == 1 test, output diff
■ 280: 1 function with asserts() == 1 test, assertion failure ==

test failure

Exercise: Testing in EECS Courses

13

Exercise: Testing in EECS Courses

● The main difference:
○ For 183/281/482, students write program inputs, but not

expected outputs.
○ For 280, students write inputs and expected outputs.

● For 183/281/482, goal is essentially high coverage.
● In real life, you probably don’t have an already-correct

implementation of your program…
● Note: Testing with random inputs (Fuzz testing) helps detect bugs of the

the “bad things” variety (segfaults, memory errors, crashes, etc.)
14

Testing Buzzwords!

15

● Regression testing
● Unit testing
● xUnit
● Integration testing
● Mocking

Regression testing (in 1 slide!)

16

● Ever have one of those “I swear I fixed this bug!”
moments?
○ Maybe you did, but then someone broke it again…
○ This is called a regression in the code.

● When you fix a bug, add a test that specifically
exposes that bug.
○ This is called a regression test.

Regression testing (in 1 slide-ish!)

// Dear maintainer:
//
// Once you are done trying to 'optimize' this routine,
// and have realized what a terrible mistake that was,
// please increment the following counter as a warning
// to the next guy:
//
// total_hours_wasted_here = 42

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-
encountered/482129#482129

17

Unit Testing Frameworks

18

● Often based on SUnit (Smalltalk), written by Kent Beck.

● JUnit, Python unittest, C++ googletest, etc.

● Collectively referred to as xUnit.

xUnit Features

19

● Test case discovery
● Test case runner

o Choose which tests to run

xUnit Features

20

● Test case
○ A piece of code (usually a method) that establishes some

preconditions, performs an operation, and asserts
postconditions.

● Test fixture
○ Specify code to be run before/after each test case.
○ Each test is run in a “fresh” environment.

● Special assertions
○ Assert postconditions, helpful failure messages

Python unittest Example

21

import unittest
class NiceThing:

def __init__(self, num_spams):
self.num_spams = num_spams

def zap(self):
return self.num_spams + 42

class NiceThingTestCase(
unittest.TestCase):

def setUp(self):
self.nice_thing = NiceThing(0)

def test_zap(self):
self.assertEqual(45, self.nice_thing.zap())

if __name__ == '__main__':
unittest.main()

Python unittest Example

22

● We’ll cover this in more detail in discussion.

● See the Python unittest documentation for additional

information:

○ https://docs.python.org/3/library/unittest.html

Unit Testing

23

● Test features in isolation
○ In the coding example, our test for zap() tested only the zap()

method.

○ When a test fails, easier to locate the error.

● Tests are small

○ Small tests are easier to understand.

● Tests are fast

○ Slow tests are more expensive to run frequently.

Unit Testing

24

● Remember the Euchre project from EECS 280?
○ Card, Pack, and Player classes + top-level “play Euchre”

application.

● Let’s say you wrote Card, Pack, and Player without
testing, and then wrote “play Euchre.”

○ What do you do when you find a bug in “play Euchre”?
■ Wish you had used Test-Driven Development...

Test-Driven Development (in 1 slide)

25

1. Write a unit test.

a. When you run the test, it should fail.

2. Write the code that the test case tests.

3. Run ALL the tests.

a. Fix anything that broke, repeat step 3 if any tests failed.

4. Go back to step 1.

Unit Testing vs. Integration Testing

26

● Aren’t those “unit tests” for Pack and Player actually

integration tests???

Unit Testing vs. Integration Testing

27

“There can be no peace
until they renounce their
Rabbit God and accept our
Duck God.”
- New Yorker cartoon

Unit Testing vs. Integration Testing

28

● Once you’ve unit-tested an ADT, you can build on top of it and

write unit tests for new ADTs at a higher level of abstraction.

○ This also promotes modular, decoupled design.

“Does that mean that our tests that rely on integers aren’t really unit tests?

No. We can treat integers as a given and we do. Integers have become part

of the way we think about programming.” - Kent Beck https://www.facebook.com/notes/kent-

beck/unit-tests/1726369154062608/

Integration Testing

29

● Any feature will work in isolation.

● What happens when we try to put our unit-tested ADTs

together?

● Does our application work from start to finish?

○ “End-to-end” testing

Integration Testing: Examples

30

● How? Depends on the application.

● EECS classes:
○ Run main program with input file, diff output.

● Web/GUI application:
○ Use a testing framework that lets you simulate user clicks and

other input.

● Video games:
○ If you’re really fancy, write an AI to play your game!

■ Bayonetta 2: https://www.platinumgames.com/official-blog/article/6968

■ Cloudberry Kingdom: https://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php

Other Creative Testing Methods

31

● Gaze-detecting glasses: https://www.tobiipro.com/fields-of-use/user-

experience-interaction/game-usability/

● Record everywhere the player goes.

Special thanks to Austin Yarger for sending me
these “testing in video game dev” examples.

Break Time

32

I’m not a trivia person, so here’s another meme:

Break Time

33

I’m not a trivia person, so here’s another meme:

Mocking: Testing Hard-to-test Things

34

● What if we want to write unit (or integration) tests for
some ADT, but the ADT has expensive dependencies?

