Kishan Patel (kishanlp) and Aliya Khan (khanal)
EECS 481: Software Engineering
16 Apr 2018

II.

I11.

HWe6b: Contribution

Name and Email Ids
Kishan Patel (kishanlp) and Aliya Khan (khanal)

Selected Project

We contributed to an open-source messaging application called Zulip. The Zulip website
URL is https://zulipchat.com/. The Github project can be found at
https://github.com/zulip/zulip. Zulip is a messaging app similar to Slack, and it is mainly

geared towards larger communities such as organizations or companies that include many
people. The Zulip project is highly trafficked, with developers responding to my
questions within hours. Zulip itself is organized into several different smaller projects,
one of which is the main Zulip app, and another being the Python Zulip API which
includes implementations of several bots that can be run within the Zulip app. For our
contribution, we were initially going to contribute to a bug in the main Zulip app, but
when this proved too time-consuming, we switched to focusing on tests for the bots in the
Python Zulip API.

Project Context

Zulip’s project context and ‘business model’ involves a Slack-like interface that
allows users who haven’t been active for a while to easily catch up on previous
conversations. Its open-source competitors include Mattermost, Rocket.chat, and
matrix.org, and its main closed-source competitor is Slack. Zulip aims to create a chat
application for large communities. On its website, it states “Zulip combines the
immediacy of Slack with an email threading model. With Zulip, you can catch up on
important conversations while ignoring irrelevant ones” (Zulip). Its main goals are
increasing productivity and creating more streamlined updates for community members.
While contributing to the project, we had to use Zulip to connect with other contributors.
Even after being unable to work on the project for five days, we were very easily able to
catch up with the messages sent in the chat and stay updated about information that was
relevant to us. This relative ease of use after a period of time being uninformed made the
use of Zulip much more painless than Slack, and made it something that we would both
consider using for large group chats in the future.

https://zulipchat.com/
https://github.com/zulip/zulip

IVv.

Project Governance

The project uses its own messaging application in order to communicate among
contributors. This process is slightly structured in that contributors must use specific
channels within the Zulip messaging application that relate the most to the issue that they
are contributing to. Additionally, Zulip has a very structured approach to identifying and
assigning issues to certain developers, which is outlined below:

A. First, the developer must find an issue with the tag “help wanted”, which indicates
that this issue is “up for grabs”, but without the tag “in progress”, which means
that someone else has already claimed this issue and is working on it.
Additionally, first-time contributors may only claim one issue at a time.

B. After finding an issue, a contributor must comment “@zulipbot claim” on the
issue. They will then have 14 days to either submit a pull request or reference it in
the GitHub comments for that issue before zulipbot will automatically unassign
them from the issue.

C. While fixing the issue, if the developer runs into hurdles, cannot build the
program, or has any questions about the code already in the codebase, he or she
may ask on the Zulip chat. In this chat, there are multiple channels, similar to
Slack, where the developer can ask questions in a channel specific to the issue
that the developer is fixing. For example, in our contribution, we used the
“test-suite” channel to ask any questions to other developers or admins that may
be familiar with the codebase in Zulip. This communication with other developers
significantly aided us in being able to make a contribution to Zulip.

D. There are several QA guidelines for Zulip based on which codebase contributors
write to, in our case, we were writing to python-zulip-api. For this, we had to first
build a virtualenv where we could run the test cases necessary. Then, each time
we made a change in the code, we would run the tests locally to make sure they
passed before committing them in our pull request.

E. Zulip also has guidelines for new contributors, which are below in the link. It
emphasizes describing why a change was made in prose, which is similar to what
was emphasized in lectures regarding similar material, especially requirements
elicitation. At first, we did not know about these guidelines and ended up having
to change our original commit message in order to fit them before our pull request
could be accepted. In addition, the link provides information on how to
communicate with other developers or contributors in order to receive help.

Link: https://zulip.readthedocs.io/en/latest/overview/contributing.html

F. After submitting the pull request, Travis CI integration tests are performed on the
changes to make sure that they are compatible with the rest of the codebase.

https://zulip.readthedocs.io/en/latest/overview/contributing.html

In terms of requirements, while we did know the bare expectations of what the
end goal was(to reach 100% coverage), the requirements were still vague about other
quality requirements of the test-cases, such as size, speed, and readability. There were no
requirements pertaining to design for the specific test-coverage issue that we selected. In
addition, although the Zulip project does have guidelines for code style and overall
readability of code, there is no overarching design standard that the project uses.

Quality assurance for this project consists of making every contributor pass
integration tests before a pull request is passed. This method ensures that any changes
that a contributor has made are compatible with the rest of the subsystems and
subcomponents of the Zulip project. After our task is completed, we would have to run
tests locally in order to test the zulip bots, but we would also have to run the integration
tests on Travis CI. After a pull request is passed on Travis CI, it may be eligible for being
merged with master on GitHub. This process significantly decreases the likelihood of a
bug or defect being introduced into the codebase by a contributor that may have tested
locally inadequately.

Task Description

TicTacToe Bot Tests
The task that we were able to officially submit a PR for was a testing task involving

increasing test coverage for one of the bots. This bot, called tictactoe.py, allows the user
to play tictactoe with the zulipbot through the application. The original test coverage for
tictactoe.py was 19%, and we were able to increase it slightly to 20%. However, our main
focus when working with this code turned out to be less focused on increasing coverage
and more focused on creating a non-buggy implementation of the test file and a precedent
for future tests. We figured out that the way that the tests were initially set up initialized
the tictactoe board using a function called get game handlers(), which created a
tictactoe board model for testing. However, instead of creating an instance of the class,
we figured out that it was referencing the class itself, leading to confusion whenever the
tests were run. After we were able to fix this issue, with help from one of the developers
on the Zulip chat, we had time to create and run several test cases which tested the basic
functionality of the bot, which were eventually merged through our pull request.

