EXCUSE ME, G\R. WOULD YOU BE
INTERESTED IN HAVING YOUR
MODERATE GOCIAL ViIEWS
REPACKAGED AS RADICAL

ATEMENTS, THEN SOLD TO YOU,
AS DESIGNER MERCHANDISE.

Test Suite
uality Metrics

WE HAVE THIS SHIRT WHICH PROMOTES
THE IDEA THAT REAL EXPERIENCE

LOGAN, IT ACQUIRES THE
ODAL SENSE OF CHALLENGING
GOME PERSON OR PERSPECTIVE,
EVEN THOUGH THE
GENERAL |DEA 15
UNCONTROVERSIAL.

THATLL COST
COULD YOU PLERSE BE a5% EXTRA.
LESS FORTHRIGHT ABOUT
YOUR BUSINESS MODEL?

embc-comiCS.com

One-Slide Summary

» Test suite quality metrics help us decide which
suite to use. Line coverage, the fraction of lines
visited when running a suite, is simple but gives
limited confidence. Branch coverage, which
requires both true and false values for
conditionals, is richer (incorporating data values
indirectly). Mutation analysis measures the
fraction of seeded defects detected by a suite; it
is expensive but effective.

 Beta and A/B testing involve real users and their
experiences.

The Story So Far ...

* Testing is the most common dynamic
technique for software quality assurance.

» Testing is very expensive (e.g., 35% of total IT
Spending). [Capgemini World Quality Report. 2015]

* Not testing, or testing badly, is even more

expensive: [Minimizing code defects to improve software quality
and lower development costs. IBM 2008]

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1xX* 5X 10X 15X 30X

*Xis a normalized unit of cost and can be expressed in terms of person-hours, dollars, etc.
Source: National Institute of Standards and Technology (NIST)T

By catching defects as early as possible in the development cycle, you can significantly reduce your
development costs.

Story Time

* Abboty Labs (St. Jude Medical) makes
pacemakers

e [In 2016, 465,000 of them were discovered to
have security vulnerabilities

“The wireless protocol used for communication
amongst St. Jude Medical cardiac devices has
serious security vulnerabilities that make it
possible to convert Merlin@home devices into
weapons capable of disabling therapeutic care
and delivering shocks to patients at distances of
10 feet, a range that could be extended using
off-the-shelf parts to modify Merlin@home
units.”

P40 SR

https://medsec.com/stj_expert_witness_report.pdf

Turtles All The Way Down

* “The “fix” is not a surgical replacement
pacemaker, but a firmware update that takes
about three minutes to complete and carries a
“very low risk of update malfunction;” a very
small percentage of people might experience a
“complete loss of device functionality” during
the firmware update. The patch covers St.
Jude Medical’s pacemakers: Accent, Anthem,
Accent MRI, Accent ST, Assurity and Allure.”

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

Guiding Narrative

How should we think about testing?

Lens of Logic ”
S oS BT Rree 5,
Lens of Statistics (30 ma“@ueamwnqm]; Pt eqa,f

Lens of Adversity

IF P \S FALSE,
T WILL 8E SAD.

T DO NOT wi\aw

&a TO BE SAD.

(

‘a THEREFORE, P \S TRUE.

Lens of Logic ¥

There. Now you can skip 99% of philosophical debates.

The Motivation

* |f testing is our best way to gain confidence in
the quality of software, but testing is
expensive, how can we ensure that we are
testing in an effective manner?

* Informal Desideratum: The program passes the
tests if and only if it does all the right things

and none of the wrong things.
» Pass all tests — program adheres to requirements
» Each failing test — program behaves incorrectly

Intuition (Gedankenexperiment)

» Suppose you were writing a sqrt program and
one of the requirements was that it should
abort gracefully on negative inputs.

» Suppose further that your test suite does not
include any negative inputs.

* Can we conclude that passing all of the tests
implies adhering to all of the requirements?

AVG Free Edition

‘ Test cannat be ztarted because it already does not exist.

Coverage

* We desire all of the requirements to be
covered (“checked”) by the test suite.

