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Automated Theorem Proving:
Satisfiability Modulo Theories
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One-Slide Summary
• An automated theorem prover is an algorithm that determines 

whether a mathematical or logical proposition is valid 
(satisfiable). 

• A theory is a set of sentences with a deductive system that can 
determine satisfiability. 

• A satisfiability modulo theories (SMT) instance is a proposition 
that can include logical connectives, equality, and terms from 
various theories. 

• The theory of equality can be decided via congruence closure 
using union-find.

• DPLL(T) is an SMT algorithm that uses a modified DPLL SAT solver, 
a well-defined interface for Theories, and a mapping between 
propositional variables and Theory literals.

• We can use logical rules of inference to encode proofs. Proof 
checking is like type checking.
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Combined Motivation

• We have seen:
– How to handle (A || !B) => (!A || C)

• Satisfied by {A, C}, for example

• Arbitrary boolean expressions of boolean variables

– How to handle (x + y <= 5) && (2x >= 10)
• Satisfied by {x = 5, y = 0}, for example

• Conjunctions of linear inequalities of real variables

• But what about:
– (strlen(x) + y <= 5) => (strcat(x,x) != “abba”) 

• Satisfied by {x = “abc”, y = 3}, for example
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High-Level Approach

• Beyond basic logic, we want to reason about
– Strings: strlen(x), regexp_match(x, “[0-9]+”), ...

– Equality: a = b => f(a) = f(b), ...

– Linear Arithmetic: 2x+3y <= 10, …

– Bitvectors: (x >> 2) | y == 0xff, …

– Lists: head(cons(p,q)) = p 

• All at the same time!
• We will handle each domain separately (as a 

theory) and then combine them all together 
using DPLL and SAT as the “glue”.
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Overall Plan

• Theory Introduction
• Theory of Equality

– Congruence Closure

• The DPLL(T) solver for SMT
– Formal Theory Interface

– Changes to DPLL

• Proof and Proof Checking
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I Have a Theory: 
It Could Be Bunnies

• In general, a theory is a set of sentences (syntax) 
with a deductive system that can determine 
satisfiability (semantics). 

• Usually, the set of sentences is formally defined by a 
grammar of terms over atoms. The satisfying 
assignment (or model, or interpretation) maps 
literals (terms or negated terms) to booleans.

• We will consider theories that reason about 
conjunctions of literals. 
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Theory of Linear Inequalities

• Given a finite set of variables V and a finite 
set of real-valued constants C

• Term ::= C
1
V

1
 + … + C

n
V

n
 <= C

n+1

• Conjunctions of terms can be decided via the 
Simplex method
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Theory of Equality and 
Uninterpreted Functions

• Given a finite set of predicate symbols P 
(each of which has an associated arity)

• Predicate ::= P
i
(Predicate

1
, … Predicate

n
) 

• Term ::= Predicate
 | Predicate

1
 = Predicate

2

• Term Examples:
– f(g(a,b),a) // a, b have arity 0 (constants)

– f(a) = f(b) // f has arity 1

– f(f(x)) = f(x) // g has arity 2
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Theory of Equality Definition

• Theory of equality with uninterpreted 
functions

• Symbols: =, , f, g, …
• Axiomatically defined (A,B,C are Predicates):

• Reflexive, Symmetric, Transitive, Definition 
of A Function (Extensionality)

A=A A=B

B=A

A=C

A=B     B=C

f(A) = f(B)

A=B
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Solving Equality

• Consider this conjunction of literals in the 
theory of equality:

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x
• Is it satisfiable? 
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Solving Equality

• Consider this conjunction of literals in the 
theory of equality:

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x
• Is it satisfiable? No.

4. gggg(x) = g(x) by extensionality (1)

5. ggggg(x) = gg(x) by extensionality (4)

6. x = gg(x) by transitivity (2, 5)

7. g(x) = ggg(x) by extensionality (6)

8. g(x) = x by transitivity (1, 7)

9. false by contradition (8, 3) 
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Tracking Equality

• To decide the theory of equality 
mechanically, we track equivalence classes of 
predicates

• Two operations
– Set Equal (Union)

– Check Equal (Find Parents)

• Basic approach: build a tree
• A = B

• D = E

• C = B

A B C D E
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Tracking Equality

• To decide the theory of equality 
mechanically, we track equivalence classes of 
predicates

• Two operations
– Set Equal (Union)

– Check Equal (Find Parents)

• Basic approach: build a tree
• A = B

• D = E

• C = B

A B C D E A

B

C D E
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Tracking Equality

• To decide the theory of equality 
mechanically, we track equivalence classes of 
predicates