Call pip from a sub-process instead of importing it (Issue #371)

[zulip / python-zulip-api @ Watch~ 23 % Star 163 YFork 92

Code Issues 29 1 Pull requests 25 Insights

tools: Call pip from a sub-process instead of importing it

l f;__ﬁ‘;":‘tﬁ punchagan wants to merge 1 commit into zulip:master from punchagan:pip-subprocess

{5 Conversation 1 - Commits 1 D Files changed 1 +3 -2 EEEEN

ﬁ punchagan commented 22 hours ago « edited ~ First-time contributor Reviewers
No reviews

The pip documentation recommends calling pip using a subprocess, instead of
importing it and using it's internal API. The API of pip==10.0.0 is different Assignees

from that of older versions, and provisioning is broken with this version.
No one assigned

https://pip.pypa.io/en/stable/user_guide/#using-pip-from-your-program
Labels

Closes #370 -
size: XS

© (@ zulipbot added the size: Xs label 22 hours ago Projects

None yet

88 tools: Call pip from a sub-process instead of importing it - 2

In addition to working on the test cases for tictactoe.py, we were able to identify and help
fix a bug that was not in an official issue request that was creating issues for the entire
build of the python-zulip-api. This bug ended up being the focus of the majority of our
time, but unfortunately due to the Project Governance, we were unable to submit a PR for
this issue. This issue involved directions of how to clone and run tests for the bots (Image
1). After trying to run these simple commands for several days on multiple versions of
Mac OSX, Windows, and Ubuntu, and attempting multiple fixes, some of which are
shown below, we figured out that there was an issue in the actual code for tools/provision
that was preventing us from running the virtual environment. Essentially, each time we
tried to run the virtual environment we would receive the error message “pip has no
attribute main” (Image 2). While attempting to fix this issue, we were able to find a
suggestion through Google that implied that pip version 10.0.0 broke some of the
dependencies within the pip library which made it unable to find pip.main. However, we
tried changing versions of pip on multiple systems to 9.0.3 and it still did not fix the
issue. Finally, we looked into the code for tools/provision and figured out that the file
was manually overriding our version of pip with a version above 9.0, therefore forcing
the run of pip 10.0.0. After fixing this issue locally so that we could build and run the
virtual environment on our local system, we brought it up to the main contributors who
then created a new issue request for this to be fixed, and were able to fix it globally
throughout the project (we could not contribute to this issue directly because we had
already claimed another issue and according to the Project Governance we could only
claim 1 issue).

Image 1

1. Fork and clone the Git repo: git clone https://github.com/<your_username>/python-zulip-api.git
2. Make sure you have pip and virtualenv installed.
3. cd into the repository cloned earlier: cd python-zulip-api

4. Run:
./tools/provision

This sets up a virtual Python environment in zulip-api-py<your_python_version>-venv , where
<your_python_version> is your default version of Python. If you would like to specify a different Python version, run

./tools/provision -p <path_to_your_python_version>

5. The above step, if successful, will tell you the command to "source" your virtual environment. Run that command!

6. You should now be able to run all the tests within this virtualenv.

Running tests
To run the tests for
e zulip:run ./tools/test-zulip
¢ zulip_bots: run ./tools/test-bots

e zulip_botserver: run ./tools/test-botserver

Image 2

Aliyas-MacBook-Pro:python-zulip-api aliyareneekhan$ python3 tools/provision
Virtualenv already exists
Requirement already satisfied: pip>=9.0 in ./zulip-api-py3-venv/1ib/python3.6/site-packages (10.0.8)

Obtaining file:///Users/aliyareneekhan/hwé/python-zulip-api/zulip (from -r /Users/aliyareneekhan/hw6/python-zulip-api/requirements.txt (line 6))
Obtaining file:///Users/aliyareneekhan/hw6/python-zulip-api/zulip_bots (from -r /Users/aliyareneekhan/hw6/python-zulip-api/requirements.txt (line 7))
Complete output from command python setup.py egg_info:
running egg_info
writing zulip_bots.egg-info/PKG-INFO
writing dependency_links to zulip_bots.egg-info/dependency_links.txt
writing entry points to zulip_bots.egg-info/entry_points.txt
writing requirements to zulip_bots.egg-info/requires.txt
writing top-level names to zulip_bots.egg-info/top_level.txt
reading manifest file 'zulip_bots.egg-info/SOURCES.txt'
writing manifest file 'zulip_bots.egg-info/SOURCES. txt'
Traceback (most recent call last):
File "<string>", 1ine 1, in <module>
File "/Users/aliyareneekhan/hwé/python-zulip-api/zulip_bots/setup.py”, line 188, in <module>
rcode = pip.main(['install', '-r', req_path, '--quiet'])
AttributeError: module 'pip' has no attribute 'main’'

Traceback (most recent call last):
File "tools/provision", line 187, in <module>
main()
File "tools/provision", 1line 92, in main
install_dependencies('requirements.txt')
File "tools/provision", line 90, in install_dependencies
.format(os.path.join(base_dir, requirements_filename)))
0SError: The command “pip install -r /Users/aliyareneekhan/hw6/python-zulip-api/requirements.txt’ failed. Dependencies not installed!

A\Y Submitted Artifacts

Below are screenshots of some of the code that we submitted in our PR. These are very

simple test cases, but required extensive amounts of work on dependencies and involved the
discovery that the initial implementation of the test cases was buggy. Therefore, we were not
able to get the test coverage to 100% but we were able to smooth out the test cases enough to

create a precedent for future test cases that could be easily followed. Finally, I have also included
a screenshot of the initial bug that we had to solve involving the version of pip, because this is
what we spent most of our time discovering and fixing. The following image (Image 1)

is pertaining to the bug in tools/provision file at line 86 that prevented us from running Zulip
Python API for a long time.

def install_dependencies(requirements_filename):
pip_path = os.path.join(venv_dir, venv_exec_dir, 'pip')
We first install a modern version of pip that supports —--prefix
subprocess.call([pip_path, 'install', 'pip>=9.0'])
if subprocess.call([pip_path, 'install', '-—prefix', venv_dir,
os.path.join(base_dir, requirements_filename)]):
raise 0SError("The command ‘pip install -r {}* failed. Dependencies not installed!"
.format(os.path.join(base_dir, requirements_filename)))

ESE:

Image 2: This is the

sys.path.append(activate_module_dir)

import_module('activate_this') ﬁxed Code at llne 86
where the “pip>=9.0~
ol e e is replaced with
subprocess.call([pip_path, 'install', 'pip==9.0.3'l) “pip::9,0,3”, This

if subprocess.call([pip_path, 'install', '—prefix', venv_dir, '-r',
os.path.join(base_dir, requirements_filename)l):

raise OSError("The command “pip install -r {}° failed. Dependencies not installed!" WaS CaUSIHg Ol’lly plp

.format(os.path.join(base_dir, requirements_filename)))

. . version 10.0.0 to be
install_dependencies('requirements.txt')

if py_version > (3, 1):

install_dependencies('py3_requirements.txt"') I'lln WhiCh happel’ls tO
print(green + 'Success!' + end_format) be incompatible With

activate_command = os.path.join(base_dir,

venv_dir, the plp.maln()

package that Zulip
uses.