* For our purposes, X coverage is the degree to
which X is executed/exercised by the test
suite.

e Examples:

» Code coverage is the degree to which the source
code is executed by the test suite.

e Statement coverage is the fraction of source
statements that are executed by the test suite.

10

Do Tests Cover All Requirements?

* |In ideal world we would have traceability
between requirements and test cases

 That is, each test case would have an
annotation like “a program that passes this
test satisfies requirement X” or “passing this
test gives confidence that a program adheres
to requirement Y”

* Qutside of certain industries (e.g., Aerospace),
such formal traceability is rare

e e.g8., https://en.wikipedia.org/wiki/DO-178C

11

https://en.wikipedia.org/wiki/DO-178C

An Approximation

* We will cover requirements and their
elicitation later in this course (mid-semester)

* But suppose for now you don't have formal
traceability to your requirements

* S0 testing that the program does all and only
the good things that it is required to do is not
possible (or not feasible)

* Analogy: “Lie of Omission”

* You see someone spike your friend's drink at a bar.

Are you obligated to warn your friend?
12

Aside: Ethics

|t is very tempting to say “yes, you are morally
obligated to warn your friend” (many would agree!)

 However, it can be surprisingly difficult to make a
consistent moral system that requires particular
positive actions, as opposed to just forbidding
negative actions

o cf. “Thou shalt not kill” (Old Testament) or “An it harm
none, do what ye will” (Wiccan Rede) or “Everything which
is not forbidden is allowed” (English law), etc.

 For more information, take a class on Ethics
(normative ethics) from the Philosophy department

Don't Do Bad Things

» We can at least test that the program does not
do certain bad things

e e.g., “don't segfault”, “don't send my password to
Microsoft”, “on this one particular input, don't get
the wrong answer”

* Note that “l never do bad things” is not the
same as “l always/eventually do good things”

* For more information, take a class on Modal Logic
or read about Liveness vs. Safety properties

14

Testing to Find Bugs

* SO0 now we want to test to gain confidence
that the program does not do “bad things”

* That is, that the program does not have bugs

» Key Logical Observation: If we never test line
X then testing cannot rule out the presence
of a bug on line X

* (You could read line X, but we're talking about
testing. Later this semester: code review.)

15

If this seems “too obvious” so far,
just wait ...

_1 KEYS TO THE GAME &]
B8 ") SCORE MORE RUNS THAN THE ROCKIES |
» PADRES ARE 12-0 WHEN THEY OUTSCORE THEIR OPPONENTS el

WwWee Roundoflé > 2&1 (49) Willett def, (27) Westwood I&2 @

P —Q

“No test covers X —may have bug in X”

* Note that you could test line X and still have a
bug on line X

* foo(a,b) { return a/b; }
e test: foo(6,2)

* But testing X gives us some small but non-zero
confidence in the correctness of X

17

“All Other Things Being Equal”

o |f test A visits lines 1 and 2
 And test B visits lines 1, 2, 3 and 4

* Then, all other things being equal, we prefer
test B

* Test A gives some confidence about 1 and 2 and no
confidence (no information) about 3 and 4

» Test B gives some confidence about 1, 2, 3 and 4

* If the confidence/info gained per tested line is
c>0, test A gives us 2¢+0 and test B gives us 4c.

 Because c>0, we have 4c > 2c. So B > A. 18

Simplifying Assumptions

* Assumption 1. We gain the same amount of
confidence (or information) for each visited
line.

* Assumption 2. The amount of confidence (or
information) we gain per visited line is
positive.

e Assumption 3. ...

ASUME A n

SPHERICAL &)

CONW

IN A VACUUM

«

/s

Line Coverage:
A Test Suite Quality Metric

* Atest suite quality metric or test suite
adequacy criterion assesses the quality of a
test suite (with respect to an external notion

of utility) and allows test suites to be
compared.

* Line (or statement) coverage is a test suite
quality metric: it is the number of unique lines
(statements) visited (exercised) by the
program when running the test suite.

* (Informally: visiting more lines is better because
you have no information about un-visited lines.)

Using Line Coverage

* Given two test suites that both run within your
resource budget (“AOTBE”, etc.), if we can
only run one, we prefer the test suite with

higher line coverage

* Thus coverage is a metric that allows us to
compare two test suites and pick the “better”

one

* We use this information to guide decision-
making in a software process (“how should we

do testing?”)