• Two operations
– Set Equal (Union)

– Check Equal (Find Parents)

• Basic approach: build a tree
• A = B

• D = E

• C = B

A B C D E A

B

C D E A

B

C D

E
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Tracking Equality

• To decide the theory of equality 
mechanically, we track equivalence classes of 
predicates

• Two operations
– Set Equal (Union)

– Check Equal (Find Parents)

• Basic approach: build a tree
• A = B

• D = E

• C = B

A B C D E A

B

C D E A

B

C D

E

A

B

C D

E
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Analogy: Raindrops Merging
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Two Optimizations
let union x y = 

  let x_root, y_root = find x, find y in

  if x_root = y_root then return ()

  if x_root.depth < y_root.depth

    x_root.parent := y_root

  else if y_root.depth < x_root.depth

    y_root.parent := x_root

else

    y_root.parent := x_root

    x_root.depth := x_root.depth + 1

Keep trees short!
Add smaller tree
to bigger tree.

Only increases total
Depth if depths

Were equal!
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Analogy:
Forwarding vs. Change of Address
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Two Optimizations

let rec find x = 
  if x.parent != x then
    x.parent := find(x.parent)
  return x.parent

• This is called path compression. 

A

B

C
D

E
find A

A

B
C

D

E
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Union-Find Analysis

• This is known as a “union-find” or “disjoint 
union” or “congruence closure” data 
structure.

• With the two optimizations, the amortized 
running time is O( inverse_ackermann (N) )
– inverse_ackermann(N) <= 5 for N <= 2^2^65536

• So the amortized time is effectively constant.
• “Fast Decision Procedures based on 

Congruence Closure”, Nelson & Oppen, 1980
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Equality Decision Procedure
Idea

• Idea: start with the graph based on the 
conjunction of literals given
– f(x) = g(z) && x = y

&& f(y) != g(z)

• There is a unique minimal graph 
corresponding to the congruence closure of 
the quality relation (i.e., if you know a=b and 
b=c, add the a=c edge). 

• Compute that graph via union-find, but when 
you learn a=b, also add f(a)=f(b). 

xy z

f gf
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Equality Decision Procedure
Intermediate Steps

let rec merge u v = (* add “u == v” *)

  if find(u) = find(v) then return ()

  let p_u = preds_of (eq_class_of u) in

  let p_v = preds_of (eq_class_of v) in 

  union u v ;

  for each (x,y) in p_u, p_v do (* u=v => f(u) = f(v) *) 

    if find x <> find y && congruent x y then

      merge x y

let congruent x y = 

  return (out_degree x = out_degree y)

    && forall i. find x.child[i] = find y.child[i] 
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Equality Decision Procedure

• Input:

– t
1
 = t'

1
 && t

2
 = t'

2
 && … t

p
 = t'

p
 

– r
1
 != r'

1
 && … r

2
 != r'

2
 && … r

q
 != r'

q
 

• Construct the graph where the vertices 
correspond to the terms and the edges 
correspond to function application

• for i = 1 … p: merge t
i
 t'

i

• for i= 1 … q: if find r
i
 = find r'

i
 then FALSE

• TRUE
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3 4 5 6

Input Term Graph

Union-Find Forest
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3 4 5 6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3 4 5 6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 4, v = 1
p_u = {5,6}
p_v = {2,3,4,5,6}
merge u v
if congruent p_u p_v
  merge p_u p_u



#27

Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3

4

5 6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 4, v = 1
p_u = {5,6}
p_v = {2,3,4,5,6}
merge u v
if congruent p_u p_v
  merge p_u p_u
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3

4

5 6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 4, v = 1
p_u = {5,6}
p_v = {2,3,4,5,6}
merge u v
if congruent 5 2
  // 5 != 2, 5.child = 2.child
  merge 5 2 
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3

4 5

6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 4, v = 1
p_u = {5,6}
p_v = {2,3,4,5,6}
merge u v
if congruent 5 2
  // 5 != 2, 5.child = 2.child
  merge 5 2 
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3

4 5

6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 4, v = 1
p_u = {5,6}
p_v = {2,3,4,5,6}
merge u v
if congruent 6 3
  // 6 != 3, 6.child = 3.child
  merge 6 3
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3

4 5 6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 4, v = 1
p_u = {5,6}
p_v = {2,3,4,5,6}
merge u v
if congruent 6 3
  // 6 != 3, 6.child = 3.child
  merge 6 3
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 2 3