Images 3-4: Test functions that we wrote inside of the test_tictactoe.py file and committed to the
Zulip codebase.

test_player_color(self) —>

turn = @

response = ':cross_mark_button:'
Lf._test_player_color(turn, response)

_test_player_color(self, turn: int, expected_response: str) —
model, message_handler = self._get_game_handlers()
response = message_handler.get_player_color(0)

F.assertEqual(response, expected_response)

jef test_get_value(self) —> None:
board = [[0, 1, @1,
[0, o, @],
[0, 0, 211

position = (e, 1)
response = 1
self._test_get_value(board, position, response)

def _test_get value(self, board: List[List[int]], position: Tuplelint, int], expected_response: int) —> None:
model, message_handler = self._get_game_handlers()
tictactoeboard = model(board)
response = tictactoeboard.get_value(board, position)
self.assertEqual(response, expected_response)

Link to Public Repository of Python-Zulip-API: https://github.com/zulip/python-zulip-api

Integration Testing Link: The link for the Pull Request on Travis Cl is as follows. After clicking
the link, you will be able to see our commit message as well as the test-suites that we passed.
Link: https:/travis-ci.org/zulip/python-zulip-api/builds/367024408

Link to first issue pertaining to test-coverage:
https://github.com/zulip/python-zulip-api/issues/122

VII. QA Strategy

With regards to QA, the part of the code that we were writing was part of the QA
process for the zulipbot, because we were attempting to increase coverage for the
zulipbot. Additionally, we discovered three bugs in the zulip code through our attempts to
increase the test coverage. Finally, towards the end of our testing, we had to submit our
code to review through Travis CI for integration tests and had to correct many PEP and
lint errors found through a static analysis of the code. In order to make test cases that
would increase the coverage in tictactoe.py, we made tictactoe “boards” in the test case
and passed in the boards as arguments to the functions we were testing in the tictactoe
module. Then, we would assert our expected final answer or ‘test oracle’ to the output of
the function and check to see if the output was correct. Initially, we found that the
function get game handlers was returning the model class instead of an instance of the
class. In order to work around this bug that was already in the tictactoe.py file, we had to
instantiate an object of the model() class every time we wanted to test a function that
required a model of the board.

https://github.com/zulip/python-zulip-api
https://travis-ci.org/zulip/python-zulip-api/builds/367024408
https://github.com/zulip/python-zulip-api/issues/122

VIII.

In addition to fixing or working around any bugs that may already exist in the
zulip _bots codebase before we began working on Zulip, we also had to consider
maintainability as a QA strategy. Following the coding style and guidelines of the Zulip
project would be required in order to pass all Travis CI pull request tests and for our
contribution to be accepted into the codebase. Specifically, we made sure to comment our
test cases and follow any linting, spacing, or character guidelines for each function we
added. After writing the test cases and making sure that they follow the style guidelines
of Zulip, we performed unit testing by running only the test tictactoe.py test cases on
tictactoe.py. We were able to reveal any bugs in the test_tictactoe.py that was written
prior to us working on it through unit testing because some of the test case functions
written by previous contributors included a few bugs including a bug where a class was
being returned from get game handler instead of an instance of the class. In order to
make this unit testing efficient, we made sure to make each test small so that if an
assertion in a specific test case failed, we would know exactly what the bug was. For
example, we would test 1 functionality in each test function which would allow us to
pinpoint any bugs should any test cases fail.

After performing unit testing, we performed integration testing using Travis CI
and we would wait until our pull request would pass all integration tests. This step would
ensure that the changes/commits we made would not cause the rest of the Zulip codebase
to fail.

To generalize the QA strategy, our approach included using line coverage in
Python, code maintainability and style guidelines, unit testing, and integration testing to
ensure that our contribution would not introduce any new bugs into the Zulip codebase
and would successfully test the existing codebase. Relating this back to lecture concepts,
line coverage is a form of dynamic analysis and code maintainability relates to static
analysis where code execution is not performed.

QA Evidence
The following evidence includes evidence of the actual changes in code, the line

coverage testing, and integration testing using Travis CI. The evidence also includes screenshot

of the bug we ran into regarding the issue in tools/provision that prevented running pip version

9.0.3. It also includes an example of static analysis of code by using a python linter. Lastly, it

includes proof of running the dynamic analysis tool coverage.py for tictactoe.py.

Image 1: the initial runs of the functions that we wrote failed because of a bad implementation of
the object game handler(), which we were able to identify and work around.

ERROR: test_contains_winning_move (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot)

Traceback (most recent call last):
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 83, in test_contains_winning_move
self._test_contains_winning_move(board, response)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py”, line 88, in _test_contains_winning_move
response = model.contains_winning_move(model, board)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py", line 61, in contains_winning_move
if (self.get_value(board, triplet[8]) self.get_value(board, triplet[1]) ==
TypeError: get_value() missing 1 required positional argument: 'position’

ERROR: test_determine_game_over_with_draw (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot)

Traceback (most recent call last):
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py”, line 55, in test_determine_game_over_with_draw
self._test_determine_game_over_with_draw(board, players, response)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 62, in _test_determine_game_over_with_draw
response = model.determine_game_over(model, players
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py”, line 42, in determine_game_over
if self.contains_winning_move(self.current_board):
TypeError: contains_winning_move() missing 1 required positional argument: 'board

ERROR: test_determine_game_over_with_win (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot)

Traceback (most recent call last):
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 39, in test_determine_game_over_with_win
self._test_determine_game_over_with_win(board, players, response)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py”, line 46, in _test_determine_game_over_with_win
response = model.determine_game_over(medel, players
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py", line 42, in determine_game_over
if self.contains_winning_move(self.current_board):
TypeError: contains_winning_move() missing 1 required positional argument: 'board’

Image 2: passing runs of the tests after working around the bad implementation of

_game_handler() - ok indicates that the test successfully ran with the codebase

test_board_is_full (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_bot_responds_to_empty_message (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_bot_usage (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_contains_winning_move (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_determine_game_over_with_draw (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_determine_game_over_with_win (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_get_value (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok

test_has_attributes (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_parse_board (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok

test_player_color (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok
test_static_responses (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot) ... ok