21

Collecting Line Coverage

» At its simplest, this is just print-statement
debugging

* Put a print statement before every line of the
program

e Run all the tests, collect all the printed
information, remove duplicates, count

* Practical concern: the observer effect (from
physics) is the fact that simply observing a
situation or phenomenon necessarily changes
that phenomenon.

22

Coverage Instrumentation

Coverage instrumentation modifies a program
to record coverage information in a way that
minimizes the observer effect.

* This can be done at the source or binary level.
Don't actually print to stdout/stderr

Don't slow things down too much

* Pre-check before printing a duplicate?

Don't introduce infinite loops

* Instrument “print” with a call to “print”?

23

Good News: “Solved” Problem

* This is a well-studied problem and many push-
button solutions exist for various forms of
coverage

« Either built in to your IDE or as external tools
* You will use three in the Homework

e Python's coverage, gcc's gcov, Java's cobertura

* For more information on how to write one yourself,
take a (graduate?) PL or Compilers class.

24

Problems with Line Coverage

 What could go wrong with line coverage?

* Can you think of situations with 100% line
coverage where the program might still have
bugs?

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH PPnlL'

e

25

Example Where
Statement Coverage is Inadequate

» Cross-site scripting attacks: 12016 vulnerability Statistics
Report, edgescan]

Insecure Deployment: Availability: CSRF: Open Redirection:
1% 1% 5% 2%

N

Information Leakage: HTML Injection:

3% 3%
Authorisation: / Response Splitting:
4% 1%
4% Browser " b,?EM

Attacks e “3'?;
Session 61%

Application
Layer

Management: / |
9% |

XSS:
86%

Browser Attack:
61%

Cryptography:
17%

26

Insecure Deployment:
1%

Example Where
Statement Coverage is Inadequate

e Cross-site Scripting attacks: [2016 Vulnerability Statistics

Report, edgescan]

Availability:
1%

Information | eakage:

HI, THIS 1S

YOUR. SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

Cryptography:
17%

i

OH, DEAR - DID HE
BREAK SOMETHING?

IN H‘.-.FH‘r’ /

S

CSRF:

Open Redirection:

5% 2%

DID YOU REALLY WELL, WEVE LOST THIS
NAME YOUR SON YEARS STUDENT RECORDS.

Robert'); DROP T HOPE YOURE HAPPY.

TABLE Students:—- 7 \I!
{l AND I HOPE

~ OH.YES UTTLE ~~ YOUVE LEARNED
BOBBY TABLES, TO SANMIZE YOUR
WE CALL HIM. DATABASE INPTS.

Brawser Attack:
61%

27

Data Values and
Implicit Control Flow

return a/b » if (b '= 0)
return a/b;
else
ABORT

print ptr->fld » if (ptr != NULL)
print ptr->fld
else

ABORT

28

Intuition

* Many interesting data values cause implicit or
explicit changes of control

* That is, they cause different branches of
conditionals to execute

* Informally, the problem of ensuring that we
cover interesting data values may reduce to
the problem of ensuring that we cover all
branches of conditionals

¥% Failed to insert optional class information: Error was ToString() takes at

\ & | least 2147483647 arguments (1 given)

Branch Coverage

* Branch coverage is a test suite quality metric
that counts the total humber of conditional
branches exercised by that test suite (i.e.,
if -true and if —false are counted separately)

* Note that branch coverage can subsume line

coverage.
Test Suite {foo(7)} has 100%

foo(a): - line coverage but 50% branch
PINY coverage.
print 6y Test Suite {foo(7), foo(0)}

has 100% line and 100%

print “y” branch coverage.
30

Branch vs. Line

* Branch coverage typically gives us more
confidence than line coverage

» Typically, 100% branch coverage implies 100%
line coverage

* However, branch coverage is “more expensive”
in the sense that it is harder for a test suite to
have high branch coverage than to have high
line coverage

* Note: quality isn't really “more expensive”, you
were just fooling yourself before by thinking line
coverage was OK. Being correct is expensive. 31

Other Flavors

* Function Coverage: what fraction of functions
have been called?

