
68 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

L a rge-scale software development is a notoriously
difficult problem. Software is built in layers, and APIs
are exposed by each layer to its clients. APIs come with
usage rules, and clients must satisfy them while using
the APIs. Violations of API rules can cause runtime
errors. Thus, it is useful to consider whether API rules
can be formally documented so programs using the
APIs can be checked at compile time for compliance
against the rules.

Some API rules (such as agreement on the number
of parameters and data types of each parameter)
can be checked by compilers. However, certain rules
involve hidden state; for example, consider the rule
that the acquire method and release method of a

spinlock must be done in strict alter-
nation and the rule that a file can be
read only after it is opened. We built
the SLAM engine (SLAM from now on)
to allow programmers to specify state-
ful usage rules and statically check if
clients follow such rules. We wanted
SLAM to be scalable and at the same
time have a very low false-error rate. To
scale the SLAM engine, we constructed
abstractions that retain only informa-
tion about certain predicates related to
the property being checked. To reduce
false errors, we refined abstractions
automatically using counterexamples
from the model checker. Constructing
and refining abstractions for scaling
model checking has been known for
more than 15 years; Kurshan35 is the
earliest reference we know.

SLAM automated the process of
abstraction and refinement with
counterexamples for programs writ-
ten in common programming lan-
guages (such as C) by introducing
new techniques to handle program-
ming-language constructs (such as
pointers, procedure calls, and scop-
ing constructs for variables).2,4–8 In-
dependently and simultaneously
with our work, Clarke et al.17 auto-
mated abstraction and refinement
with counterexamples in the con-
text of hardware, coining the term
“counterexample-driven abstraction
refinement,” or CEGAR, which we use
to refer to this technique throughout

A Decade
of Software
Model
Checking
with SLAM

doi:10.1145/1965724.1965743

SLAM is a program-analysis engine used
to check if clients of an API follow the API’s
stateful usage rules.

by Thomas Ball, Vladimir Levin, and Sriram K. Rajamani

 key insights
 � �Even though programs have many

states, it is possible to construct an
abstraction of a program fine enough
to represent parts of a program
relevant to an API usage rule and
coarse enough for a model checker
to explore all the states.

 � �SLAM synthesizes and extends diverse
ideas from model checking, theorem
proving, and data-flow analysis to
automate construction, checking,
and refinement of abstractions.

 � �SLAM showed that such abstractions
can be constructed automatically
for real-world programs, becoming
the basis of Microsoft’s Static Driver
Verifier tool.

july 2011 | vol. 54 | no. 7 | communications of the acm 69

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 r
y

a
n

 a
l

e
x

a
n

d
e

r

this article. The automation of CE-
GAR for software is technically more
intricate, since software, unlike hard-
ware, is infinite state, and program-
ming languages have more expres-
sive and complex features compared
to hardware-description languages.
Programming languages allow pro-
cedures with unbounded call stacks
(handled by SLAM using pushdown
model-checking techniques), scoping
of variables (exploited by SLAM for ef-
ficiency), and pointers allowing the
same memory to be aliased by differ-
ent variables (handled by SLAM using
pointer-alias-analysis techniques).

We also identified a “killer-app”
for SLAM—checking if Windows de-
vice drivers satisfy driver API usage
rules. We wrapped SLAM with a set of
rules specific to the Windows driver
API and a tool chain to enable push-
button validation of Windows drivers,
resulting in a tool called “static driver
verifier,” or SDV. Such tools are stra-

tegically important for the Windows
device ecosystem, which encourages
and relies on hardware vendors mak-
ing devices and writing Windows de-
vice drivers while requiring vendors
to provide evidence that the devices
and drivers perform acceptably. Be-
cause many drivers use the same Win-
dows-driver API, the cost of manually
specifying the API rules and writing
them down is amortized over the
value obtained by checking the same
rules over many device drivers.

Here, we offer a 10-year retrospec-
tive of SLAM and SDV, including a self-
contained overview of SLAM, our ex-
perience taking SLAM to a full-fledged
SDV product, a description of how we
built and deployed SDV, and results
obtained from the use of SDV.

SLAM
Initially, we coined the label SLAM
as an acronym for “software (speci-
fications), programming languages,

abstraction, and model checking.”
Over time, we used SLAM more as a
forceful verb; to “SLAM” a program
is to exhaustively explore its paths
and eliminate its errors. We also de-
signed the “Specification Language
for Interface Checking,” or SLIC,9 to
specify stateful API rules and created
the SLAM tool as a flexible verifier to
check if code that uses the API follows
the SLIC rules. We wanted to build a
verifier covering all possible behav-
iors of the program while checking
the rule, as opposed to a testing tool
that checks the rule on a subset of be-
haviors covered by the test.

In order for the solution to scale
while covering all possible behaviors,
we introduced Boolean programs.
Boolean programs are like C programs
in the sense that they have all the con-
trol constructs of C programs—se-
quencing, conditionals, loops, and pro-
cedure calls—but allow only Boolean
variables (with local, as well as global,

70 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

A SLIC rule includes three compo-
nents: a static set of state variables,
described as a C structure; a set of
events and event handlers that specify
state transitions on the events; and a
set of annotations that bind the rule
to various object instances in the pro-
gram (not shown in this example).
As an example of a rule, consider the
locking rule in Figure 1a. Line 1 de-
clares a C structure containing one
field state, an enumeration that
can be either Unlocked or Locked,
to capture the state of the lock. Lines
3–5 describe an event handler for
calls to KeInitializeSpinLock.
Lines 7–13 describe an event han-
dler for calls to the function KeAc-
quireSpinLock. The code for the
handler expects the state to be in
Unlocked and moves it to Locked
(specified in line 9). If the state is
already Locked, then the program
has called KeAcquireSpinLock
twice without an intervening call to
KeReleaseSpinLock and is an er-
ror (line 9). Lines 15–21 similarly de-
scribe an event handler for calls to
the function KeReleaseSpinLocka.
Figure 1b is a piece of code that uses
the functions KeAcquireSpinLock
and KeReleaseSpinLock. Figure 1c

a	 A more detailed example of this rule would han-
dle different instances of locks, but we cover
the simple version here for ease of exposition.

scope). Boolean programs made sense
as an abstraction for device drivers
because we found that most of the
API rules drivers must follow tend to
be control-dominated, and so can be
checked by modeling control flow in
the program accurately and modeling
only a few predicates about data rel-
evant to each rule being checked.