Image 3: Screenshot of linter output run locally, example of static analysis

(zulip-api-py3-venv) Kishans-MacBook-Pro:python-zulip-api kishan$./tools/lint
pep8

zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p:
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py:25:30: E201 whitespace after '(
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p : W293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py:42:59: W291 trailing whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p; w293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p W293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p 28: W291 trailing whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p: : W293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py:68:92: W291 trailing whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py:73:1: W293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p 1: W293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p w293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p: E303 too many blank lines (2)
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p W291 trailing whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p E303 too many blank lines (2)
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.p; w293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py:120:1: W293 blank line contains whitespace
zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py:29:1: W293 blank line contains whitespace

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 19

def test_get_value(self) -> None:

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 26:

9:38: W291 trailing whitespace

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 42
model, message_handler = self._get_game_handlers()
trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 46
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 60
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 64:
[2, 1, 211

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 67
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 68
def _test_board_is_full(self, board: List[List[int]], expected_response: bool) -> None:
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 73
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 80
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 86
Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 104
model.board =

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 114

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py line 120:

Fix trailing whitespace at zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py line 29

n
-
X

Image 4: Comment that we wrote in our committed code explaining the changes that we made
and what might need to be done in the future

TestTicTacToeBot(BotTestCase):
bot_name = 'tictactoe’

f test_get_value(self) —> N

board = [[@, 1, o],
[e, o, o],
[0, 0, 2]]
position = (0, 1)
response = 1
._test_get_value(board, position, response)

_test_get_value(self, board: List[List[int]l], position: Tuplelint, int], expected_response: int) —>
model, message_handler = _get_game_handlers()

tictactoeboard = model(board)

response = tictactoeboard.get_value(board, position)

self.assertEqual(response, expected_response)

Image 5: Travis CI Build Output

 PullRequest #371 tools: Call pip from a sub-process instead of in 79 #1589 passed

The pip documentation recommends calling pip using a ¢ Ran for 2 min 15 sec

subprocess, instead of Total time 10 min 19 sec

i about 17 hours ago
- Commit 364d59¢

#371: tools: Call pip from a sub-process instead of importing it

Branch master

@ Puneeth Chaganti authored and committed

s + 1589.1 Python:3.4 TEST_SUITE=test-main 1 min 53 sec
< 3 1589.2 5 > Python:3.5 TEST_SUITE=test-main 1 min 57 sec
s 1589.3) Python: 3.6 TEST_SUITE=test-main 2 min 15 sec
Vv 1589.4 3 Python: 2.7 TEST_SUITE=test-py2-legacy-support (V) 2min 10 sec
1 15895 g Python: 3.6 TEST_SUITE=test-static-analysis Y) 2min 4 sec

Image 6: This is the output of running coverage on tictactoe.py after we wrote test cases for the
file. The coverage increased from 19% to 20%. We were unable to further increase the line
coverage because there were bugs inherent in the test_tictactoe.py file from previous contributors
that caused us to not further test the coverage on this file. This is an example of running dynamic
analysis tools on code to augment/improve testing process.

/Users/kishan/Dncuments/hwé/p&thcnfzulipfapi/zulip,buts/iulip,bats/,,init,,.py) :] 2] 180%
tictactoe.py 169 136 20%
/Users/kishan/Documents/hw6/python-zulip-api/zulip_bots/zulip_bots/custom_exceptions.py i 2] 180%

IX. Plan Updates

Initially, we planned to solve two bugs, one involving creating buttons for testing
the Zulip account creation process and another testing the bots. However, after beginning
the bot testing process and realizing that there were many more dependencies than we
expected, we had to downsize our ambitions and focus solely on the bot tests. However,
through the process of solving the bot tests, we encountered three more bugs that we
committed and solved in our final PR. The first bug involved fixing the tools/provision
file where line #86 was causing an issue that was preventing us from entering the Zulip
virtual environment. The issue was specifically that the provision file would only run or
accept pip that is a version greater than 9.0. We tried building and running the
python-zulip-api on OS X, Windows, and Unix/Linux, but the bug pertaining to the
tools/provision file kept us from running it. We fixed this bug by changing the line to
allow pip version 9.0.3. This error can be seen below in the highlighted line which is line
86:

def install_dependencies(requirements_filename):

pip_path = os.path.join(venv_dir, venv_exec_dir, 'pip"')

We first install a modern version of pip that supports —prefix

subprocess.call([pip_path, 'install', 'pip>=9.0'])

if subprocess.call([pip_path, 'install’, '-—prefix', venv_dir, '-r',
os.path.join(base_dir, requirements_filename)]):

raise O0SError("The command “pip install -r {} failed. Dependencies not installed!"
.format(os.path.join(base_dir, requirements_filename)))

While we both originally scheduled/planned to split up the tasks for fixing button and for
improving test coverage, neither of us were able to get the virtual environment for Zulip
to run as a result of the existing issue regard pip that is aforementioned. This is an
unanticipated risk that was encountered. Prior to our attempts to run Zulip Python API,
we did not expect any bugs to exist in the existing Zulip codebase that would prevent us
from even building or running the code, let alone fix its issues. Prior to working on the
project, we expected the build and run process to be fairly seamless as it is an open
source project and chances are that another developer would have already encountered

the very same issue we encountered with pip. However, the difference when we started
working on the project were the challenges that unexpected risks/defects usually
accompany. These unexpected risks cost us valuable time that could have been spent
completing the 2nd task of fixing buttons that we originally also intended to contribute.
However, because of these unexpected risks we were only able to reserve time to work on
the test-coverage task and fix the existing issue of the pip version. In addition, both of us
had to contribute time to fix this issue as we were both encountering the same issue
during the build process of Zulip, so we were not able to work separately on the different
tasks.

Experiences and Recommendations

Overall, we had a very difficult experience with this project, mainly because at
every step, we faced an unexpected bug in a part of the code that we were not expecting
to have to fix. However, it ended up being a good learning experience of how to
contribute to an open-source project and the many dependencies that are involved. We
were not able to fully solve the issue that we originally claimed because of the
unanticipated challenge of not being able to run the Zulip Python API from the
beginning, but we were able to identify and solve several bugs which were preventing us
from doing so. Therefore, we were able to gain an understanding of how the codebase
worked as whole and learned how to tackle unexpected issues.

At the beginning, we tried to work on a bug involving creating buttons for testing.
However, the requirements given in the issue were too vague for us to easily figure out
where to implement these buttons, and it was difficult to ascertain what the proper way to
contribute to this issue would be from inferring from previous code. We tried contacting
developers involved to gain some clarity on this issue, but were unable to get advice in a
reasonable amount of time.