4 5 6

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 6, v = 1
p_u = {4,5,6}
p_v = {1,2,3,4,5,6}
merge u v
if congruent p_u p_v
  merge p_u p_v
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 23
4

56

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 6, v = 1
p_u = {4,5,6}
p_v = {1,2,3,4,5,6}
merge u v
if congruent p_u p_v
  merge p_u p_v
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 23
4

56

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 6, v = 1
p_u = {4,5,6}
p_v = {1,2,3,4,5,6}
merge u v
if congruent 4 2
  // 4 != 2, 4.child = 2.child
  merge 4 2
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

1 23
4

56

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 6, v = 1
p_u = {4,5,6}
p_v = {1,2,3,4,5,6}
merge u v
if congruent 4 2
  // 4 != 2, 4.child = 2.child
  merge 4 2
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

12 3
4

56

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

u = 6, v = 1
p_u = {4,5,6}
p_v = {1,2,3,4,5,6}
merge u v
if congruent 4 2
  // 4 != 2, 4.child = 2.child
  merge 4 2
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Equality Example

g(g(g(x)))=x && g(g(g(g(g(x)))))=x && g(x)x

1:x

2:g

3:g

4:g

5:g

6:g

12 3
4

56

Input Term Graph

Union-Find Forest

Steps:
1. merge 4 1
2. merge 6 1
3. check find 2 1

they are equivalent: return false!
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Q. Computer Science

• This algorithmic strategy is applicable to 
decomposable problems that exhibit the 
optimal substructure property (in which the 
optimal solution to a problem P can be 
constructed from the optimal solutions to its 
overlapping subproblems). The term was 
coined in the 1940's by Richard Bellman. 
Problems as diverse as “shortest path”, 
“sequence alignment” and “CFG parsing” use 
this approach.
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Q. Computer Science
(olsonchs memorial)

• This family of protocols solves distributed consensus 
among unreliable processors. The participants must 
agree on one result in the face of failures. This 
protocol was first published in 1989 by Lamport, 
named after a fictional legislative system on a Greek 
island. It was so difficult to understand that a 
subsequent paper, “This Made Simple”, was 
published: “At the PODC 2001 conference, I got tired 
of everyone saying how difficult it was to understand 
the This algorithm …” The abstract of the new paper 
is merely: “The This algorithm, when presented in 
plain English, is very simple.”
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Analogy: (NP-Hard) Reduction

Input Instance

Input
Conversion
(to match
interface)

Black-Box
Oracle

Output
Conversion

Final
Answer
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Theory Interface
• Initialize(universe : Literal Set)
• SetTrue(l : Literal) : Literal Set

– Raise exception if l is inconsistent. Otherwise, add 
l to set of known facts. Return newly implied set 
of true facts (e.g., “a=c” after “a=b” and “b=c”)

• Backtrack(n : Nat)
– Forget last n facts from “SetTrue”. 

• IsDefinitelyTrue(l : Literal) : Bool
• Explanation(l : Literal) : Literal Set

– If l is true, return a model (proof) of it. 
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Satisfiability Modulo Theories

• A satisfiability modulo theories (SMT) solver 
operates on propositions involving both logical terms 
and terms from theories. 

• Modern SMT solvers can use any theory that satisfies 
the Theory Interface shown before.

• Replace Theory clauses with special propositional 
variables. 

• Use a pure SAT solver. If the solution involves some 
theory clauses, ask the Theory if they can all be 
true. If not, add constraints and restart.
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SMT Basic Idea
• Given a query like

– (x > 5) && (p || (x < 4)) && !p

• Note that almost everything can be handled 
by SAT:
– (x > 5) && (p || (x < 4)) && !p

– Only the highlighted parts require a Theory.

• So ask SAT to consider:
– T1 && (p || T2) && !p

• And then whenever SAT gives a model, ask 
the theories if that model makes sense.
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SMT Architecture
(Reduction Redux)

Input Instance

Mixed 
Constraints

Conversion
via Mapping

Theory:
Linear Arith
equality, etc.

Black-Box
Oracle

Output
Conversion

Final
Answer

SAT

Black-Box
Oracle
DPLL

SAT Solver

Unsat
Sat

Model

Sat  Model

Unsat

Final
Answer
UNSAT



#45

SMT Example

• Input: (x > 5) && (p || (x < 4)) && !p
• Rewrite: T1 && (p || T2) && !p

– T1 = “x > 5” // mapping

– T2 = “x < 4”

• SAT solver returns {T1, T2, !p}
• Ask Theory about T2 && T2

– Theory Query: (x > 5) && (x < 4)

– Theory Result: Unsatisfiable!