● Exercise: Write down 2 examples of things that are hard
to test because of their dependencies or other factors.

Scenario 1: Web API Dependency

35

● We’re writing a single-page web application, but the
web API we’ll be using hasn’t been implemented or
costs money to use.

● We want to be able to write our frontend (website) code
without waiting on the server-side devs or spending a
bunch of money.

● What should we do?

Scenario 1: Web API Dependency

36

● Solution: Write our own “fake” version of the API.

● For each method that the API exposes, write a
substitute for it that just returns some hard-coded data.

○ Why does this work? (Which concept(s) from 280?)

● I’ve used this technique to design parts of the autograder.io
website.

Scenario 2: Uncommon Error Handling

37

● We’re writing some code where certain kinds of errors
will occur sporadically in production, but never in
development.
○ e.g. Out of memory, network connection lost

● Can we use the same technique that we did for the web
API?
○ i.e. Write a fake version of the function and substitute it in?
○ That sounds like a pain to do manually...

Scenario 2: Uncommon Error Handling

38

● Solution: Mocking libraries
● Provides a way to dynamically (at runtime) substitute

objects, functions with fake versions.
○ For one test, we could use a mocking library to force a line

of code inside our function to throw an exception when it’s
reached.

Scenario 2: Uncommon Error Handling

39

import unittest
from unittest import mock
def defrangulate():

Do some stuff that might cause an error
pass

def spammify():
try:

defrangulate()
return True

except MemoryError:
return False

Scenario 2: Uncommon Error Handling

40

Same file as previous slide
class SpammifyTestCase(unittest.TestCase):

def test_spammify_defrangulage_runs_out_of_memory(self):
def throw_memory_error():

raise MemoryError('WAAAAALUIGI')

with mock.patch('__main__.defrangulate', throw_memory_error):
self.assertFalse(spammify())

if __name__ == '__main__':
unittest.main()

Scenario 2: Uncommon Error Handling

41

● Solution: Mocking libraries
● Provides a way to dynamically (at runtime) substitute

objects, functions with fake versions.
○ For one test, we could use a mocking library to force a line

of code inside our function to throw an exception when it’s
reached.

● Easier in languages with runtime reflection (Python, Java)
○ googletest used to require a special base class to enable

mocking, now it uses macro shenanigans.

● Other things you can use mocking libraries for:
○ Track how many times a function was called and/or with what

arguments (“spying”).
○ Add or remove side effects (exceptions are considered a side

effect by mocking libraries).
○ Test locking in multithreaded code (force a thread to stall after

acquiring a lock).

More fun with mocking libraries

42

● Autograder.io example:
○ The code that grades submissions has retry logic.
○ Need to force errors to happen during testing.
○ Remove time delay between retries to speed up tests.

More fun with mocking libraries

43

● Test cases that use mocking can be very fragile
○ What if someone moves or removes the call to defrangulate()

that we mock.patch’d earlier?

● Good integration tests are a necessity
○ If we mock dependencies, we need to be extra careful that our

ADTs play nicely together.

● Learning curve for mocking libraries
○ In Python, can be hard to determine the correct value for ‘path’ in

mock.patch.
○ Error messages can be cryptic.

Downsides of Mocking

44

● How can we assure quality before, during, and
after we write code?

● What if we don’t have enough resources?

QA as Part of Dev Process

45

Case Study: Autograder.io (my work)

46

● Web application with server and website code.
● 2014-2016, me.
● 2016-present me + 1-2 students.

● What are our QA goals?
● What do we do when reality prevents us from achieving those

goals?

1. On paper, design data abstractions/database tables &
how they interact.

2. Write stubs w/ documentation (i.e. docstrings).
3. Write tests & run them.

(Currently 1250 test cases, takes ~40 min to run.)

4. Implement code being tested.
5. Bugs, feature requests stored in issue tracker.
6. Refactor code to improve design, satisfy changing

requirements.

QA for Autograder.io: Server Code

47

● Highly prototypical, requirements, tools often in flux
○ v1 (2015): JS + JQuery + a dinky template rendering library
○ v2 (2016): Dart + Angular 2 Beta
○ v3 (2016 - present): TypeScript + Angular 2
○ v4 (in development): TypeScript + Vue

● Project/build configuration was (is) a nightmare.
● Testing GUIs is HARD.

○ Tests often fragile, frameworks relatively new
○ Ask a 485 prof how much effort went into autograding their projects ;)

● Much harder to add tests to existing code than new code.

QA for Autograder.io: Website Code

48

Risk Assessment for Autograder.io

49

Part of System Worst-Case Failure(s)

Running student code (security) sudo rm -rf --no-preserve-root /

Database Data loss, Student given the wrong grade

Website Submit Page Bug prevents student from submitting

Website Admin Prof can’t edit some settings, they get annoyed

● Danger! It’s easy for prototype code to wind up as the
final product.

● Conveniently, I have 3 months every year when nobody
uses autograder.io.

● Each part of autograder.io has been rewritten from
scratch at least once.

● For me, UI design is the biggest challenge.

Other Thoughts

50

Further Watching

51

https://www.youtube.com/watch?v=ntpZt8eAvy0 https://www.youtube.com/watch?v=on7endO4lPY