The predicates that need to be
“pulled into” the model are dependent
on how the client code manages state
relevant to the rule. CEGAR is used to
discover the relevant state automatical-
ly so as to balance the dual objectives of
scaling to large programs and reducing
false errors.

SLIC specification language. We de-
signed SLAM to check temporal safety
properties of programs using a well-
defined interface or API. Safety proper-
ties are properties whose violation is
witnessed by a finite execution path.
A simple example of a safety property
is that a lock should be alternatively
acquired and released. SLIC allows
us to encode temporal safety proper-
ties in a C-like language that defines
a safety automaton44 that monitors a
program’s execution behavior at the
level of function calls and returns. The
automaton can read (but not modify)
the state of the C program that is vis-
ible at the function call/return inter-
face, maintain a history, and signal the
occurrence of a bad state.

is the same code after it has been in-
strumented with calls to the appropri-
ate event handlers. We return to this
example later.

CEGAR via predicate abstraction.
Figure 2 presents ML-style pseudo-
code of the CEGAR process. The goal of
SLAM is to check if all executions of the
given C program P (type cprog) satisfy a
SLIC rule S (type spec).

The instrument function takes the
program P and SLIC rule S as inputs
and produces an instrumented pro-
gram P´ as output, based on the prod-
uct-construction technique for safety
properties described in Vardi and Wol-
per.44 It hooks up relevant events via
calls to event handlers specified in the
rule S, maps the error statements in
the SLIC rule to a unique error state in
P´, and guarantees that P satisfies S if
and only if the instrumented program
P´ never reaches the error state. Thus,
this function reduces the problem of
checking if P satisfies S to checking if
P´ can reach the error state.

The function slam takes a C pro-
gram P and SLIC rule specification S
as input and passes the instrumented
C program to the tail-recursive func-
tion cegar, along with the predicates
extracted from the specification S
(specifically, the guards that appear in
S as predicates).

The first step of the cegar function is
to abstract program P´ with respect to

Figure 1. (a) Simplified SLIC locking rule; (b) code fragment using spinlocks; (c) fragment after instrumentation.

	 1	 state { enum {Unlocked, Locked} state; }
	 2
	 3	 KeInitializeSpinLock.call {
	 4	 state = Unlocked;
	 5	 }
	 6
	 7	 KeAcquireSpinLock.call {
	 8	 if (state == Locked) {
	 9	 error;
	10	 } else {
	11	 state = Locked;
	12	 }
	13	 }
	14
	15	 KeReleaseSpinLock.call {
	16	 if (!(state == Locked)) {
	17	 error;
	18	 } else {
	19	 state = Unlocked;
	20	 }
	21	 }
	22

	 1	 ..
	 2	 KeInitializeSpinLock();
	 3	 ..
	 4	 ..
	 5	 if(x > 0)
	 6	 KeAcquireSpinlock();
	 7	 count = count+1;
	 8	 devicebuffer[count] = localbuffer[count];
	 9	 if(x > 0)
	10	 KeReleaseSpinLock();
	11	 ...
	12	 ...

	 1	 ..
	 2	 { state = Unlocked;
	 3	 KeInitializeSpinLock();}
	 4	 ..
	 5	 ..
	 6	 if(x > 0)
	 7	 { SLIC_KeAcquireSpinLock_call();
	 8	 KeAcquireSpinlock(); }
	 9	 count = count+1;
	10	 devicebuffer[count] = localbuffer[count];
	11	 if(x > 0)
	12	 { SLIC_KeReleaseSpinLock_call();
	13	 KeReleaseSpinLock(); }
	14	 ...
	15	 ...

(a) (b) (c)

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 71

the predicate set preds to create a Bool-
ean program abstraction B. The auto-
mated transformation of a C program
into a Boolean program uses a tech-
nique called predicate abstraction,
first introduced in Graf and Saïdi29 and
later extended to work with program-
ming-language features in Ball et al.2
and Ball et al.3

The program B has exactly the same
control-flow skeleton as program P´.
By construction, for any set of predi-
cates preds, every execution trace of
the C program P´ also is an execution
trace of B = abstract(P´, preds); that is,
the execution traces of P´ are a subset
of those of B. The Boolean program B
models only the portions of the state of
P´ relevant to the current SLIC rule, us-
ing nondeterminism to abstract away
irrelevant state in P´.

Once the Boolean program B is con-
structed, the check function exhaus-
tively explores the state space of B to
determine if the (unique) error state is
reachable. Even though all variables in
B are Boolean, it can have procedure
calls and a potentially unbounded call
stack. Our model checker performs
symbolic reachability analysis of the
Boolean program (a pushdown system)
using binary decision diagrams.11 It

uses ideas from interprocedural data
flow analysis42,43 and builds summaries
for each procedure to handle recursion
and variable scoping.