• T1 && (p || T2) && !p && !(T1 && T2)
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Analogy: SMT vs. SLAM
• SLAM converted the C program to a Boolean Program in a sound 

manner:

– If Label is reachable in the Boolean Program via a Path P and the 
ground truth (Newton) agrees with that Path P, the Label is truly 
reachable.

– If Newton disagrees with that Path P because XYZ cannot be true in 
the C program, add XYZ to the abstraction and restart.

• SMT converts the Mixed Constraints into Boolean Constraints in a 
sound manner:

– If the Boolean Constraints are satisfiable via a Model M 
and the ground truth (Theories) agree with that Model M, 
the constraints are truly satisfiable.

– If the Theories disagree with Model M because XYZ cannot 
be true in the Mixed Constraints, add XYZ to the 
constraints and restart.
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DPLL(T)

• DPLL(T) is an SMT algorithm based on the 
DPLL SAT solver but parameterized with 
respect to a set of Theories T. 

• DPLL(T) Algorithm
– Convert mixed constraints to boolean constraints

– Run DPLL, but with two changes:
• No Pure Variable Elimination optimization

• Unit Propagation uses T.setTrue, may add clauses

– Whenever T.setTrue raises an exception, add the 
negation of the explanation to the constraints        
 (homework #3 coding hint)
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No Pure Variable Elimination

• In pure propositional logic, variables are 
necessarily independent.
– So if P only appears positively, you can set P=true 

without loss and save time.

• With Theories, variables may be dependent.
• Consider:

– (x > 10 || x < 3) && (x > 10 || x < 9) && (x < 7)

• “x > 10” is always used positively
– But just skipping to “x > 10” = true as part of the 

model leads you astray (makes the others false)!
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Unit Propagation Additions

• Consider:
– (A = B) && (B = C) && (A != C || X) 

• Convert:
– P1 && P2 && (!P3 || X)

• Unit Propagation: add P1 (A = B) to model
• Now: P2 && (!P3 || X)
• Unit Propagation: add P2 (B = C) to model

– But Wait! Theory reports: P3 (A = C) now true

• Now: (!P3 || X) && P3 … 
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DPLL(T) Example

• Input Clauses: 

– (f(a)!=f(b) || d!=e) && // T1 = f(a)=f(b)

– (a=b || a!=c) && // T2 = d=e

– (a=b || c=b) && // T3 = a=b

– (a=c || X) && // T4 = a=c

– (c!=b || !X) // T5 = c=b

• Converted:

– (!T1 || !T2)  (T3 || !T4)  (T3 || T5)  (T4 || X)  (!T5 || !X)

• No Unit Clauses

• Heuristically choose T1 = False, add to model
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DPLL(T) Example

• Input Clauses: 

– (f(a)!=f(b) || d!=e) && // T1 = f(a)=f(b)

– (a=b || a!=c) && // T2 = d=e

– (a=b || c=b) && // T3 = a=b

– (a=c || X) && // T4 = a=c

– (c!=b || !X) // T5 = c=b

• Converted:

– (!T1 || !T2)  (T3 || !T4)  (T3 || T5)  (T4 || X)  (!T5 || !X)

• No Unit Clauses

• Heuristically choose T1 = False, add to model

– Theory returns: !T3



#52

DPLL(T) Example

• Input Clauses: 

– (f(a)!=f(b) || d!=e) && // T1 = f(a)=f(b)

– (a=b || a!=c) && // T2 = d=e

– (a=b || c=b) && // T3 = a=b

– (a=c || X) && // T4 = a=c

– (c!=b || !X) // T5 = c=b

• Converted:

– (!T4)  (T5)  (T4 || X)  (!T5 || !X)

• Model: !T1, !T3
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DPLL(T) Example

• Input Clauses: 

– (f(a)!=f(b) || d!=e) && // T1 = f(a)=f(b)

– (a=b || a!=c) && // T2 = d=e

– (a=b || c=b) && // T3 = a=b

– (a=c || X) && // T4 = a=c

– (c!=b || !X) // T5 = c=b

• Converted:

– (!T4)  (T5)  (T4 || X)  (!T5 || !X)

• Model: !T1, !T3

• Unit Clauses: !T4, !T5, add to model
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DPLL(T) Example

• Input Clauses: 

– (f(a)!=f(b) || d!=e) && // T1 = f(a)=f(b)