* Condition Coverage: what fraction of boolean
subexpressions have been evaluated?

 Comparing this to branch coverage is a not-
uncommon test question ...

* Modified Condition / Decision Coverage:
function coverage + branch coverage (this is a
simplification)

* Used in mission critical (e.g., avionics) software
32

Trivia: Statistics

* This English social reformer and statistician
among other activities, ~1850) was a pioneer
in the use of infographics: the effective
graphical presentation of statistical data.

DIAGRAM or rur CAUSES or MORTPALITY

2 1

APRIL 1855 10 MARCH 1856. IN THE ARMY IN THE EAST. APRIL 1854 1o MARCH 1855,

2
2
m

BULCARIA

955
o
el T——

The Areas of the blue; red, & black wedges are cacl measured. from
the cenlre as the common. vertea:

The bue wedges measured, fiom the cenire of the aircle represent area.
for area. the dealhs frome Freverdible: or Mitigable Zymotie - diseases, the
red wedges measured. frome the centre the dealls from wounds, &the
black wedges measured from the cenire the deaths from all dther causes.

Theblack Lne across Uieved, triangle in NovT (854 mearks the boundary
o the. deaihs Trom all other casises diring the montly.

Ao Oetober 1554, & April 18541 black area cotncides il the red,
meJanuary & February 557 the blice cotncides with the bleck:.

The enlire areas may be compared by follawing the blue, Ehered & the
Hlack lines enclosing then-.

Psychology: Recall

* 120 students (age 18 to 24) were asked to
study prose passages (e.g., 300 words on “Sea
Otters”) and also do math problems

 Group 1: Read for 7/m, math for 2m, re-read
for 7m, math for bm

» Group 2: Read for 7m, math for 2m, test for
10m, math for 5m

* Both groups: later — test for 10 minutes
 Which group did better? By how much?

Psychology: Recall

M Study, Study
Study, Test

l

©
o
©
-
@
o
w
=
e
0
m
1)
=
-
o
-
Qo
; =
o
Q.
o
& B

5 Minutes 2 Days 1 Week
Retention Interval

Psychology: Testing Effect

* The testing effect: long-term memory is
increased when some of the learning period is
devoted to retrieving the to-be-remembered
information through testing with feedback.

“They found that re-studying or re-reading
memorized information had no effect, but
trying to recall the information had an
effect.”

Implication for SE: Code comprehension.

[Roediger, H. L.; Karpicke, J. D. (2006). “Test-Enhanced Learning: Taking Memory
Tests Improves Long-Term Retention”. Psychological Science. 17 (3): 249-255.]

36

Lens of
Statistics

Alternate View

* The bugs experienced by users are the ones
that matter.

* Dually, bugs never experienced by users do not
matter.

Typical BuggyApp

You chose to end the nonresponsive program. BuggyApp.

The program iz not responding.

Please tell Microsoft about thiz problem.

YWe have created an error repart that you can zend o us. e will treat
thiz report as confidential and anonymous.

To zee what data thiz error report containg, click here.

Send Ermar Repart Don't Send

38

Positive User View

* Suppose you are writing a point-of-sale cashier
application that makes change for a dollar.

Given any price between 1 and 100 cents, you
must indicate the coins to give out as change.

e e.8., 23 — return 3 quarters and 2 pennies

* |n this scenario, you can exhaustively test all

100 inputs that will occur to real users in the
real world

* In some sense, it does not matter if that is 100%
statement or code coverage (e.g., dead code)

39

Negative User View

» Suppose users will only ever cause lines 1, 2
and 3 of your program to be executed

* Then you do not need to test line 4

* Even if it has a bug, users will never encounter
that bug

* Note “will” — this either requires a prediction
of the future or a finite input domain

40

Testing as Sampling

* |f user-experienced bugs are the ones that
matter, testing should be devoted to sampling
those inputs that users will provide

e Two views:

» Sample what users do most commonly

« Sample what causes the most harm if users do it
e Compare:

* Risk = (Prob. of Event) * (Damage if Event Occurs)

41

Sampling Error

* |n statistics, sampling error is incurred when
the statistical characteristics of a population
are estimated from a subset, or sample, of

that population.

e “Our test suite is a sample of inputs that could
occur in the real world. Our program behaves well

on our test suite.” — later — “Our program
behaves badly on some other untested real input.

