
Design
Patterns

1

One-slide Summary

• Design patterns separate the structure of a system from its
implementation

• Every design has tradeoffs
• Object-oriented design patterns often trade greater verbosity or less

efficiency for easier extensibility

• We’ll look at structural, creational, and behavioral object-
oriented design patterns. These patterns should work in just
about any language with object-oriented features.

2

Design Patterns Everywhere!

Using Design Patterns Effectively

• Design for change
• Redesign is expensive. Choosing the right pattern lets you

avoid it.
• Consider your requirements and how they will or won’t

change.
• Don’t use a pattern if it doesn’t fit your current or anticipated

needs.
• Consider at least 2 potential designs before choosing!

• Diagram your designs on paper before writing code.
4

Structural Patterns

• Build new classes/interfaces from existing ones.

• Hide implementation details.

• Provide cleaner/more specialized interface.

Sound familiar?
5

Adapter Pattern

“Convert the interface of a
class into another interface
clients expect.”

- “Gang of Four” Design
Patterns book

6

Adapter Pattern
Stack
- push()
- top()
- pop()

LinkedList
- push_front()
- front()
- pop_front()
- push_back()
- back()
- pop_back()
- insert()
- erase()

7

Adapter Pattern (More Examples)

• Early implementations of fstream in C++
• Adapter for the C FILE macro

• Autograder: Securely running student code
• Adapter for containerization library
• Handles quirks of the library
• Makes sure that certain options are always used

8

Other Structural Patterns

• Composite: Lets clients treat individual objects and
groups of objects uniformly
• E.g. selecting and moving objects in PowerPoint

• Proxy: “Provide a surrogate or placeholder for another
object to control access to it.”
• See std::vector<bool>::reference

https://en.cppreference.com/w/cpp/container/vector_bool

9

Creational Patterns

• “Make a system independent of how its objects are
created.”

• When is a plain constructor not good enough?
• Control how/when an object is created
• Overcome language limitations (i.e. no keyword/default args)
• Hide polymorphic types

10

Named Constructor (Idiom)

class Llama {
public:
static Llama* create_llama(string name) {
return new Llama(name);

}

private: // Making ctor private depends on our needs
Llama(string name_in): name(name_in) {}
string name;

};

• Technique used in creational patterns.

11

Scenario: Polymorphic Objects

• Problem: We need to create and use polymorphic
objects without exposing their types to the client.

• Solution: Write a function that creates objects of the
type we want but returns a pointer to their base class.

12

Factory Pattern (Function)

• A string tells the factory which type to make.

Llama* llama_factory(string name, string type) {
if (type == "ninja_llama") {
return new NinjaLlama(name);

}
if (type == "whooping_llama") {
return new WhoopingLlama(name);

}
...

}

Llama* steve = llama_factory("Steve", "ninja_llama");

13

Factory Pattern (Class)
• Client calls (possibly) static methods to make the right type.

class LlamaFactory {
public:

static Llama* make_ninja_llama(string name) {
return new NinjaLlama(name);

}

static Llama* make_whooping_llama(string name) {
return new WhoopingLlama(name);

}
};

Llama* steve = LlamaFactory::make_ninja_llama("Steve");

14

Scenario: Difficulty-Based Enemies

We’re implementing a computer game with a
polymorphic Enemy class hierarchy, and we want to
spawn different versions of enemies based on the
selected difficulty.

“Normal” difficulty: Regular goomba

“Hard” difficulty: Spiked goomba

15

Scenario: Difficulty-Based Enemies

• Bad Solution: Everywhere we spawn an enemy, check
the difficulty.

// !! DON'T DO THIS !!
Enemy* goomby = nullptr;
if (difficulty == "normal") {

goomby = new Goomba();
}
else if (difficulty == "hard") {

goomby = new SpikedGoomba();
}

16

Solution: Abstract Factory
AbstractEnemyFactory

- virtual create_goomba()

NormalEnemyFactory
- override create_goomba()

Enemy

Goomba

Spiked Goomba

HardEnemyFactory
- override create_goomba()

// Only have to do this once!
AbstractEnemyFactory* factory = nullptr;
if (difficulty == “normal”) {
factory = new NormalEnemyfactory();

}
else if (difficulty == “hard”) {
factory = new HardEnemyFactory();

}
...
Enemy* goomby = factory->create_goomba(); 17

Scenario: Global Application State

We have some application state that needs to be
globally accessible, but we need to control how the
data is accessed and updated.