Following this, we decided to turn to an issue in a different codebase
(zulip/python-zulip-api rather than zulip/zulip). This issue involved creating new test
cases for the bot tictactoe.py. In order to begin work on these tests, we had to be able to
run them locally. The Zulip documentation provided guidelines for how to run these test
cases, which initially seemed like a painless sequence of three commands (Image 1).

1. Fork and clone the Git repo: git clone https://github.com/<your_username>/python-zulip-api.git
2. Make sure you have pip and virtualenv installed.
3. cd into the repository cloned earlier: cd python-zulip-api

4. Run:
./tools/provision

This sets up a virtual Python environment in zulip-api-py<your_python_version>-venv , where
<your_python_version> is your default version of Python. If you would like to specify a different Python version, run

./tools/provision —p <path_to_your_python_version>
5. The above step, if successful, will tell you the command to "source" your virtual environment. Run that command!

6. You should now be able to run all the tests within this virtualenv.

However, each time that we attempted to run the commands, we came across the bug
“pip has no attribute main” (Image 2).

Aliyas-MacBook-Pro:python-zulip-api aliyareneekhan$ python3 tools/provision
Virtualenv already exists.
Requirement already satisfied: pip>=9.0 in ./zulip-api-py3-venv/1lib/python3.6/site-packages (10.0.0)

Obtaining file:///Users/aliyareneekhan/hw6/python-zulip-api/zulip (from -r /Users/aliyareneekhan/hw6/python-zulip-api/requirements.txt (line 6))
Obtaining file:///Users/aliyareneekhan/hw6/python-zulip-api/zulip_bots (from -r /Users/aliyareneekhan/hw6/python-zulip-api/requirements.txt (line 7))

Complete output from command python setup.py egg_info:

running egg_info

writing zulip_bots.egg-info/PKG-INFO

writing dependency_links to zulip_bots.egg-info/dependency_links.txt

writing entry points to zulip_bots.egg-info/entry_points.txt

writing requirements to zulip_bots.egg-info/requires.txt

writing top-level names to zulip_bots.egg-info/top_level.txt

reading manifest file 'zulip_bots.egg-info/SOURCES. txt'

writing manifest file 'zulip_bots.egg-info/SOURCES.txt'

Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/Users/aliyareneekhan/hw6/python-zulip-api/zulip_bots/setup.py”, line 168, in <module>
rcode = pip.main(['install’', '-r', req_path, '--quiet'])
AttributeError: module 'pip' has no attribute 'main’

Traceback (most recent call last):
File "tools/provision”, line 107, in <module>
main()
File "tools/provision", line 92, in main
install_dependencies('requirements.txt')
File "tools/provision", line 90, in install_dependencies
.format (os.path.join(base_dir, requirements_filename)))
OSError: The command “pip install -r /Users/aliyareneekhan/hw6/python-zulip-api/requirements.txt’ failed. Dependencies not installed!

We initially thought that this could be an issue with the way we installed pip. We found a
post online regarding the issue which suggested that pip 10.0.0 broke some of the
dependencies needed in order to run main (Image 3).

First run

import pip
pip.__version__

If the result is '10.0.0", then it means that you installed pip successfully

since pip 10.0.0 doesn't support pip.main() any more, you may find this helpful
https://pip.pypa.io/en/latest/user_guide/#using-pip-from-your-program

Use something like

import subprocess

subprocess.check_call(["python", '-m', 'pip', 'install', 'pkg'l) # install pkg
subprocess.check_call(["python", '-m', 'pip', 'install',"--upgrade", 'pkg'l) #
upgrade pkg

share improve this answer edited 19 hours ago answered 19 hours ago

Luke.SWK
8 o4

We then tried to uninstall and reinstall pip on our local system, which did not fix the

issue. On one computer, we attempted to overwrite the version of Python built in to the

Mac (2.7) with the updated version of Python in case this was the issue. This also did not

fix the issue. Overall, we tried running the commands on Mac OSX High Sierra 10.12.6

and 10.13.4, as well as using Linux through vagrant and VirtualBox and Windows 10.

The commands did not work on any of these operating systems, so we concluded that

there was an issue with the file itself. Throughout this process, we also learned how to

use the Zulip chat mechanism to communicate with other developers and ask about

issues. Below are screenshots from our communication (Image 4 - multiple images).

I Also, to activate the virtualenv, source path-to-virtualenv/bin/activate m

" Aliya Khan

4% We tried the manual export and that did not work :(Should we try running the ./tools/provision command, then opening the
virtualenv/bin/activate command regardless of whether or not the previous command worked?

Rohitt Vashishtha

Share the output of tools/provision command first.
" Aliya Khan

+ Screen-Shot-2018-04-15-at-3.15.13-AM.png

Here is the output from that command

Thank you so much for taking a look at this by the way :)

test suites = Question about Dependencies for zulipbot tests
<" AliyaKhan
g I've opened a PR here to fix this, but the temporary work around should work for you, until this is merged.

Thank you so much for this information, | will try it as soon as | get home, | hope that it works out :)
4

‘q Tim Abbott
‘ @Puneeth Chaganti thanks for debugging this!

1

Aliya Khan

A Z% @Puneeth Chaganti , | have tried to commit my changes to test_tictactoe.py and unfortunately the Travis Cl integration
tests are failing due to the same error as before (I think that we tried to commit before the pip issue was fixed). Is there any
way to re-run these tests with the new code?

Puneeth Chaganti

@Aliya Khan | can you link me to the Travis build? Also, did you try running the tests locally? If they are passing locally, you
can just let the travis build fail until the fix for pip gets merged into master.

" Aliya Khan

- https://travis-ci.org/zulip/python-zulip-api/builds/366967195

I did try running the tests locally but a few are failing due to an issue with argument passing in the actual bot file
Other than that they should be fine
@Puneeth Chaganti

ﬁ Puneeth Chaganti
If the tests are running locally, you could just leave your branch as it is, until the pip fixis merged. Or if you really want to
see Travis running the tests successfully, you can base your branch off of my branch.

test suites = Question about Dependencies for zulipbot tests Today

Kishan Patel

Thank you so much. We have created a new PR, but unfortunately it is still not passing the integration tests, although we are
not sure why because we did not change anything significant. @Puneeth Chaganti

Puneeth Chaganti

May be it's a flaky test? Can you check older builds to see if this test was passing? Does the test look related to any of the ?
changes you made?

I'm not familiar with the code base of python-zulip-api myself, so I'm not sure | can help with the actual failing test. But, |
could take a look if you can point me to your build and failing test.