Sampling error!”

* Testing gives confidence the same way
sampling (or polling) gives confidence.

42

Sampling Bias

* |n statistics, sampling bias is a bias in which a
sample is collected in such a way that some
members of the intended population are less
likely to be included than others.

e Suppose you are conducting a poll to see who will
win the next election, but you only poll
republicans.

e Suppose you are creating tests to see if your

program will crash, but you only poll nice, small,
inputs.

43

Solution?

 There are a number of well-established
sampling techniques in the field of statistics to
help address such biases

* They often require knowing something about the
distribution of the full population from which you
want to sample a subpopulation

* The basic problem in SE is that the underlying
distribution of real user inputs is not known

44

Beta Testing

* Alpha testing is testing done by developers.

» Beta testing is testing done by external users
(often using a special beta version of the

program).

* Beta testing can be viewed as directly
sampling the space of user inputs

45

A/B Testing

* A/B testing involves two variants of your
software, A and B, which differ only in one
feature. Different users are shown different
variants and responses are recorded. It is an
instance of two-sample statistical hypothesis

testing.

e
A

|

Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

aliqua. Ut enim ad minim veniam, quis nostrud exercitation

Click rate: 52 %

o0
AT

Welcome to our website
e . T

adipiscing elit, sed

ipsum dolor sit amet, consectetu
iusmod tempor incididunt ut labore et dolore magna
i minim veniam, qui

712 % 46

Likely or Damaging?

» Recall two guiding approaches:

» Sample what users will do most commonly

« Sample what will cause the most harm

e The former is sometimes called workload
generation

« Common for databases, webservers, etc.
* The latter often relates to computer security

* Exploit generation, penetration testing, etc.
o cf. AFL in Homework 2

47

Non-Security Damage

For Amazon (etc.), “damaging” is “customer
does not complete the purchase”

e Cascading Stylesheet Error. An error in loading
the stylesheet between the current and nexzt pages.

e Code on the Screen. Any error that results in pro-
gramming language code appear on screen, including

any error referring to a li .
tion of visible II'TML cod{ Fﬁ‘ature CUTTB] ation F PT(> F)
e Other Error/Error Me Cﬂ.de on the SUTBB“ —|— 19(‘17 UDU
sage, or any error that can - pra—
category. CDE metic -]_ -5 . Zd U . UU
e Form Error. Missing, o Datﬂ-bﬂSC _|_ 12‘36 ELDO
form fields, drop-down n
rectly validating forms. | Authentication + 6.99 0.01
* Missing Information. | Fynctional Display - 6.00 0.01
is missing, not including i
e Wrong Page/No Rediy Ot-hET ETI‘UT + 4 4[} UUJ
loaded.

e Authentication. Any errors that occur during login.

[Dobolyi et al. Modeling Consumer-Perceived
e Permission. Any errors occurring with respect to . . ey .
user permissions in an application, such as access being ~ YVED Application Fault Severities for Testing.
incorrectly denied to a user. ISSTA 2010.] 48

Lens of Adversity

200

Finding Bugs

* Suppose you wanted to evaluate the quality of
two truffle-sniffing pigs or bomb-sniffing dogs

* You might hide some truffles and see how
many each pig finds (etc.)

* The pig that finds more of the hidden truffles in
your backyard is assumed to find more real truffles
in the wild

* Suppose you wanted to evaluate the quality of
two bug-finding test suites ...

50

Mutation Testing

* Mutation testing (or mutation analysis) is a
test suite adequacy metric in which the
quality of a test suite is related to the number
of intentionally-added defects it finds.

* Informally: “You claim your test suite is really
great at finding security bugs? Well, I'll just
intentionally add a bug to my source code and
see if your test suite finds it!”