– (a=b || a!=c) && // T2 = d=e

– (a=b || c=b) && // T3 = a=b

– (a=c || X) && // T4 = a=c

– (c!=b || !X) // T5 = c=b

• Converted:

– (X)  (!X)

• Model: !T1, !T3, !T4, !T5

• Unit Clause: (X), add to model
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DPLL(T) Example

• Input Clauses: 

– (f(a)!=f(b) || d!=e) && // T1 = f(a)=f(b)

– (a=b || a!=c) && // T2 = d=e

– (a=b || c=b) && // T3 = a=b

– (a=c || X) && // T4 = a=c

– (c!=b || !X) // T5 = c=b

• Converted:

– (X)  (!X)

• Model: !T1, !T3, !T4, !T5

• Unit Clause: (X), add to model, contradiction!

– Original input is not satisfiable!
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DPLL(T) Conclusion

• DPLL(T) is widely used as a basis for modern 
SMT solving.
– It is typically much faster than eagerly encoding 

all of the variables into bits (e.g., 32-bit integer: 
32 boolean variables). It is general in that it 
allows many types of theories. 

• For example, Microsoft's popular and powerful Z3 
automated theorem prover handles many theories, 
but uses DPLL(T) + Simplex for linear inequalities.

– “A Fast Linear-Arithmetic Solver for DPLL(T)”, 2006
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Proofs
“Checking proofs ain’t like dustin’ crops, boy!” 
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Proof Generation

• We want our theorem prover to emit proofs
– No need to trust the prover

– Can find bugs in the prover

– Can be used for proof-carrying code

– Can be used to extract invariants  

– Can be used to extract models (e.g., in SLAM)

• Implements the soundness argument
– On every run, a soundness proof is constructed
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Proof Representation

• Proofs are trees
– Leaves are hypotheses/axioms
– Internal nodes are inference rules

• Axiom: “true introduction”
– Constant: truei : pf
– pf is the type of proofs

• Inference: “conjunction introduction”
– Constant: andi : pf  pf  pf→ →

• Inference: “conjunction elimination”
– Constant: andel : pf → pf

• Problem:
– “andel truei : pf” but does not represent a valid proof
– Need a powerful system that checks content

|- true

 

|- A

|- A && B

|- A && B

|- A   |- B

truei

andi

andel
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Analogy: Integer Subtypes
(cf. Hoare paper)

• We don't just need any number, we need a 
“number representing distance over time”

• WE don't just need any proof, we need a 
“proof representing A || B”
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Dependent Types, Preview
• Make pf a family of types indexed by formulas

– f : Type (type of encodings of formulas)

– e : Type (type of encodings of expressions)

– pf : f  Type→ (the type of proofs indexed by formulas: it 
is a proof that f is true)

• Examples:
– true : f

– and : f → f → f

– truei : pf true

– andi : pf A → pf B → pf (and A B)

– andi : A:f. B:f. pf A  pf B  pf (and A B)→ →
– (A:f.X means “forall A of type f, dependent type X”, see future lecture)
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Proof Checking

• Validate proof trees by recursively checking them

• Given a proof tree X claiming to prove A && B

• Must check X : pf (and A B)

• We use “expression tree equality”, so 
– andel (andi “1+2=3” “x=y”) does not have type pf (3=3)

– This is already a proof system! If the proof-supplier wants 
to use the fact that 1+2=3 , 3=3, she can include a proof 
of it somewhere!

• Thus Type Checking = Proof Checking
– And it’s quite easily decidable! 



#63

Proof Inference Rules

• What are some rules of inference and 
function types for:
– Or introduction

• Hint: or_introduction_left : pf A  pf (or A B)→
– Or elimination

– Not introduction

– Not elimination

– Implies introduction

– Implies elimination

– False elimination
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Bonus Question

• If we want to use Simplex to handle our 
Theory of Linear Inequalities, how do we 
handle …
– Equality (x = 10)

– Negative Literals !(x <= 10) 

– Disequality (x != 10)

• A slack variable converts an inequality to an 
equality. 
– Given: Ax <= b, create fresh y >= 0 

– Obtain: Ax + y = b 
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Homework

• HW2 

• HW3 Coding Hint:
– You are only being asked to code up the 

“check this candidate model against the 
Theories and add new clauses if it doesn't 
work” part of SMT. 


	Proof Techniques for Operational Semantics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Theory of Equality
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Proofs
	Proof Generation
	Proof Representation
	Slide 60
	Dependent Types
	Proof Checking
	Slide 63
	Slide 64
	Slide 65