If the check function returns Ab-
stractPass, then the error state is not
reachable in B and therefore is also
not reachable in P´. In this case, SLAM
has proved that the C program P satis-
fies the specification S. However, if the
check function returns AbstractFail
with witness trace trc, the error state
is reachable in the Boolean program
B but not necessarily in the C program
P´. Therefore, the trace trc must be
validated in the context of P´ to prove it
really is an execution trace of P´.

The function symexec symbolically
executes the trace trc in the context of
the C program P´. Specifically, it con-
structs a formula φ(P´, trc) that is satis-
fiable if and only if there exists an input
that would cause program P´ to execute
trace trc. If symexec returns Satisfiable,
then SLAM has proved program P does
not satisfy specification S and returns
the counterexample trace trc.

If the function symexec returns
Unsatisfiable(prf), then it has found
a proof prf that there is no input that
would cause P´ to execute trace trc.
The function refine takes this proof of

unsatisfiability, reduces it to a smaller
proof of unsatisfiability, and returns
the set of constituent predicates from
this smaller proof. The function refine
guarantees that the trace trc is not an
execution trace of the Boolean program

abstract (P´, preds ∪ refine(pr f))

The ability to refine the (Boolean pro-
gram) abstraction to rule out a spurious
counterexample is known as the prog-
ress property of the CEGAR process.

Despite the progress property, the
CEGAR process offers no guarantee
of terminating since the program P´
may have an intractably large or in-
finite number of states; it can refine
the Boolean program forever without
discovering a proof of correctness or
proof of error.

However, as each Boolean program
is guaranteed to overapproximate the
behavior of the C program, stopping
the CEGAR process before it terminates
with a definitive result is no different
from any terminating program analysis
that produces false alarms. In practice,
SLAM terminates with a definite result
over 96% of the time on large classes
of device drivers: for Windows Driver
Framework (WDF) drivers, the figure is

Figure 2. Graphical illustration and ML-style pseudocode of CEGAR loop.

cprog P
bprog Bpredicates

proof of unsat. trace

cprog P′ P passes S

spec S

P fails S

validated trace
CEGAR

instrument

abstract

symexec

refine check

type cprog, spec, predicates, bprog, trace, proof

type result =
	 Pass | Fail of trace

type chkresult =
	 AbstractPass | AbstractFail of trace

type excresult =
	 Satisable | Unsatisable of proof

let rec cegar (P’:cprog) (preds :predicates) : result =
	 let B: bprog = abstract (P’,preds) in
	 match check(B) with
	 | AbstractPass -> Pass
	 | AbstractFail(trc) ->
		 match symexec(P’, trc) with
		 | Satisable -> Fail(trc)
		 | Unsatisable(prf) -> cegar P’ (preds ∪ (refine prf))

let slam (P:cprog) (S:spec) : result =
	 cegar (instrument (P,S)) (preds S)

72 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

Figure 3b is the Boolean program
abstraction of the SLIC-instrumented
C program from Figure 1c. Note the
Boolean program has the same control
flow as the C program, including proce-
dure calls. However, the conditionals
at lines 7 and 12 of the Boolean pro-
gram are nondeterministic since the
Boolean program does not have a pred-
icate that refers to the value of variable
x. Also note that the references to vari-
ables count, devicebuffer, and lo-
calbuffer are elided in lines 10 and
11 (replaced by skip statements in the
Boolean program) since the Boolean
program does not have predicates that
refer to these variables.

The abstraction in Figure 3b, though
a valid abstraction of the instrumented
C, is not strong enough to prove the
program conforms to the SLIC rule.
In particular, the reachability analysis
of the Boolean program performed
by the check function will find that
slic _ error is reachable via the trace
1, 2, 3, 4, 5, 6, 7, 10, 11, 12,
13, which skips the call to SLIC _ Ke-
AcquireSpinLock _ call at line 8 and
performs the call to SLIC _ KeReleas-
eSpinLock _ call at line 13. Since the
Boolean variable state==Lock is false,
slic _ error will be called in line 11 of
Figure 3a.

SLAM feeds this error trace to the
symexec function that executes it
symbolically over the instrumented C
program in Figure 1c and determines
the trace is not executable since the
branches in “if” conditions are cor-

100%, and for Windows Driver Model
(WDM) drivers, the figure is 97%.

Example. We illustrate the CEGAR
process using the SLIC rule from Fig-
ure 1a and the example code fragment
in Figure 1b. In the program, we have a
single spinlock being initialized at line
4. The spinlock is acquired at line 8
and released at line 12. However, both
calls KeAcquireSpinLock and KeR-
eleaseSpinLock are guarded by the
conditional (x > 0). Thus, tracking cor-
relations between such conditionals
is important for proving this property.
Figures 3a and 3b show the Boolean
program obtained by the first applica-
tion of the abstract function to the code
from Figures 1a and 1c, respectively.

Figure 3a is the Boolean program
abstraction of the SLIC event handler
code. Recall that the instrumentation
step guarantees there is a unique error
state. The function slic _ error at
line 1 represents that state; that is, the
function slic _ error is unreach-
able if and only if the program satis-
fies the SLIC rule. There is one Boolean
variable named {state==Locked};
by convention, we name each Boolean
variable with the predicate it stands
for, enclosed in curly braces. In this
case, the predicate comes from the
guard in the SLIC rule (Figure 1a, line
8). Lines 5–8 and lines 10–13 of Figure
3a show the Boolean procedures cor-
responding to the SLIC event handlers
SLIC _ KeAcquireSpinLock _ call
and SLIC_KeReleaseSpinLock_call
from Figure 1a.

related. In particular, the trace is not
executable because there does not ex-
ist a value for variable x such that (x
> 0) is false (skipping the body of the
first conditional) and such that (x > 0)
is true (entering the body of the sec-
ond conditional). That is, the formula
∃x.(x ≤ 0) ^ (x > 0) is unsatisfiable. The
result of the refine function is to add
the predicate {x>0} to the Boolean
program to refine it. This addition
results in the Boolean program ab-
straction in Figure 3c, including the
Boolean variable {x>0}, in addition to
{state==Locked}.