Bad solution: Naked global variables (plz no).
Less bad solution: Put all the state in a class, have a
global instance of it.

18

Aside: When is Global State OK?

• Need access to it everywhere, passing parameters
excessively clutters code.
• This is not an argument for using global variables just to

pass fewer parameters. That is BAD.

• State stored outside of your program (database, web
API, etc.)

19

Singleton Pattern

“Ensure a class only has one instance, and provide a
global point of access to it.”

Singleton
public:
- static get_instance() // named ctor

private:
- static instance // the one instance
- Singleton() // ctor

20

Singleton (Implementation)
class Singleton {
public static Singleton get_instance() {
if (Singleton.instance == null) {
Singleton.instance = new Singleton();

}
return Singleton.instance;

}
private static Singleton instance = null;

private Singleton() {
spams = 42;
System.out.println("Singleton created");

}

// Our global state
private int spams;
public int num_spams() {
return spams;

}
public void add_spam() {
spams += 1;

}
}

21

Using the Singleton
Singleton

public:
- static get_instance() // named ctor
- num_spams()
- add_spam() // adds 1 to num_spams

private:
- static instance // the one instance
- Singleton() // ctor, prints message
- spams

class Main {
public static void main(String[] args) {
int spams = Singleton.get_instance().num_spams();
System.out.println(spams);

Singleton.get_instance().add_spam();
spams = Singleton.get_instance().num_spams();
System.out.println(spams);

}
}

Exercise: What is the output of this code?

222

Using the Singleton (Solution)
Singleton

public:
- static get_instance() // named ctor
- num_spams()
- add_spam() // adds 1 to num_spams

private:
- static instance // the one instance
- Singleton() // ctor, prints message
- spams

class Main {
public static void main(String[] args) {
int spams = Singleton.get_instance().num_spams();
System.out.println(spams);

Singleton.get_instance().add_spam();
spams = Singleton.get_instance().num_spams();
System.out.println(spams);

}
}

Exercise: What is the output of this code?

Output:
Singleton created
42
43 23

Singleton.get_instance()…

• That seems like a lot of typing. What if we did this?

Singleton s = Singleton.get_instance();

System.out.println(s.num_spams())

• So good or no good?

There is no guarantee that
Singleton.get_instance() will
return the same object every
time it’s called!

24

Singleton: Design Scenario

We’re implementing a computer version of the card
game Euchre. In addition to a few abstract datatypes,
you have a Game class that stores the state needed for
a game of Euchre. When started, your application plays
one game of Euchre and then exits.

Should we make Game a singleton?

252

Make Game a Singleton?

Yaaas
• There’s only one instance of

Game in our application.

Plz no
• There only happens to be one

instance of Game. There’s no
requirement that we only have
one instance.

We should only use the Singleton pattern when our application
requirements dictate that only one instance should exist.

The Singleton pattern is not an excuse to make everything global! 26

Break (and moar memes!)

27

Break (memes are design patterns!)

28

1

Behavioral Patterns

“Behavioral patterns are concerned with algorithms
and the assignment of responsibilities between
objects.”

• Behavioral pattern you’ve seen: Iterator pattern
• Uniform interface for traversing containers regardless of how

they’re implemented.

29

Scenario: “Lock-on” in Action-Adventure Game

We’re implementing a computer game where the
player character can “lock-on” to an enemy (face
towards them regardless of movement). When a
locked-onto enemy is defeated, the character should
stop targeting that enemy.

30

“Lock-on”: Not-so-good Implementation

• When an enemy is defeated, call release_lock_on() on
the player character.

class Player {
public void release_lock_on(Enemy enemy) {
if (enemy == locked_on) {
locked_on = null;

}
}
private Enemy locked_on;

}

class Enemy {
// Called when the enemy is defeated
public void on_death() {
// Global accessor for the player character
get_player().release_lock_on(this);

}
}

• What are some problems with this approach?
31

“Lock-on”: Not-so-good Implementation
class Player {
public void release_lock_on(Enemy enemy) {
if (enemy == locked_on) {
locked_on = null;

}
}
private Enemy locked_on;

}

class Enemy {
// Called when the enemy is defeated
public void on_death() {
// Global accessor for the player character
get_player().release_lock_on(this);

}
}

• Player and Enemy are tightly coupled
• Changing one will probably force us to change the other

• What if we had more than one player?
• What if we want to update the player’s “score” when they defeat an enemy?