51

Verisimilitude

* |In the truffle-pig example, if every truffle |
hide in my back yard is next to a smelly red
flower, a pig that finds them all may not
actually do well in the real world

* The truffle placements | made up were not
indicative of real-world truffles

* Similarly, if | add a bunch of defects to my
software that are not at all the sort of defects
real humans would make, then mutation
testing is uninformative

52

Defect Seeding

» Defect seeding is the process of intentionally
introducing a defect into a program. The
defect introduced is typically intentionally
similar to defects introduced by real
developers. The seeding is typically done by
changing the source code.

* For mutation testing, defect seeding is
typically done automatically (given a model of
what human bugs look like)

* You will do this in Homework 3

53

Mutation Operators

A mutation operator systematically changes a
program point. In mutation testing, the
mutation operators are modeled on historical
human defects. Examples:

if (a < b) — if (a <=b)
If (a ==D) — if (a != D)
a=b+c — a=b-c

f(); g0); = 8(); f();
X =Y, - X=1

Mutant

 Amutant (or variant) is a version of the
original program produced by applying one or
more mutation operators to one or more
program locations. The order of a mutant is
the number of mutation operators applied.

// original // 2™-order mutant
if (a < b): if (a <=Db):
X=a+b — X=a-b

print(x) print(x)

55

Competent Programmers

 The competent programmer hypothesis holds
that program faults are syntactically small and
can be corrected with a few keystrokes.

* Programmers write programs that are largely
correct. Thus the mutants simulate the likely
effect of real faults. Therefore, if the test
suite is good at catching the artificial mutants,
it will also be good at catching the unknown
but real faults in the program.

56

Do Humans Really
Make Simple Mistakes?

Competent?

* |s the competent programmer hypothesis true?

NAH. IT'S HER
DAY OFF. I'M
CRIPPLING SELF

HEH. IT'S
CUTE THAT You
THINK THAT.

CORY RYDELL AND GREY CARTER ONLY WANT A PROPER HOUSE

WWW.ESCAPISTMAGAZINE.COM

Competent?

Is the competent programmer hypothesis true?

Yes and no.

It is certainly true that humans often make
simple typos (e.g., + to -).

But it is also true that some bugs are more
complex than that.

59

Coupling Effect

* The coupling effect hypothesis holds that
complex faults are “coupled” to simple faults
in such a way that a test suite that detects all
simple faults in a program will detect a high
percentage of the complex faults.

e |s it true?

* Tests that detect simple mutants were also able to
detect over 99% of second- and third-order

mutants historically [A. J. Offutt. Investigations of the

software testing coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5-20, Jan. 1992.]

60

Mutation Testing

» A test suite is said to kill (or detect, or reveal)
a mutant if the mutant fails a test that the
original passes.

* Mutation testing (or mutation analysis) of a
test suite proceeds by making a number of
mutants and measuring the fraction of them
killed by that test suite. This fraction is called
the mutation adequacy score (or mutation
score).

* A test suite with a higher score is better.

61

The wording can be tricky, | know ...

[—

62

Mutation Analysis: Pros and Cons

* Has the potential to subsume other test suite
adequacy criteria (it can be very good)

 Which mutation operators do you use?

 Where do you apply them? How often do you
apply them?

» Typically done at random, but how?

|t is very expensive. If you make 1,000
mutants, you must now run your test suite
1,000 times!

« We started by saying testing (1x) was expensive! .

Equivalent Mutant Problem

* Suppose you have “x=a+b;y=c+d;” and
you swap those two statements.

* The resulting program is a mutant, but it is
semantically equivalent to the original.

* So it will pass and fail all of the tests that the
original passes and fails.

e So it will dilute the mutation score

* Detecting equivalent mutants is a big deal.
How hard is it?

64

Equivalent Mutant Problem

* Detecting equivalent mutants is a big deal.
How hard is it?

* |t is undecidable!

e By direct reduction to the halting problem, or by
Rice's Theorem

foo: # foo halts if and only if
if p1() == p2(): # p1 is equivalent to p2
return 0
foo()

65

Questions?

Lens of Logic: “no visit X —no find bug in X”

* Leads to statement and branch coverage.

Lens of Statistics: “sample the inputs the users
will make”

e Leads to beta testing, A/B testing.

Lens of Adversity: “poke realistic holes in the
program and see if you find them”

* |eads to mutation testing.

Don’t neglect HW 1 components! 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