Using these two Boolean variables,
the abstraction in Figure 3c is strong
enough to prove slic _ error is un-
reachable for all possible executions of
the Boolean program, and hence SLAM
proves this Boolean program satisfies
the SLIC rule. Since the Boolean pro-
gram is constructed to be an overap-
proximation of the C program in Fig-
ure 1c, the C program indeed satisfies
the SLIC rule.

From SLAM to SDV
SDV is a completely automatic tool
(based on SLAM) device-driver devel-
opers can use at compile time. Requir-
ing nothing more than the build script
of the driver, the SDV tool runs fully
automatically and checks a set of pre-
packaged API usage rules on the device
driver. For every usage rule violated by
the driver, SDV presents a possible ex-
ecution trace through the driver that
shows how the rule can be violated.

Figure 3. (a) Boolean program abstraction for locking and unlocking routines; (b) Boolean program: CEGAR iteration 1;
(c) Boolean program: CEGAR iteration 2.

	 1	 slic_error() { assert(false); }
	 2
	 3	 bool {state==Locked};
	 4
	 5	 SLIC_KeAcquireSpinLock_call() {
	 6		 if({state==Locked}) slic_error();
	 7		 else {state==Locked} := true;
	 8	 }
	 9
	10	 SLIC_KeReleaseSpinLock_call() {
	11		 if(!{state==Locked}) slic_error();
	12		 else {state==Locked} := false;
	13	 }
	14

	 1	 ...
	 2	 ...
	 3	 {state==Locked} := false;
	 4	 KeInitializeSpinLock();
	 5	 ...
	 6	 ...
	 7	 if(*)
	 8		 { SLIC_KeAcquireSpinLock_call();
	 9			 KeAcquireSpinLock(); }
	10	 skip;
	11	 skip;
	12	 if(*)
	13		 {	 SLIC_KeReleaseSpinLock_Call();
	14			 KeReleaseSpinLock(); }
	15	 ...
	16	 ...

	 1	 bool {x > 0};
	 2	 ...
	 3	 {state==Locked} := false;
	 4	 KeInitializeSpinLock();
	 5	 ...
	 6	 ...
	 7	 if({x>0})
	 8		 {	 SLIC_KeAcquireSpinLock_call();
	 9			 KeAcquireSpinLock(); }
	10	 skip;
	11	 skip;
	12	 if({x>0})
	13		 {	 SLIC_KeReleaseSpinLock_Call();
	14			 KeReleaseSpinLock(); }
	15	 ..
	16	 ...

(a) (b) (c)

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 73

Model checking is often called
“push-button” technology,16 giving
the impression that the user simply
gives the system to the model checker
and receives useful output about er-
rors in the system, with state-space
explosion being the only obstacle. In
practice, in addition to state-space
explosion, several other obstacles can
inhibit model checking being a “push-
button” technology: First, users must
specify the properties they want to
check, without which there is nothing
for a model checker to do. In complex
systems (such as the Windows driver
interface), specifying such properties
is difficult, and these properties must
be debugged. Second, due to the state-
explosion problem, the code analyzed
by the model checker is not the full sys-
tem in all its gory complexity but rath-
er the composition of some detailed
component (like a device driver) with
a so-called “environment model” that
is a highly abstract, human-written
description of the other components
of the system—in our case, kernel
procedures of the Windows operating
system. Third, to be a practical tool in
the toolbox of a driver developer, the
model checker must be encapsulated
in a script incorporating it in the driver
development environment, then feed
it with the driver’s source code and re-
port results to the user. Thus, creating
a push-button experience for users re-
quires much more than just building a
good model-checking engine.

Here, we explore the various com-
ponents of the SDV tool besides SLAM:
driver API rules, environment models,
scripts, and user interface, describ-
ing how they’ve evolved over the years,
starting with the formation of the SDV
team in Windows in 2002 and several
internal and external releases of SDV.

API rules. Different classes of devic-
es have different requirements, lead-
ing to class-specific driver APIs. Thus,
networking drivers use the NDIS API,
storage drivers use the StorPort and
MPIO APIs, and display drivers the
WDDM API. A new API called WDF was
designed to provide higher-level ab-
stractions for common device drivers.
As described earlier, SLIC rules capture
API-level interactions, though they are
not specific to a particular device driver
but to a whole class of drivers that use
a common API. Such a specification

means the manual effort of writing
rules can be amortized by checking
the rules on thousands of device driv-
ers using the API. The SDV team has
made significant investment in writing
API rules and teaching others in Micro-
soft’s Windows organization to write
API rules.

Environment models. SLAM is de-
signed as a generic engine for check-
ing properties of a closed C program.
However, a device driver is not a closed
program with a main procedure but
rather a library with many entry points
(registered with and called by the op-
erating system). This problem is stan-
dard to both program analysis and
model checking.

Before applying SLAM to a driver’s
code, we first “close” the driver pro-
gram with a suitable environment con-
sisting of a top layer called the harness,
a main procedure that calls the driver’s
entry points, and a bottom layer of stubs
for the Windows API functions that can
be called by the device driver. Thus, the
harness calls into the driver, and the
driver calls the stubs.

Most API rules are local to a driver’s
entry points, meaning a rule can be
checked independently on each entry
point. However, some complex rules
deal with sequences of entry points.
For the rules of the first type, the body
of the harness is a nondeterministic
switch in which each branch calls a
single and different entry point of the
driver. For more complex rules, the
harness contains a sequence of such
nondeterministic switches.