Kishan Patel

The tests that are failing are screenshotted below. All of them are in the file test_tictactoe.py. | think that there might be an
issue with contains_winning_move() that is causing these tests to fail. | am going to try creating another PR without these
tests to see if it will pass the Travis build. Screen-Shot-2018-04-16-at-12.27.37-AM.png

Puneeth Chaganti

Do the tests pass locally?

Kishan Patel

These specific three tests are failing locally, so hopefully if | remove them we won't have the issue anymore.

Puneeth Chaganti 12

@Kishan Patel looks like you are passing an additional model argumenttothe contains_winning_move method.You
are calling an instance method, and the first argument self is automatically passed to it. You don't need to pass the
model asan argument to it. (

I was looking at this code

Kishan Patel

%‘g
()
O340
[O3%40)
%

When we get rid of the model argument passing into it, it gives us these errors about how we do not have enough arguments
passing into each function

Upon inspecting tools/provision, we figured out that there was a line where the
pip version was set to >= 9.0 (Image 5).

def install_dependencies(requirements_filename):
pip_path = os.path.join(venv_dir, venv_exec_dir, 'pip")
We first install a modern version of pip that supports --prefix
subprocess.call([pip_path, 'install', 'pip>=9.0'])

if subprocess.call([pip_path, 'install’, '--prefix', venv_dir, '-r',
os.path.join(base_dir, requirements_filename)]):
raise OSError("The command “pip install -r {}' failed. Dependencies not installed!"

.format(os.path.join(base_dir, requirements_filename)))

We realized that this might override our local version of pip with whichever
version this line decided to choose, most likely the recent version 10.0.0 which broke the
dependencies required to run main. Therefore, we changed this line to set the version
equal to 9.0.3, and notified the developers so that they could fix this issue in the overall
codebase (Image 6).

sys.path.append(activate_module_dir)
import_module('activate_this')

-f install_dependencies(requirements_filename):
pip_path = os.path.join(venv_dir, venv_exec_dir, 'pip')

subprocess.call([pip_path, 'install', 'pip==9.0.3'1)
if subprocess.call([pip_path, 'install’, refix', venv_dir, '-r',
os.path.join(base_dir, requirements_filename)l):
raise OSError("The command ‘pip install -r {}' failed. Dependencies not installed!"
.format(os.path.join(base_dir, requirements_filename)))

install_dependencies('requirements.txt')
if py_version > (3, 1):

install_dependencies('py3_requirements.txt")

print(green + 'Success!' + end_format)

activate_command = os.path.join(base_dir,
venv_dir,

They then created a separate pull request for this issue and fixed it (Image 7).

L zulip / python-zulip-api @ Watch~ 23 HsStar 163 YFork 92

Code Issues 28 i Pull requests 24 Insights

tools: Call pip from a sub-process instead of importing it

ISA VLGl timabbott merged 1 commit into zulip:master from punchagan:pip-subprocess 2 hours ago

(5 Conversation 2 -0 Commits 1 3 Files changed 1 +3 -2 INEER
ﬁ punchagan commented a day ago « edited ~ Contributor Reviewers
No reviews

The pip documentation recommends calling pip using a subprocess, instead of
importing it and using it's internal API. The API of pip==10.0.0 is different Assignees

from that of older versions, and provisioning is broken with this version. y
No one assigned

https://pip.pypa.io/en/stable/user_guide/#using-pip-from-your-program

Labels
Closes #370
size: XS
© (2 zulipbot added the size: XS label a day ago Projects
None yet
ﬁ tools: Call pip from a sub-process instead of importing it « 532fe75
- . Milestone
timabbott commented 19 hours ago Owner
No milestone
lgtm

Notifications
@eeshangarg can you verify the fix? We should do an immediate release and the upgrade the Zulip
server project to use the new release of this project.

<)) Subscribe

You're not receivina notifications

After we were finally able to run the test cases, we began working on the file
test_tictactoe.py with hopes of increasing the coverage of this file to 100%. However, as
we soon found, the test cases had no good precedents for style or structure, and we ended

up having to do a lot more work internally in order to make the test cases run properly
with the system, because there was an issue with the way that the tests were being
initialized that were not allowing any of the tests we tried to write to run properly. At
first, we attempted to write tests for the large function computer move (Image 8).
However, we soon found that several smaller functions that were being called from
within the computer move function were untested such as “contains winning_move”,
and this was making it difficult to create an initialized “tic tac toe board” to test the
computer move function with. We then noticed that there were no functions in
TicTacToeModel that had any test cases. Therefore, we decided to shift to trying to test
some of the smaller functions, including get value, determine game over, board is_full,
and contains_winning_move (Image 9). We hoped to create a precedent for later test
cases that would be written in the same file.

One of the first issues we ran into was that the test functions were unable to
access the local variable current board from the TicTacToeModel class. We tried
explicitly declaring this variable outside of the constructor within the tictactoe.py
function, and this seemed to fix the issue (Image 10). We noted this issue and fix when
we submitted our pull request.

Additionally, we ran into several issues with the way that arguments were passed
into functions (Image 11). At first, we tried to hard code these into our test cases, but
issues still arose when functions would call other functions within themselves. Therefore,
we tried to simplify the way that we were testing by initializing our own instance of the
class TicTacToeModel() ourselves so that we would not depend on any other files that
might be initializing the model incorrectly. Previously to this, initialization of the bot was
done by the function get game handlers(), but for some reason the model created by
this function would not correctly save and update the tictactoe board (Image 12).
Therefore, we tried to create our own instance by importing the tictactoe.py file directly
into the test file using from . import tictactoe.

This created an issue where the module tictactoe could not be found. At this point,
we turned to the Zulip chat in order to try to get help from other developers, in case they
had more information about Zulip standards or dependencies that we might be missing.
We learned that we should the get game handlers() function in order to initialize the
model, but that the implementation of get game handlers() was buggy such that it was
getting the entire class TicTacToeModel instead of just creating an instance of it.
Therefore, we changed our test cases so that it used get game handlers() but within
each case initialized a new instance of the model (Image 13). Overall, the general
structure of our test cases would include two functions per case: one would initialize the
board for that specific test and the test oracle, which was the expected response for the
function with that test case. We then called another function which would initialize an
instance of the TicTacToeModel() with the tic-tac-toe board we created in the first

function. It then would run the function being tested with the given parameters and store
the response in a variable called “response.” This response was then compared with the
test oracle, saved in the variable “expected response”, to make sure that the function
performed as expected in this specific instance. After smoothing out our new code using
a linter so that it would pass the Zulip static analysis test, we were able to submit a pull
request (Image 14) that passed the Travis CI Integration tests and therefore was accepted
by the maintainers into the codebase (Image 15).