• Every time we want something new to happen when an enemy dies, we
are forced to update the Enemy class and couple it with the new feature.

32

Observer Pattern (a.k.a. “Publish-Subscribe”)

“Define a one-to-many dependency between objects so
that when an object changes state, all its dependents
are notified and updated automatically.”

Subject/Publisher
public:
- subscribe()
- unsubscribe()

Observer/Subscriber
public:
- update()

Subject calls
update() when
state changes

Observer subscribes to
subject for updates

Note: subscribe and unsubscribe can be static or non-static, depending on implementation.
33

Observer Pattern (a.k.a. “Publish-Subscribe”)
Subject/Publisher

public:
- subscribe()
- unsubscribe()

Observer/Subscriber
public:
- update()

class Subject {
public static void subscribe(Observer observer) {
subscribers.Add(observer);

}
public static void unsubscribe(Observer observer) {
subscribers.Remove(observer);

}
public static void change_state() {
foreach (Observer observer in subscribers) {
observer.update();

}
}
private static List<Observer> subscribers

= new List<Observer>();
}

class Observer {
public void update() {
Console.WriteLine("Received update");

}
}

class MainClass {
public static void Main (string[] args) {
Observer observer1 = new Observer();
Observer observer2 = new Observer();

Subject.subscribe(observer1);
Subject.change_state();

Subject.subscribe(observer2);
Subject.change_state();

Subject.unsubscribe(observer2);
Subject.change_state();

}
}

Exercise: How many times is “Received update”
printed?

34

1

Observer for “Lock-on” Feature

*Abstract means “derived classes must override this method”.

Enemy
public:
- static subscribe(EnemyObserver)
- static unsubscribe(EnemyObserver)

// calls update_enemy_defeated(this)
- on_death()

Player
public:
- lock_on(Enemy) // targets an enemy
// un-targets enemy if currently targeting
- update_enemy_defeated(Enemy)

private:
- targeted_enemy

EnemyObserver
- abstract update_enemy_defeated()

Player
- override update_enemy_defeated()

35

Observer for “Lock-on” Feature (Implementation)

Enemy
public:
- static subscribe()
- static unsubscribe()
- on_death()

Player
public:
- lock_on()
- update_enemy_defeated()

class Enemy {
public static void subscribe(EnemyObserver observer) {

subscribers.Add(observer);
}
public static void unsubscribe(EnemyObserver observer) {

subscribers.Remove(observer);
}

public void on_death() {
foreach (EnemyObserver observer in subscribers) {
observer.update_enemy_defeated(this);

}
}

private static List<EnemyObserver> subscribers
= new List<EnemyObserver>();

}

interface EnemyObserver {
void update_enemy_defeated(Enemy enemy);

}

class Player: EnemyObserver {
public void update_enemy_defeated(Enemy enemy) {
if (enemy == target) {
target = null;

}
}

public void lock_on(Enemy enemy) {
target = enemy;

}

private Enemy target;
}

36

Observer “update_” Functions

• Having multiple “update_” functions keeps things
granular.
• Observers that don’t care about an update can ignore it

(with an empty implementation of the update function).

• Generally better to pass the new data as parameters
to the update functions (push), as opposed to making
the observers fetch it themselves (pull).

37

Scenario: Damage-Dealing in Action Game

We’re building a computer game where the player
characters engage in combat with a variety of enemies.
When a player or enemy is hit, they take damage.

If their health reaches zero, they die. If the player dies,
the game ends. When an enemy dies, it drops an item.
Otherwise, the player/enemy is knocked back and emits
a sound.

38

Damage-Dealing: First Design

Note: receive_hit is called on an Actor when it should take damage.