A stub is a simplified implementa-
tion of an API function intended to ap-
proximate the input-output relation of
the API function. Ideally, this relation
should be an overapproximation of the
API function. In many cases, a driver
API function returns a scalar indicating
success or failure. In these cases, the
API stub usually ends with a nondeter-
ministic switch over possible return val-
ues. In many cases, a driver API function
allocates a memory object and returns
its address, sometimes through an out-
put pointer parameter. In these cases,
the harness allocates a small set of such
memory objects, and the stub picks up
one of them and returns its address.

Scaling rules and models. Initially,
we (the SDV team) wrote the API rules
in SLIC based on input from driver API

We wanted to build
a verifier covering
all possible
behaviors of the
program while
checking the rule,
as opposed to a
testing tool that
checks the rule on a
subset of behaviors
covered by the test.

74 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

experts. We tested them on drivers with
injected bugs, then ran SDV with the
rules on real Windows drivers. We dis-
cussed the bugs found by the rules with
driver owners and API experts to refine
the rules. At that time, a senior manag-
er said, “It takes a Ph.D. to develop API
rules.” Since then, we’ve invested sig-
nificant effort in creating a discipline
for writing SLIC rules and spreading
it among device-driver API developers
and testers.

In 2007, the SDV team refined
the API rules and formulated a set of
guidelines for rule development and
driver environment model construc-
tion. This helped us transfer rule de-
velopment to two software engineers
with backgrounds far removed from
formal verification, enabling them
to succeed and later spread this form
of rule development to others. Since
2007, driver API teams have been us-
ing summer interns to develop new
API rules for WDF, NDIS, StorPort, and
MPIO APIs and for an API used to write
file system mini-filters (such as antivi-
ruses) and Windows services. Remark-
ably, all interns have written API rules
that found true bugs in real drivers.

SDV today includes more than 470
API rules. The latest version SDV 2.0
(released with Windows 7 in 2009) in-
cludes more than 210 API rules for the
WDM, WDF, and NDIS APIs, of which
only 60 were written by formal verifica-
tion experts. The remaining 150 were
written or modified from earlier drafts
by software engineers or interns with
no experience in formal verification.

Worth noting is that the SLIC rules
for WDF were developed during the de-
sign phase of WDF, whereas the WDM
rules were developed long after WDM
came into existence. The formaliza-
tion of the WDF rules influenced WDF
design; if a rule could not be expressed
naturally in SLIC, the WDF designers
tried to refactor the API to make it eas-
ier to verify. This experience showed
that verification tools (such as SLAM)
can be forward-looking design aids, in
addition to being checkers for legacy
APIs (such as WDM).

Scripts. SDV includes a set of scripts
that perform various functions: com-
bining rules and environment models;
detecting source files of a driver and
its build parameters; running the SLIC
compiler on rules and the C compiler

on a driver’s and environment model’s
source code to generate an intermedi-
ate representation (IR); invoking SLAM
on the generated IR; and reporting the
summary of the results and error traces
for bugs found by SLAM in a GUI.

The SDV team worked hard to en-
sure these scripts would provide a very
high degree of automation for the user.
The user need not specify anything oth-
er than the build scripts used to build
the driver.

SDV Experience
The first version of SDV (1.3, not re-
leased externally outside Microsoft)
found, on average, one real bug per
driver in 30 sample drivers shipped
with the Driver Development Kit
(DDK) for Windows Server 2003. These
sample drivers were already well test-
ed. Eliminating defects in the WDK
samples is important since code from
sample drivers is often copied by third-
party driver developers.

Versions 1.4 and 1.5 of SDV were ap-
plied to Windows Vista drivers. In the
sample WDM drivers shipped with the
Vista WDK (WDK, the renamed DDK),
SDV found, on average, approximately
one real bug per two drivers. These
samples were mostly modifications
of sample drivers from the Windows
Server 2003 DDK, with fixes applied for
the defects found by SDV 1.3. The new-
ly found defects were due to improve-
ments in the set of SDV rules and to de-
fects introduced due to modifications
in the drivers.

For Windows Server 2008, SDV ver-
sion 1.6 contained new rules for WDF
drivers, with which SDV found one real
bug per three WDF sample drivers. The
low bug count is explained by simplic-
ity of the WDF driver model described
earlier and co-development of sample
drivers, together with the WDF rules.

For the Windows 7 WDK, SDV 2.0
found, on average, one new real bug
per WDF sample driver and few bugs
on all the WDM sample drivers. This
data is explained by more focused ef-
forts to refine WDF rules and few mod-
ifications in the WDM sample drivers.
SDV 2.0 shipped with 74 WDM rules,
94 WDF rules, and 36 NDIS rules. On
WDM drivers, 90% of the defects re-
ported by SDV are true bugs, and the
rest are false errors. Further, SDV re-
ports nonresults (such as timeouts

A unique SLAM
contribution is
the complete
automation
of CEGAR for
software written
in expressive
programming
languages
(such as C).

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 75

and spaceouts) on only 3.5% of all
checks. On WDF drivers, 98% of de-
fects reported by SDV are true bugs,
and non-results are reported on only
0.04% of all checks. During the devel-
opment cycle of Windows 7, SDV 2.0
was applied as a quality gate to drivers
written by Microsoft and sample driv-
ers shipped with the WDK. SDV was
applied later in the cycle after all other
tools, yet found 270 real bugs in 140
WDM and WDF drivers. All bugs found
by SDV in Microsoft drivers were fixed
by Microsoft. We do not have reliable
data on bugs found by SDV in third-
party device drivers.