If we were to start an open-source project from scratch, we would make sure to
add a note on each tracked issue in order to make sure that any new contributor that
claims the specific issue has some idea of common problems that previous contributors
have had in relation to running, building, or debugging code related to the respective
issue. This would help to avoid the issue we ran into where pip version 10.0.0 does not
allow for an import of main package to pip module. If a previous developer who may
have run into this issue already were to write a note on the page responsible for the
specific issue, then it would have been easier to fix the bug without using more time.
Additionally, there was no prerequisite or standard available for how to write test cases
for the bots, and as a result we ended up spending a lot of our time debugging previous
implementations of the test cases. Including some sort of standard in the documentation
for the project would have been really helpful for creating better tests, and if we were
provided this, we might have been able to spend more time creating more complex test
cases that would substantially increase the coverage.

In this project, the communication between developers and contributors is
essential to ensuring a fast rate of fixes and we experienced this help when we used the
Zulip Chat to receive help from someone more familiar with the codebase. While this
aspect of the project was good, the documentation provided was severely inadequate.
Specifically, the test cases we would be producing were not held to any specific coding
style standard; therefore, we had to produce the test cases without following any specific
readability or coding style standard. While this does not affect the overall Zulip project
currently, it may begin to affect the Zulip project codebase if no documentation or coding
style standard is specified. The test cases that were previously in the test tictactoe.py
from previous contributors had no comments identifying what the test cases covered.

Throughout this project, we applied several of the concepts covered in this class.
Regarding the tests that we wrote, we used code coverage when we ran coverage.py
against the test cases we wrote and test oracles when we implemented the test cases and
compared the results of each function with the expected result. Additionally, we ran a
linter and unit tests locally before submitting our code for a pull request. We also
informally reviewed each others code and for many parts of the development process
used a pair programming approach where one of us would be writing the code and the
other would be checking for errors. We also had to report a defect that we found in the

code while developing (the issue with the version of pip), and were able to observe the
process that Zulip used to address and fix this issue. We also had an initial issue with
requirements elicitation because the requirements given to us in the first bug we tried to
fix were too ambiguous for us to effectively tackle the issue. Finally, after we submitted
the pull request, our code was subjected to integration tests and further static analysis. We
also were able to make an improvement in the overall maintainability of the code by
creating a standard for the test cases for this bot which can be used for future testers.
Overall, we experienced the heavy focus on reading code, requirements elicitation, and
communicating with developers versus actually writing code firsthand. Most of our time
was spent reading the codebase, identifying dependencies that could be creating issues,
and communicating with other Zulip developers. While this was a very challenging
experience, it was a good conclusion to this class because we were able to apply concepts
learned in almost every single lecture.

Our main recommendation would be to find someone else within the open-source
project who knows the code that you are working on very well - this proved very useful
to us as we became discouraged by bugs in the later stages of our development process.
The person who helped us with the project readily helped us learn many dependencies
and intricacies of the style of the project that would have been much more tedious to
learn otherwise. Additionally, at the beginning of our development process we did not
expect to encounter other bugs in the code while we were developing, so accounting for
this ahead of time when planning out how to tackle the issues would be another
recommendation.

Image 8: Beginning of the function computer move that we initially tried to test.

def computer_move(self, board: Any, player_number: Any) —> Any:
my_board = copy.deepcopy(
board)
blank_locations = self.get_locations_of_char(my_board, @)
x_locations = self.get_locations_of_char(board, 1)
corner_locations = [[@, @], [@, 2], [2, @], [2, 2]]
edge_locations = [[1, @1, [0, 11, [1, 21, [2, 1]]

blank_locations [1:
board

len(x_locations) 1

x_locations [@] corner_locations x_locations [0] edge_locations:
board[1] [1] = 2

location = random.choice(corner_locations)
row = location[@]
col = location[1]
board[row] [col] = 2
board

def get_value(self, board: Any, position: Tuplelint, intl) —> int:
board[position[@]] [position[1]]

def determine_game_over(self, players: List[str]) —> str:
self.contains_winning_move(self.current_board):
'current turn'
self.board_is_full(self.current_board):
'draw’

def board_is_full(self, board: Any) —> bool:

row board:
element row:
element 0:
Fa15e4
True

def contains_winning_move(self, board: Any) —> bool:

triplet self.triplets:
(self.get_value(board, tripletlal) self.get_value(board, triplet[1])
self.get_value(board, triplet[2]) 0):
True
False

Image 9: Smaller TicTacToeModel functions that we ended up testing.

Image 10: Change that we made in tictactoe.py. Initially, current _board was only referenced in
the constructor. However, this created difficulties when the variable current board was
referenced because the variable could not be found. Therefore, we added the line “current_board
= initial _board” in order to fix this issue.

class TicTacToeModel(object):
smarter = True

triplets = [[(9, @), (9o,
[(1, @),
[(2, o),
[(8, @), (1,
[(e, 1),
[(e, 2), (1, 2
[{(0, @), (1, 1
[(0, 2),
1

initial_board = [[@,
[0,
[0,

current_board = initial board
def __init__(sdlf, board: Any=None) -> None:

board None:
self.current_board = board

self.current_board = copy.deepcopy(self.initial_board)

Image 11: Function missing one required positional argument error

ERROR: test_contains_winning_move (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot)

Traceback (most recent call last):
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py”, line 83, in test_contains_winning_move
self._test_contains_winning_move(board, respoense)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 88, in _test_contains_winning_move
response = model.contains_winning_move(model, beard)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py”, line 61, in contains_winning_move
if (self.get_value(board, triplet[®]) == self.get_value(board, triplet[1]) ==
TypeError: get_value() missing 1 required positional argument: 'position'

ERROR: test_determine_game_over_with_draw (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot)

Traceback (most recent call last):
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 55, in test_determine_game_over_with_draw
self._test_determine_game_over_with_draw(board, players, response)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_beots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 62, in _test_determine_game_over_with_draw
response = model.determine_game_over (medel, players
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py", line 42, in determine_game_over
if self.contains_winning_move(self.current_board):
TypeError: contains_winning_move() missing 1 required positional argument: 'board’

ERROR: test_determine_game_over with_win (zulip_bots.bots.tictactoe.test_tictactoe.TestTicTacToeBot)