Actor
public:
- virtual receive_hit()
- apply_knockback()
private:
- health

PlayerCharacter
public:
- override receive_hit()

Enemy
public:
- override receive_hit()

39

Damage-Dealing: First Design
class Actor {
public virtual void receive_hit(float damage) {
health -= damage;

}
public float get_health() { return health; }
private float health = 42;
public void apply_knockback() {
Console.WriteLine("Knocked back!");

}
}

class Enemy: Actor {
public override void receive_hit(float damage) {
base.receive_hit(damage);
if (get_health() <= 0) {
Console.WriteLine("Dropped an item");

}
else {
Console.WriteLine("Weah");
apply_knockback();

}
}

}

class Player: Actor {
public override void receive_hit(float damage) {
base.receive_hit(damage);
if (get_health() <= 0) {
Console.WriteLine("Game over");

}
else {
Console.WriteLine("Ow");
apply_knockback();

}
}

}
40

Template Method Pattern

“Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method
lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.”

41

Damage-Dealing: Template Method

Actor
public:
- receive_hit()
- apply_knockback()
protected:
- virtual on_death()
- virtual play_damaged_sound()
private:
- health

PlayerCharacter
protected:
- override on_death()
- override play_damaged_sound()

Enemy
protected:
- override on_death()
- override play_damaged_sound()

42

Damage-Dealing: Template Method (Implementation)

class Actor {
public void receive_hit(float damage) {
health -= damage;
if (get_health() <= 0) {
on_death();

}
else {
play_damaged_sound();
apply_knockback();

}
}
protected virtual void on_death() {}
protected virtual void play_damaged_sound() {}

// Other members same as before
}

class Enemy: Actor {
protected override void on_death() {
Console.WriteLine("Dropped an item");

}
protected override void play_damaged_sound() {
Console.WriteLine("Weah");

}
}
class Player: Actor {
protected override void on_death() {
Console.WriteLine("Game over");

}
protected override void play_damaged_sound() {
Console.WriteLine("Ow");

}
}

43

Template Method: The “Hollywood Principle”

• In the first implementation, the derived classes called
the base class version of receive_hit()

• In the template method implementation, the non-
virtual base class receive_hit() called derived class
methods.

• “Don’t call us, we’ll call you!”

44

Exercise: Updating our Algorithm
• Suppose we want to add a

TurretEnemy to our game.
The TurretEnemy cannot be
knocked back.

• Modify our design to
include this new enemy
type.

45

Actor
public:
- receive_hit()
- apply_knockback()
protected:
- virtual on_death()
- virtual play_damaged_sound()
private:
- health

PlayerCharacter
protected:
- override on_death()
- override play_damaged_sound()

Enemy
protected:
- override on_death()
- override play_damaged_sound()

2

Exercise: Updating our Algorithm (Solution)
• Suppose we want to add a

TurretEnemy to our game.
The TurretEnemy cannot be
knocked back.

• Modify our design to
include this new enemy
type.

46

Actor
public:
- receive_hit()
- virtual apply_knockback()
protected:
- virtual on_death()
- virtual play_damaged_sound()
private:
- health

PlayerCharacter
protected:
- override on_death()
- override play_damaged_sound()

Enemy
protected:
- override on_death()
- override play_damaged_sound()

TurretEnemy
public:
// This override should be empty
- override apply_knockback()

Putting it All Together

47

GameData
public:
- static get_instance()
- subscribe()
- unsubscribe()

- get_nearest_enemy()
- enemy_defeated()

private:
static instance

Actor
public:
- receive_hit()
// do nothing by default
- override update_enemy_defeated()

protected:
- virtual on_death()

Enemy
protected:
- override on_death()

PlayerCharacter
public:
- override update_enemy_defeated()
- lock_on()

GameDataObserver
- abstract update_enemy_defeated()

Interaction

Inheritance

Update game data

Retrieve game data

Update subscribers

Subscribe

Further Reading

• The “Gang of Four” Design Patterns book
• EECS 381 course materials:

• http://www.umich.edu/~eecs381/lecture/notes.html
• See “Idioms and Design Patterns” PDFs

• Beware the internet
• “People use a pattern when they shouldn’t” != “the pattern is bad

• Design is challenging. Take it seriously, but don’t expect to get it
right the first time!
• Your first design idea is usually not your best.

48