Here, we give performance statis-
tics from a recent run of SDV on 100
drivers and 80 SLIC rules. The largest
driver in the set is about 30,000 lines
of code, and the total size of all drivers
is 450,000 lines of code. The total run-
time for the 8,000 runs (each driver-
rule combination is a run) is about 30
hours on an eight-core machine. We
kill a run if it exceeds 20 minutes, and
SDV yields useful results (either a bug
or a pass) on over 97% of the runs. We
thus find SDV checks drivers with ac-
ceptable performance, yielding useful
results on a large fraction of the runs.

Limitations. SLAM and SDV also
involve several notable limitations.
Even with CEGAR, SLAM is unable to
handle very large programs (with hun-
dreds of thousands of lines of code).
However, we also found SDV is able to
give useful results for control-domi-
nated properties and programs with
tens of thousands of lines of code.
Though SLAM handles pointers in a
sound manner, in practice, it is un-
able to prove properties that depend
on establishing invariants of heap
data structures. SLAM handles only
sequential programs, though oth-
ers have extended SLAM to deal with
bounded context switches in concur-
rent programs.40 Our experience with
SDV shows that in spite of these limi-
tations, SLAM is very successful in the
domain of device-driver verification.

Related Work
SLAM builds on decades of research in
formal methods. Model checking15,16,41

has been used extensively to algorith-
mically check temporal logic proper-
ties of models. Early applications of
model checking were in hardware38

and protocol design.32 In compiler and
programming languages, abstract in-
terpretation21 provides a broad and ge-
neric framework to compute fixpoints
using abstract lattices. The particular
abstraction used by SLAM was called
“predicate abstraction” by Graf and
Saïdi.29 Our contribution was to show
how to perform predicate abstraction
on C programs with such language
features as pointers and procedure
calls in a modular manner.2,3 The
predicate-abstraction algorithm uses
an automated theorem prover. Our ini-
tial implementation of SLAM used the
Simplify theorem prover.23 Our current
implementation uses the Z3 theorem
prover.22

The Bandera project explored the
idea of user-guided finite-state abstrac-
tions for Java programs20 based on
predicate abstraction and manual ab-
straction but without automatic refine-
ment of abstractions. It also explored
the use of program slicing for reducing
the state space of models. SLAM was
influenced by techniques used in Ban-
dera to check typestate properties on
all objects of a given type.

SLAM’s Boolean program model
checker (Bebop) computes fixpoints
on the state space of the generated
Boolean program that can include re-
cursive procedures. Bebop uses the
Context Free Language Reachability al-
gorithm,42,43 implementing it symboli-
cally using Binary Decision Diagrams.11
Bebop was the first symbolic model
checker for pushdown systems. Since
then, other symbolic checkers have
been built for similar purposes,25,36 and
Boolean programs generated by SLAM
have been used to study and improve
their performance.

SLAM and its practical application
to checking device drivers has been
enthusiastically received by the re-
search community, and several related
projects have been started by research
groups in universities and industry.
At Microsoft, the ESP and Vault proj-
ects were started in the same group
as SLAM, exploring different ways of
checking API usage rules.37 The Blast
project31 at the University of Califor-
nia, Berkeley, proposed a technique
called “lazy abstraction” to optimize
constructing and maintaining the ab-
stractions across the iterations in the
CEGAR loop. McMillan39 proposed “in-

terpolants” as a more systematic and
general way to perform refinement;
Henzinger et al.30 found predicates
generated from interpolants have nice
local properties that were then used to
implement local abstractions in Blast.

Other contemporary techniques
for analyzing C code against temporal
rules include the meta-level compila-
tion approach of Engler et al.24 and an
extension of SPIN developed by Holz-
mann33 to handle ANSI C.33 The Cqual
project uses “type qualifiers” to specify
API usage rules, using type inference to
check C code against the type-qualifier
annotations.26

SLAM works by computing an
overapproximation of the C program,
or a “may analysis,” as described by
Godefroid et al.28 The may analysis is
refined using symbolic execution on
traces, as inspired by the PREfix tool,12
or a “must analysis.” In the past few
years, must analysis using efficient
symbolic execution on a subset of
paths in the program has been shown
to be very effective in finding bugs.27
The Yogi project has explored ways
to combine may and must analysis in
more general ways.28 Another way to
perform underapproximation or must
analysis is to unroll loops a fixed num-
ber of times and perform “bounded
model checking”14 using satisfiabil-
ity solvers, an idea pursued by several
projects, including CBMC,18 F-Soft,34
and Saturn.1

CEGAR has been generalized to
check properties of heap-manipulat-
ing programs,10 as well as the problem
of program termination.19 The Magic
model checker checks properties of
concurrent programs where threads
interact through message passing.13
And Qadeer and Wu40 used SLAM to
analyze concurrent programs through
an encoding that models all interleav-
ings with two context switches as a se-
quential program.

Conclusion
The past decade has seen a resurgence
of interest in the automated analysis of
software for the dual purpose of defect
detection and program verification, as
well as advances in program analysis,
model checking, and automated theo-
rem proving. A unique SLAM contri-
bution is the complete automation of
CEGAR for software written in expres-

76 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

8.	 Ball, T. and Rajamani, S.K. The SLAM project:
Debugging system software via static analysis. In
Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(Portland, OR, Jan. 16–18). ACM Press, New York, Jan.
2002, 1–3.

9.	 Ball, T. and Rajamani, S.K. SLIC: A Specification
Language for Interface Checking. Technical Report
MSR-TR-2001-21. Microsoft Research, Redmond, WA,
2001.