Traceback (most recent call last):
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py”, line 39, in test_determine_game_over_with_win
self._test_determine_game_over_with_win(board, players, response)
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/test_tictactoe.py", line 46, in _test_determine_game_over_with_win
response = model.determine_game_over(model, players
File "/Users/kishan/Documents/hwé/python-zulip-api/zulip_bots/zulip_bots/bots/tictactoe/tictactoe.py”, line 42, in determine_game_over
if self.contains_winning_move(self.current_board):
TypeError: contains_winning_move() missing 1 required positional argument: 'board’

Image 12: get game handlers() function

def _get_game_handlers(self) — Tuplel[Any, Any]:
bot, bot_handler = self._get_handlers()

bot.model, bot.gameMessageHandler

Image 13: Some of our finalized test cases that we wrote that initialized an instance of model in
order to create an individual TicTacToeModel for each unit test. These were the tests that were
submitted in our pull request.

f test_board_is_full(self) —>
board = [[1, 0, 1],
1, 2, 11,
2, 1, 211
response = False
._test_board_is_full(board, response)

_test_board_is_full(self, board: List[List[int]], expected_response: bool) —> No
model, message_handler elf._get_game_handlers()
tictactoeboard = model(board)
response = tictactoeboard.board_is_full(board)
.assertEqual(response, expected_response)

test_contains_winning_move(self) —>
board = [[1, 1, 1],
[0, 2, o],
[2, o, 211
response = Ir
._test_contains_winning_move(board, response)

_test_contains_winning_move(self, board: List[List[int]], expected_response: bool) -> None:
model, message_handler elf._get_game_handlers()

tictactoeboard = model(board)

response = tictactoeboard.contains_winning_move(board)

self.assertEqual(response, expected_response)

Image 14: A screenshot of our pull request and commit message, and evidence that all checks
have passed, so the

test_tictactoe.py improvements

m Kishanlp wants to merge 7 commits into zulip:master from kishanlp:master

% Conversation 0 © Commits 7 Files changed 3

kishanlp commented 21 hours ago Collaborator

Slightly increased coverage for tictactoe.py from 19% to 20%. Will need further review to test the
integration of different functions within the tictactoe bot, as many of the functions seem to not be
able to be tested due to bad function calls within the bot code. Additionally, we found that the
current tests for the TicTacToeModel object could not be run without explicitly defining
current_board outside of the constructor, so we fixed this in order to run our test cases.

Added tests to test_tictactoe.py to test TicTacToeModel functions. X
SL. BN

S (@ zulipbot added the size: XL label 21 hours ago

[Kishan Patel added some commits 19 hours ago

bots/tictactoe: Add simple tests for TicTacToeModel functions. =

bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X af5ade?
test_. -

bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X 273747
test_.

bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X f153ef8
test_.

bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in Xe
test_. -

© @ zulipbot added size: L and removed size: XL labels 16 hours ago

bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in v fc324df
test_. -

° All checks have passed Show all checks

2 successful checks

° This branch has no conflicts with the base branch

Only those with write access to this repository can merge pull requests.

XI. Advice for Future Students

In order to succeed in this class, you will have to actively apply the concepts you learn in
lecture to the projects and properly plan your course of action when tackling how to debug
extremely large codebases in a timely manner.

In order to succeed in other aspects of the separate from projects, do the assigned
readings before every lecture and take notes as this is an excellent supplement to the lecture
material and will make it easier for you to study for and succeed on the exam.

(You may use either of our materials in the future semesters)

XII. Accepted Changes

The bug that we found and fixed locally before telling another developer about the issue

was submitted as a separate issue. Below is the associated PR, and this was merged

into the master branch. We were not allowed to claim this issue because as new
contributors, we are only allowed to claim 1 issue at a time. Even though we found how to fix
this, we were not able to author the commit that ultimately changed this code. However, we
believe that if we were allowed to claim more than 1 issue to contribute to, then we could have
submitted and merged into master. In addition, our current pull request has passed the PR tests
and is being reviewed by developers to be merged into the codebase. \

Image: this is proof that our suggested fix for the pip version has been accepted and that
our PR for test-coverage is waiting to be merged into the codebase

m Eeshan

: q Eeshan Garg

Hey everyone! | was online for a few hours today. | worked on the following:

* Made a new PyPl release! This is our first package release after pip 10 was launched! i
* |nvestigated a bug in our BitBucket webhook.

* Submitied #9112, updating the docs for our Stripe webhook to confarm to the new style guide. | double-checked and we
really don't need to be using the URL generated by the webhook-url-with-bot-email.md macro.

=

| think that's all for today, I'll be online tomorrow! Have a good night everyone!

test suites Question about Dependencies for zulipbot tests

ﬁ Puneeth Chaganti

@Aliya Khan| you should be able to see on the Pull request that you have opened, when the changes get merged with

master. You should talk to| @Eeshan Garg about your change, and see what mare needs to be done for your PR to be merge-
able.

Also, the fix for latest version of pip has been merged to master. So, you can get rid of the hack to install pip==9.8.3 ir(:?:)
your PR.

Image: Below is the image that shows that the issue we reported and fixed was submitted

by another developer on the Zulip project because we are only allowed to contribute to 1 issue at
a time. This is why we were not able to submit this issue below.

test_tictactoe.py improvements #37/2

Il kishanlp wants to merge 7 commits into zulip:master from kishanlp:master

5 Conversation 0 - Commits 7 Files changed 3

ﬂ kishanlp commented 21 hours ago Collaborator ~ +

Slightly increased coverage for tictactoe.py from 19% to 20%. Will need further review to test the
integration of different functions within the tictactoe bot, as many of the functions seem to not be
able to be tested due to bad function calls within the bot code. Additionally, we found that the
current tests for the TicTacToeModel object could not be run without explicitly defining
current_board outside of the constructor, so we fixed this in order to run our test cases.

Added tests to test_tictactoe.py to test TicTacToeModel functions. X cfoe624
Sl =

© (@ zulipbot added the size: XL label 21 hours ago

Bl Kishan Patel added some commits 19 hours ago
bots/tictactoe: Add simple tests for TicTacToeModel functions. = X e536bea
bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X af5ado7
test_..
bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X 2737475
test_..
bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X f153ef8
test_.
bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in X e6elead
test_..

© @ zulipbot added size: L and removed size: XL labels 16 hours ago

bots/tictactoe/test_tictactoe.py: Fixed issues in test cases in v fc324df
test_..
All checks have passed Show all checks

2 successful checks

This branch has no conflicts with the base branch
Only those with write access to this repository can merge pull requests.