10.	 Beyer, D., Henzinger, T.A., Théoduloz, G., and Zufferey,
D. Shape refinement through explicit heap analysis.
In Proceedings of the 13th International Conference
on Fundamental Approaches to Software Engineering
(Paphos, Cyprus, Mar. 20–28). Springer, 2010,
263–277.

11.	 Bryant, R. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on
Computers C-35, 8 (Aug. 1986), 677–691.

12.	 Bush, W.R., Pincus, J.D., and Siela, D.J. A static
analyzer for finding dynamic programming errors.
Software-Practice and Experience 30, 7 (June 2000),
775–802.

13.	C haki, S., Clarke, E., Groce, A., Jha, S., and Veith, H.
Modular verification of software components in C. In
Proceedings of the 25th International Conference on
Software Engineering (Portland, OR, May 3–10). IEEE
Computer Society, 2003, 385–395.

14.	C larke, E., Grumberg, O., and Peled, D. Model Checking.
MIT Press, Cambridge, MA, 1999.

15.	C larke, E.M. and Emerson, E.A. Synthesis of
synchronization skeletons for branching time temporal
logic. In Proceedings of the Workshop on Logic of
Programs (Yorktown Heights, NY, May 1981). Springer,
1982, 52–71.

16.	C larke, E.M., Emerson, E.A., and Sifakis, J. Model
checking: Algorithmic verification and debugging.
Commun. ACM 52, 11 (Nov. 2009), 74–84.

17.	C larke, E.M., Grumberg, O., Jha, S., Lu, Y., and Veith,
H. Counterexample-guided abstraction refinement.
In Proceedings of the 12 International Conference on
Computer-Aided Verification (Chicago, July 15–19).
Springer, 2000, 154–169.

18.	C larke, E.M., Kroening, D., and Lerda, F. A tool for
checking ANSI-C programs. In Proceedings of the 10th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (Barcelona,
Mar. 29–Apr. 2). Springer, 2004, 168–176.

19.	C ook, B., Podelski, A., and Rybalchenko, A. Abstraction
refinement for termination. In Proceedings of the 12th
International Static Analysis Symposium (London,
Sept. 7–9). Springer, 2005, 87–101.

20.	C orbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C.,
Robby, Laubach, S., and Zheng, H. Bandera: Extracting
finite-state models from Java source code. In
Proceedings of the 22nd International Conference on
Software Engineering (Limerick, Ireland, June 4–11).
ACM Press, New York, 2000, 439–448.

21.	C ousot, P. and Cousot, R. Abstract interpretation:
A unified lattice model for the static analysis of
programs by construction or approximation of fixpoints.
In Proceedings of the Fourth ACM Symposium on
Principles of Programming Languages (Los Angeles,
Jan.). ACM Press, New York, 1977, 238–252.

22.	 de Moura, L. and Bjørner, N. Z3: An efficient SMT
solver. In Proceedings of the 14th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (Budapest, Mar.
29–Apr. 6). Springer, 2008, 337–340.

23.	 Detlefs, D., Nelson, G., and Saxe, J.B. Simplify: A
theorem prover for program checking. Journal of the
ACM 52, 3 (May 2005), 365–473.

24.	E ngler, D., Chelf, B., Chou, A., and Hallem, S. Checking
system rules using system-specific, programmer-
written compiler extensions. In Proceedings of the
Fourth Symposium on Operating System Design and
Implementation (San Diego, Oct. 23–25). Usenix
Association, 2000, 1–16.

25.	E sparza, J. and Schwoon, S. A BDD-based model
checker for recursive programs. In Proceedings
of the 13th International Conference on Computer
Aided Verification (Paris, July 18–22). Springer, 2001,
324–336.

26.	F oster, J.S., Terauchi, T., and Aiken, A. Flow-sensitive
type qualifiers. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (Berlin, June 17–19). ACM
Press, New York, 2002, 1–12.

27.	G odefroid, P., Levin, M.Y., and Molnar, D.A. Automated
whitebox fuzz testing. In Proceedings of the Network
and Distributed System Security Symposium (San

sive programming languages (such as
C). We achieved this automation by
combining and extending such diverse
ideas as predicate abstraction, inter-
procedural data-flow analysis, symbol-
ic model checking, and alias analysis.
Windows device drivers provided the
crucible in which SLAM was tested
and refined, resulting in the SDV tool,
which ships as part of the Windows
Driver Kit.

Acknowledgments
For their many contributions to SLAM
and SDV, directly and indirectly, we
thank Nikolaj Bjørner, Ella Bounimova,
Sagar Chaki, Byron Cook, Manuvir Das,
Satyaki Das, Giorgio Delzanno, Leon-
ardo de Moura, Manuel Fähndrich, Nar
Ganapathy, Jon Hagen, Rahul Kumar,
Shuvendu Lahiri, Jim Larus, Rustan
Leino, Xavier Leroy, Juncao Li, Jakob
Lichtenberg, Rupak Majumdar, Johan
Marien, Con McGarvey, Todd Mill-
stein, Arvind Murching, Mayur Naik,
Aditya Nori, Bohus Ondrusek, Adrian
Oney, Onur Oyzer, Edgar Pek, Andreas
Podelski, Shaz Qadeer, Bob Rinne,
Robby, Stefan Schwoon, Adam Sha-
piro, Rob Short, Fabio Somenzi, Am-
itabh Srivastava, Antonios Stampoulis,
Donn Terry, Abdullah Ustuner, Westley
Weimer, Georg Weissenbacher, Peter
Wieland, and Fei Xie. 	

References
1.	A iken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B.,

and Hawkins, P. An overview of the Saturn project. In
Proceedings of the 2007 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering (San Diego, June 13–14). ACM Press, New
York, 2007, 43–48.

2.	 Ball, T., Majumdar, R., Millstein, T., and Rajamani,
S.K. Automatic predicate abstraction of C programs.
In Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (Snowbird, UT, June 20–22). ACM
Press, New York, 2001, 203–213.

3.	 Ball, T., Millstein, T.D., and Rajamani, S.K. Polymorphic
predicate abstraction. ACM Transactions on Programming
Languages and Systems 27, 2 (Mar. 2005), 314–343.

4.	 Ball, T., Podelski, A., and Rajamani, S.K. Boolean
and Cartesian abstractions for model checking
C programs. In Proceedings of the Seventh
International Conference on Tools and Algorithms for
Construction and Analysis of Systems (Genova, Italy,
Apr. 2–6). Springer, 2001, 268–283.

5.	 Ball, T. and Rajamani, S.K. Bebop: A symbolic model
checker for Boolean programs. In Proceedings of
the Seventh International SPIN Workshop on Model
Checking and Software Verification (Stanford, CA, Aug.
30–Sept. 1). Springer, 2000, 113–130.

6.	 Ball, T. and Rajamani, S.K. Boolean Programs: A Model
and Process for Software Analysis. Technical Report
MSR-TR-2000-14. Microsoft Research, Redmond, WA,
Feb. 2000.

7.	 Ball, T. and Rajamani, S.K. Automatically validating
temporal safety properties of interfaces. In
Proceedings of the Eighth International SPIN
Workshop on Model Checking of Software Verification
(Toronto, May 19–20). Springer, 2001, 103–122.

Diego, CA, Feb. 10–13). The Internet Society, 2008.
28.	G odefroid, P., Nori, A.V., Rajamani, S.K., and Tetali,

S.D. Compositional may-must program analysis:
Unleashing the power of alternation. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Madrid, Jan.
17–23). ACM Press, New York, 2010, 43–56.

29.	G raf, S. and Saïdi, H. Construction of abstract
state graphs with PVS. In Proceedings of the Ninth
International Conference on Computer-Aided
Verification (Haifa, June 22–25). Springer, 72–83.

30.	H enzinger, T.A., Jhala, R., Majumdar, R., and McMillan,
K.L. Abstractions from proofs. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Venice, Jan.
14–16). ACM Press, New York, 2004, 232–244.

31.	H enzinger, T.A., Jhala, R., Majumdar, R., and Sutre,
G. Lazy abstraction. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium Principles of
Programming Languages (Portland, OR, Jan. 16–18).
ACM Press, New York, 2002, 58–70.

32.	H olzmann, G. The SPIN model checker. IEEE
Transactions on Software Engineering 23, 5 (May
1997), 279–295.

33.	H olzmann, G. Logic verification of ANSI-C code with
SPIN. In Proceedings of the Seventh International
SPIN Workshop on Model Checking and Software
Verification (Stanford, CA, Aug. 30–Sept. 1). Springer,
2000, 131–147.

34.	 Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., and Ashar,
P. Efficient SAT-based bounded model checking for
software verification. Theoretical Computer Science
404, 3 (Sept. 2008), 256–274.

35.	K urshan, R. Computer-aided Verification of
Coordinating Processes. Princeton University Press,
Princeton, NJ, 1994.

36.	L a Torre, S., Parthasarathy, M., and Parlato, G.
Analyzing recursive programs using a fixed-point
calculus. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (Dublin, June 15–21). ACM Press,
New York, 2009, 211–222.

37.	L arus, J.R., Ball, T., Das, M., DeLine, R., Fähndrich,
M., Pincus, J., Rajamani, S.K., and Venkatapathy, R.
Righting software. IEEE Software 21, 3 (May/June
2004), 92–100.

38.	 McMillan, K. Symbolic Model Checking: An Approach
to the State-Explosion Problem. Kluwer Academic
Publishers, 1993.

39.	 McMillan, K.L. Interpolation and SAT-based model
checking. In Proceedings of the 15th International
Conference on Computer-Aided Verification (Boulder,
CO, July 8–12). Springer, 2003, 1–13.

40.	Qadeer, S. and Wu, D. KISS: Keep it simple and
sequential. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and
Implementation (Washington, D.C., June 9–12). ACM
Press, New York, 2004, 14–24.

41.	 Queille, J. and Sifakis, J. Specification and verification
of concurrent systems in CESAR. In Proceedings of
the Fifth International Symposium on Programming
(Torino, Italy, Apr. 6–8). Springer, 1982, 337–350.

42.	R eps, T., Horwitz, S., and Sagiv, M. Precise
interprocedural data flow analysis via graph
reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, Jan.
23–25). ACM Press, New York, 1995, 49–61.

43. Sharir, M. and Pnueli, A. Two approaches to
interprocedural data flow analysis. In Program Flow
Analysis: Theory and Applications, N.D. Jones and
S.S. Muchnick, Eds. Prentice-Hall, 1981, 189–233.

44.	Vardi, M.Y. and Wolper, P. An automata theoretic
approach to automatic program verification. In
Proceedings of the Symposium Logic in Computer
Science (Cambridge, MA, June 16–18). IEEE
Computer Society Press, 1986, 332–344.

Thomas Ball (tball@microsoft.com) is a principal
researcher, managing the Software Reliability Research
group in Microsoft Research, Redmond, WA.

Vladimir Levin (vladlev@microsoft.com) is a principal
software design engineer and the technical lead of the
Static Driver Verification project in Windows in Microsoft,
Redmond, WA.

Sriram Rajamani (sriram@microsoft.com) is assistant
managing director of Microsoft Research India, Bangalore.

© 2011 ACM 0001-0782/11/07 $10.00

